



**Figure S1** Gating strategy for 2W1S:IA<sup>b</sup> tetramer<sup>+</sup> CD4 T cells in the MLNs and colon. Representative plots from BRD509-2W1S-infected mice 6 days p.i. Tetramer<sup>+</sup> cells are identified from single cell suspension of **a**, MLN and **b**, colonic cells. Cells are identified as live, single CD45<sup>+</sup>, CD3<sup>+</sup>, Dump (MHCII, B220, CD8, CD64)<sup>-</sup>, CD4<sup>+</sup>, CD44<sup>hi</sup> and tetramer<sup>+</sup> cells.



**Figure S2** 2W1S-specific CD4 T cells are detected in multiple intestinal and lymphoid sites. **a** Representative plots of 2W1S:IA<sup>b</sup> tetramer<sup>+</sup> CD4 T cells from the colon and MLN of animals infected with *S*. Tm strain BRD509-2W1S, the non-2W1S-expressing BRD509 parental strain, or mock infected with PBS. **b** Representative plots of tetramer<sup>+</sup> cells from 7 tissues at day 30 post-infection with BRD509-2W1S (top) or mock-infected with PBS (bottom).



**Figure S3** The MLN CD4 T cell response 6 days p.i. is confined to colon and caecum draining nodes. **a** Schematic representation of intestines and MLN, including small intestine draining MLNs (sMLN), and colonic draining MLNs (cMLN). **b** Representative plots of CD4 T cells from sMLN (left) and cMLN (right) that are CXCR3<sup>+</sup> (top) and tetramer<sup>+</sup> (bottom), 6 days p.i. **c** Graphs showing the number and proportion of total cells, CD4 T cells, and CD4 T cells that are CXCR3<sup>+</sup> or tetramer<sup>+</sup> at day 6 p.i. Data points represent individual animals (n=4). Mean ± SEM are plotted. Statistical significance calculated by a one-way ANOVA with Tukey's test. \*p<.05; \*\*p<.01; \*\*\*p<.001; \*\*\*\*p<.0001.



**Figure S4** 2W1S:I-Ab tetramer<sup>+</sup> CD4 T cells in the colon and MLN express T-bet and IFNγ but not RORγT, FoxP3 or IL17A. **a** Representative plots of TF expression by colonic CD4 T cells that are tetramer<sup>-</sup> or tetramer<sup>+</sup>. **b** Tetramer<sup>+</sup> cells in the colon (left) and MLN (right) are predominantly T-bet<sup>+</sup> and do not express RORγT or FoxP3 at day 6, day 30 and day 60 p.i. **c** Representative plots of IFNγ and IL-17A expression by 2W1S-specific CD4 T cells 11 days p.i. **d** The proportion of 2W1S:I-Ab tetramer<sup>+</sup> CD4 T cells expressing IFNγ and/or IL17A in the colon (left) and MLN (right) are shown 11 days p.i. Means ± SEM are plotted.



**Figure S5.** Enrofloxacin treatment for 3 weeks eliminates any detectable *Salmonella* CFUs, reduces the number of tetramer<sup>+</sup> CD4 T cells, and partially reduces the Th1 bias at day 30 p.i. **a** Samples of caecal content, faeces and tissues were plated following harvest and the number of *S*. Tm CFUs recovered / organ or mg of intestinal content was plotted. **b** The proportion and **c** absolute number of CD4 T cells that are tetramer<sup>+</sup> at day 6, 30 or 60 p.i. is shown following 24 days of treatment with enrofloxacin in drinking water from 6 days p.i. The proportion of 2W1S-specific T cells (**d**), Tconvs (**e**) and Tregs (**f**) expressing RORγT or T-bet are shown from enrofloxacin-treated or untreated mice at day 30 p.i. Data is from one experiment (n=3-6). Mean ± SEM are plotted. Statistical significance calculated for each tissue by a one-way ANOVA with Tukey's test. ns, not significant; \*p<.05; \*\*p<.01; \*\*\*p<.001; \*\*\*\*p<.001; Abx, antibiotics; ND, not detected).



Figure S6 Diphtheria toxin (D.T.) treatment of DEREG mice depletes Tregs in PBMC and colonic lamina propria; Tregs in untreated DEREG mice express similar levels of T-bet and RORyT as C57BL/6 mice; and Treg ablation in mock-infected mice does not significantly shift the Th1-Th17 bias nor increase colonic Tconv numbers, as observed following S. Tm infection. a Representative plots of CD4 T cells from PBMCs are shown from a WT littermate (left) and DEREG mouse at 1, 3 or 5 days following 2 D.T. treatments, 24 hrs apart. b Representative plots show the proportion of colon CD4 T cells that are FoxP3<sup>+</sup> 5 days after D.T. treatment. CD4 T cells are identified as described in Fig. 1d. Gate numbers represent the proportion of CD4 T cells that are FoxP3+. c The proportion of colon Tregs from C57BL/6 mice that express T-bet or RORyT are plotted following S. Tm infection. d Graphs compare Treg expression of T-bet or RORyT between C57BL/6 mice and Treg replete (untreated) DEREG mice at day 0, 6 and 11 following S. Tm infection. e The absolute number (left) and proportion (right) of colonic CD44hi Tconvs that are RORyT+ or T-bet+ are shown 4 days following D.T. treatment in uninfected DEREG mice or wild type (WT) littermates. f The number of RORyT+ and Tbet+ Tconvs are stacked to show changes in cell numbers 4 days following Treg depletion in mock- or S. Tm-infected mice 6 days p.i. Data represent n=3-8/group. Means  $\pm$  SEM are plotted. Statistical significance calculated by one-way ANOVA (d, e) or two-way ANOVA with Holm-Šídák test of compiled columns (f) . ns, not significant; \*p<.05; \*\*p<.01; \*\*\*p<.001; \*\*\*\*p<.0001.



**Figure S7** Treg depletion of *S*. Tm-infected mice does not cause significant weight loss, change faecal *S*. Tm burden or tetramer<sup>+</sup> cells, but consistently shifts Th bias. **a** Weight loss in DEREG mice and WT littermates following *S*. Tm infection and D.T. treatment (represented by dashed lines) at day 1-2 p.i. **b** Pooled data showing the number (left) and proportion (right) of CD44<sup>hi</sup> CD4 Tconvs expressing RORγT or T-bet at day 6 p.i. **c** STM CFU recovered from faeces at day 6 p.i. **d** The number of colonic CD4 T cells in DEREG mice and WT littermates are shown. **e** The proportion (left) and number (right) of colonic Tconvs that are tetramer<sup>+</sup> are shown. **f** Weight loss shown following STM infection and D.T. treatments at day 6-7 p.i. **g** Pooled data shows the number (left) and proportion (right) of Tconvs expressing RORγT or T-bet at day 11 p.i. **h** *S*. Tm CFU recovered from faeces at day 11 p.i. **i** The number of CD4 T cells, **j** The proportion (left) and number (right) of colonic Tconvs that are tetramer<sup>+</sup> are shown. Data are representative examples of three independent experiments (n=3-5) (**c-e**, **h-j**) or are pooled from 3 independent experiments (**b**, **g**). Means ± SEM are plotted. Statistical significance calculated by Mann-Whitney test (**c-e**, **h-j**) or one-way ANOVA with Holm-Šídák test (**b**, **g**). ns, not significant; \*p<.05; \*\*p<.01; \*\*\*p<.001.

Figure S8 Antibodies used for flow cytometry

| Marker            | Fluorochrome | Clone        | Concentration | Manufacturer   |
|-------------------|--------------|--------------|---------------|----------------|
| 7AAD              | N/A          | N/A          | 5µl/sample    | Biolegend      |
| B220              | BV510        | RA3-6B2      | 1:200         | Biolegend      |
| CCR6              | BV605        | 29-2L17      | 1:100         | Biolegend      |
| CD25              | PE/Cy7       | PC61         | 1:200         | Biolegend      |
| CD3               | BV605        | 17A2         | 1:100         | Biolegend      |
| CD3ε              | AF700        | eBio500A2    | 1:100         | eBioscience    |
| CD3ε              | BUV395       | 145-2C11     | 1:100         | BD Biosciences |
| CD4               | BUV805       | GK1.5        | 1:200         | BD Biosciences |
| CD4               | AF647        | GK1.5        | 1:200         | Biolegend      |
| CD4               | PE/Cy7       | GK1.5        | 1:200         | Biolegend      |
| CD44              | BV605        | IM7          | 1:100         | Biolegend      |
| CD44              | BV785        | IM7          | 1:100         | Biolegend      |
| CD45              | BV785        | 30-F11       | 1:200         | Biolegend      |
| CD45              | AF700        | 30-F11       | 1:200         | Biolegend      |
| CD8α              | BV510        | 53-6.7       | 1:200         | Biolegend      |
| CXCR3             | BV421        | CXCR3-173    | 1:100         | Biolegend      |
| CXCR3             | BV605        | CXCR3-173    | 1:100         | Biolegend      |
| F4/80             | BV510        | BM8          | 1:200         | Biolegend      |
| Fixable viability | eFluor 780   | N/A          | 1:1000        | Invitrogen     |
| FoxP3             | APC          | FJK-16s      | 1:100         | eBioscience    |
| FoxP3             | PE           | FJK-16s      | 1:100         | eBioscience    |
| FoxP3             | AF700        | FJK-16s      | 1:100         | Invitrogen     |
| GATA3             | PerCP/Cy5.5  | TWAJ         | 1:100         | eBioscience    |
| Helios            | AF488        | 22F6         | 1:100         | BD Biosciences |
| Helios            | PerCP/Cy5.5  | 22F6         | 1:100         | Biolegend      |
| I-A/I-E           | BV510        | M5/114.15.2  | 1:200         | Biolegend      |
| IFNγ              | PE           | 3E4          | 1:100         | eBioscience    |
| ΙΕΝγ              | PerCP/Cy5.5  | XMG1.2       | 1:100         | Biolegend      |
| IL-17A            | BV605        | TC11-18H10.1 | 1:100         | Biolegend      |
| RORYT             | PE           | AFKJS-9      | 1:100         | eBioscience    |
| RORγT             | APC          | B2D          | 1:100         | Invitrogen     |
| T-bet             | PE/Cy7       | eBio4B10     | 1:100         | eBioscience    |