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Summary 

Rapidly responding to novel pathogens, such as SARS-CoV-2, represents an extremely 
challenging and complex endeavor. Numerous promising therapeutic and vaccine research 
efforts to mitigate the catastrophic effects of COVID-19 pandemic are underway, yet an 
efficacious countermeasure is still not available. To support these global research efforts, we 
have used a novel computational pipeline combining machine learning, bioinformatics, and 
supercomputing to predict antibody structures capable of targeting the SARS-CoV-2 receptor 
binding domain (RBD). In 22 days, using just the SARS-CoV-2 sequence and previously published 
neutralizing antibody structures for SARS-CoV-1, we generated 20 initial antibody sequences 
predicted to target the SARS-CoV-2 RBD. As a first step in this process, we predicted (and 
publicly released) structures of the SARS-CoV-2 spike protein using homology-based structural 
modeling. The predicted structures proved to be accurate within the targeted RBD region when 
compared to experimentally derived structures published weeks later. Next we used our in 
silico design platform to iteratively propose mutations to SARS-CoV-1 neutralizing antibodies 
(known not to bind SARS-Cov-2) to enable and optimize binding within the RBD of SARS-CoV-2. 
Starting from a calculated baseline free energy of -48.1 kcal/mol (± 8.3), our 20 selected first 
round antibody structures are predicted to have improved interaction with the SARS-CoV-2 RBD 
with free energies as low as -82.0 kcal/mole. The baseline SARS-CoV-1 antibody in complex with 
the SARS-CoV-1 RBD has a calculated interaction energy of -52.2 kcal/mole and neutralizes the 
virus by preventing it from binding and entering the human ACE2 receptor. These results 
suggest that our predicted antibody mutants may bind the SARS-CoV-2 RBD and potentially 
neutralize the virus. Additionally, our selected antibody mutants score well according to 
multiple antibody developability metrics. These antibody designs are being expressed and 
experimentally tested for binding to COVID-19 viral proteins, which will provide invaluable 
feedback to further improve the machine learning–driven designs. This technical report is a 
high-level description of that effort; the Supplementary Materials includes the homology-based 
structural models we developed and 178,856 in silico free energy calculations for 89,263 
mutant antibodies derived from known SARS-CoV-1 neutralizing antibodies.  

Introduction 

Numerous promising therapeutic [1,2] or vaccine [3,4] research efforts are underway for 
COVID-19, yet a therapeutic or vaccine is not currently available. Traditional drug and biologic 
development are experiment-driven, typically executed via large-scale screening in vitro and in 
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vivo. While traditional approaches have led to many effective and safe therapeutics, they 
require years to complete and therefore cannot alone be relied upon to support a rapid 
response to novel pathogens [5-7].  

Data-driven (machine learning) methods are increasingly being explored for rapid therapeutic 
development [8,9], potentially offering the promise of a very rapid design phase. However, a 
purely data-driven machine learning system would be limited in rapid response scenarios due 
to the inevitable insufficiency of available data on novel or emerging pathogens. Theory-driven 
computational methods, such as molecular dynamics simulations, can provide virtually limitless 
amounts of data for target systems, but still require experimental validation.  

Lawrence Livermore National Laboratory (LLNL) and GlaxoSmithKline (GSK) Vaccines Research 
have developed a combined computational-experimental platform for vaccine antigen design 
over the last two years. This combined platform combines experiment-driven, data-driven, and 
theory-driven approaches to leverage the strength of each approach, while mitigating their 
limitations. The initial predictions from this platform are driven by a computational component 
based on integrating existing experimental data, structural biology/bioinformatic modeling, and 
molecular dynamics simulations on high-performance computing systems. An active machine 
learning model aims to optimize binding behavior by iteratively proposing mutations to the 
amino acid sequence of an initial antigen. Proposed mutant antigens are evaluated with 
existing computational binding estimation tools using known or estimated antibody-antigen 
structures. The platform leverages a feature representation of the three-dimensional antigen-
antibody interface and a Bayesian optimization algorithm to propose computational evaluation 
of mutants with high predicted performance and mutants that improve the machine learning 
model itself. The computational platform further improves its predictions by proposing designs 
that are evaluated with a high throughput experimental evaluation component, the results of 
which are incorporated into the machine learning model in a feedback loop. This combined 
computational-experimental antigen design platform, and results generated by it, will be 
described in greater detail in a future joint publication with GSK, including details of the 
machine learning model. 

Our approach to designing therapeutic antibodies 

In response to the COVID-19 pandemic, we modified and used our computational components 
of the antigen design platform to propose mutations to SARS-CoV-1 neutralizing antibodies to 
achieve and optimize binding to the receptor binding domain (RBD) of the SARS-CoV-2 spike 
protein. This approach is motivated and enabled by knowledge of existing antibodies specific to 
the RBD of the SARS-CoV-1 spike protein that prevent SARS-CoV-1 from binding the human 
ACE2 receptor and entering the cell, thus neutralizing the virus [10,11]. The high similarity of 
SARS-CoV-1 and SARS-CoV-2, including the RBD [12], suggest that such an approach could 
produce efficacious therapeutic antibodies. In 22 days (1/23-2/13/2020), we demonstrated that 
our platform could generate antibody designs using only SARS-CoV-2 sequence information, 
with support from antibody/antigen structures that had previously been experimentally 
determined for SARS-CoV-1. We executed this entire workflow by constructing a homology-
based structural model before any experimentally determined structures of the SARS-CoV-2 S-
protein were available.  
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Results 

Homology-based structural modeling of the SARS-CoV-2 spike protein produces accurate 
structural estimates when compared to experimentally derived structures 

In the absence of a known SARS-CoV-2 spike protein structure, we characterized the SARS-CoV-
2 surface glycoprotein sequence YP_009724390.1 [13] by constructing a homology-based 
structural model using the AS2TS protein modeling system [14]. The structures of the spike 
proteins from SARS-CoV-1 (Protein Data Bank (PDB) entries: 5x58 [15], 6nb6 [10], 2dd8 [11], 
and 3bgf [16]) were identified as the closest and most complete PDB structural templates to 
use for modeling, with resolutions 3.2, 4.2, 2.3, and 3.0 Å respectively. Of the four templates, 
the last three provide experimentally solved complexes with three antibodies, S230, M396, and 
F26G19. As our main focus in constructed homology models was to achieve the highest possible 
accuracy in the RBD-FAB (antigen-binding fragment) interfaces we used additional PDB 
templates to refine models in corresponding regions. For example, PDB template 2ghw [17] was 
used to improve accuracy in the modeled interface between RBD and FAB of neutralizing 
antibody 80R.  

A CryoEM-derived structure of the SARS-CoV-2 spike protein became available on Feb. 19, 2020 
and was publicly released Feb 26, 2020 [18] (https://www.rcsb.org/structure/6vsb). X-ray  
crystal structures (of the receptor-binding domain) became available starting March 4, 2020 

(http://www.rcsb.org/structure/6VW1 , to be published). Comparison with our homology 
models indicates that our estimated structures (completed Jan 23, 2020; publicly available 
beginning Feb 3, 2020) were accurate, especially at the FAB (antigen-binding fragment) 

FIGURE 1. Bar representation of structural alignments with 6w41_C x-ray structure is used as reference. Four currently 
released X-ray structures of RBD from SARS-CoV-2 show high similarity with our SARS-C0V-2 homology models structures, 
SARS-CoV-2 CryoEM structures, and SARS-CoV-1 structures) in most regions except two loops (which are not part of the 
interface with our selected antibodies) where local conformations deviate. Green: residue deviations below 2.0 Å; yellow: below 
4.0 Å; orange: below 6.0 Å; red: below 8.0 Å (or not aligned/missing regions). Listed in descending order by Local-Global 
Alignment (LGA) [19] 
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antibody interfaces. Figure 1 and Table 1 show residue deviations for our SARS-CoV-2 
homology models, SARS-CoV-2 CryoEM structures, and SARS-CoV-1 structures, using a SARS-
CoV-2 X-ray structure 6w41_C as the reference. The two regions indicated by rectangular boxes 
(residues 382-393 and 475-484) are part of loop regions where local conformations deviate, but 
note that these regions are not part of the interface with the selected antibodies. Figure 2 
depicts our homology-based model superimposed on a CryoEM structure, with the M396 
antibody structure provided to indicate the FAB-RBD interface region. Note that the only 
regions with deviations above 2.0 Å are outside the interface region.   
 
TABLE 1. Structure similarity scores using x-ray structure 6w41 as reference. SARS-CoV-2 CryoEM structures, our SARS-CoV-2 
homology models, and SARS-Cov-1 structures show similar deviations by root-mean-square deviation (RMSD), LGA [19], and 
global distance calculation GDC [20] from X-ray structures. Listed in descending order by LGA.  

Structure Type RMSD Sequence 
Identity 

LGA GDC 

6w41_C SARS-CoV-2 X-ray 0 100 100 100 

6m0j_E SARS-CoV-2 X-ray 0.68 100 98.845 90.175 

6lzg_B SARS-CoV-2 X-ray 0.71 100 98.682 90.088 

6vw1_F SARS-CoV-2 X-ray 0.89 87.5 97.61 89.247 

s_M26SHL_S Our SARS-CoV-2 homology model 1.06 100 96.208 85.535 

2dd8_S SARS-CoV-1 X-ray structure 1.05 75.29 96.062 86.429 

6m17_F SARS-CoV-2 CryoEM 1.15 100 95.923 81.066 

s_M34SHL_S Our SARS-CoV-2 homology model 1.15 100 95.612 83.074 

s_M15AB_A Our SARS-CoV-2 homology model 1.08 100 95.557 83.725 

s_M13SHL_S Our SARS-CoV-2 homology model 1.13 100 95.147 82.175 

s_M16ABC_A Our SARS-CoV-2 homology model 1.14 100 95.044 82.098 

s_M03CHL_C Our SARS-CoV-2 homology model 1.15 100 94.977 81.669 

s_M16SHL_S Our SARS-CoV-2 homology model 1.14 100 94.967 82.003 

s_M03BIM_B Our SARS-CoV-2 homology model 1.15 100 94.967 81.603 

6nb6_C SARS-CoV-1 CryoEM structure 1.19 75.3 94.895 66.096 

3bgf_A SARS-CoV-1 X-ray structure 1.18 74.55 93.625 83.85 

s_M01AHL_A Our SARS-CoV-2 homology model 1.25 100 93.222 78.981 

s_M01AIM_A Our SARS-CoV-2 homology model 1.25 100 93.097 78.899 

2ghw_A SARS-CoV-1 X-ray structure 1.41 74.05 91.712 80.453 

6vyb_A SARS-CoV-2 CryoEM 0.8 100 85.224 73.121 

6vsb_B SARS-CoV-2 CryoEM 0.87 100 84.644 67.495 

6vxx_A SARS-CoV-2 CryoEM 0.89 100 82.075 71.643 
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Rapidly generating 20 initial antibody designs for experimental evaluation 

Details of our computational-experimental platform will be described in greater detail in a 
future publication, including details on the active machine learning model, the feature space 
used to represent the three dimensional antigen-antibody interface, and the antibody 
optimization pipeline. Overall, to generate the initial 20 antibodies, we executed the following 
steps: 

1. Obtain structures for which experimentally-determined atomic coordinates were 
previously deposited in the PDB for several SARS-CoV-1-neutralizing antibodies in 
complex with the SARS-CoV-1 S-protein; obtain sequences from SARS-CoV-2 S-protein.  

2. Map public SARS-CoV-2 spike protein sequences into structures. We estimated 10 co-
structures involving 3 antibodies. (Completed Jan 23, 2020; made publicly available Feb 
3, 2020. We used two of these antibodies (M396 and S230) in our subsequent 
calculations. 

3. Define a set of residues for modification in each of the starting SARS-CoV-1-neutralizing 
antibodies via automatic contact estimation. 

• For antibody M396, up to 31 residues were allowed to simultaneously mutate, 
later narrowed to 21 based on intermediate results (parenthesized residues 
were eliminated): S31_H, (Y32_H), (T33_H), W47_H, G50_H, I51_H, (T52_H), 
I53_H, L54_H, I56_H, A57_H, N58_H, Y59_H, A60_H, (Q61_H), D95_H, T96_H, 
V97_H, (M98_H), (G99_H), G100_H, N27_L, (G29_L), S30_L, (K31_L), (W91_L), 

 
FIGURE 2. (A) Our homology model (thin) superimposed on CryoEM 6vsb chain A (thick). Fab (m396) structure provided 
to indicate FAB-RBD interface region. Regions that are missing in CryoEM structure but are present in our model are in 
red. (B) Our homology-based model superimposed with the X-ray structure 6w41_C (reference structure in Figure 1). 
The coloring scheme in this superposition corresponds to 5th bar in Figure 1. Regions that deviate less than 2.0 A are 
green. Deviations above 2.0 A are in yellow, orange or red. Note that the regions with deviations above 2.0 A are all 
outside the interface region 
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D92_L, S93_L, S94_L, D95A_L, (Y96_L). We did not consider insertions or 
deletions at this phase of our work. 

4. Use machine learning module of computational design platform to iteratively propose 
mutations to the original antibody (M396) and perform free energy calculations using 
FoldX [21] on LLNL high-performance computing (HPC) to maximize estimated affinities 
to our SARS-CoV-2 spike protein homology model. By Feb 13, 2020, we evaluated 
89,263 mutant antibodies selected from a design space of 1040 (20 amino acids31 positions). 
The primary template for this structure was PDB 2dd8. 

5. Use HPC to perform additional free energy calculations on 110 selected antibody 
sequences by performing free energy calculations using Rosetta [22] and 102 antibodies 
with molecular dynamics simulations [23]; assess all sequences with the STATIUM 
energy prediction tool [24]. (Completed by Feb 13, 2020) 

6. Assess the developability of 139 selected antibody sequences using the 5 developability 
metrics from the Therapeutic Antibody Profiler [25]. (Completed by Feb 13, 2020) 

7. Select diverse batch of 20 M396-derived candidate antibodies for experimental based 
on all calculations from steps 4-6. (Completed Feb 13, 2020). 

During this 22-day period, we used two high-performance computers located at LLNL to 
support over 200,000 CPU hours and 20,000 GPU hours, performing 178,856 in silico free 
energy calculations for 89,263 mutant antibodies in complex with the RBD. Given the 31 
residues on M396 considered for mutation, the antibody design space has 1040 possibilities. 
Supplementary Materials include all sequences and calculations performed for M396. From 
these calculations, as well as from additional bioinformatic heuristics described in the Methods 
section, we selected 20 initial antibodies for experimental evaluation. 

Machine learning–driven computational design platform generates antibodies with improved 
predicted binding to SARS-CoV-2 receptor binding domain (RBD) 

We used the machine learning module of our computational design platform to iteratively 
propose mutations to the original antibody (M396) and run FoldX [21] calculations on LLNL HPC 
to estimate free energies to the SARS-CoV-2 spike protein homology model. FoldX binding 
calculations estimate the change in free energy (ddG) of the antibody-antigen protein complex 
resulting from the proposed mutations (to M396). We used this calculation as part of an 
objective function to drive the antibody optimization via the machine learning model. We 
evaluated 89,263 mutants with FoldX during the course of our search for improved antibodies 
with estimated ddG values ranging from -10.1 to 19.2 kcal/mole. Figure 3 plots improvements 
in the FoldX-estimated ddG values over the course of the machine learning-driven optimization 
process. These results indicate that the machine learning model was effective in searching the 
combinatorial space of possible antibody mutants to perform design optimization and identify 
increasingly improved predicted antibody designs. We then selected a subset of these antibody 
mutants for additional calculations using Rosetta [22], STATIUM [24], and molecular dynamics 
calculations [23], as well as antibody developability estimates via the Therapeutic Antibody 
Profiler [25] (see Methods section).  
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Figure 3 Scatter plot illustrating increasingly improved antibody mutants proposed as the machine learning-driven antibody 
optimization progresses. A total of 89,263 antibody mutants were proposed by the machine learning model during the course of 
the antibody optimization. Each antibody mutant was evaluated with FoldX with two different calculations; first to estimate 
energy changes for the entire complex (y-axis) and second for the RBD-FAB interface only (x-axis). The first 4,462 (5% of the 
total) antibody mutants proposed by the machine learning model are shown in red. The last 4,462 mutants proposed, shown in 
blue, resulted in a distribution of mutants with much lower energies (more favorable FAB-RDB interaction), indicating that the 
machine learning model was effective in searching the combinatorial space of possible antibody mutants to identify increasingly 
improved predicted antibody designs. Note that FoldX Interface calculations were a major driver of the objective function for 
optimization, and therefore show the most improvement. 

While all in silico calculations performed were used to select our 20 first round antibodies, the 
molecular mechanics/generalized Born solvent accessible surface area (MM/GBSA) molecular 
dynamics calculations [23], described in the Methods section, are considered to be our most 
accurate estimate. MM/GBSA calculates antibody/antigen interaction free energies using fully 
solvated molecular dynamics (MD) for conformational sampling of the protein complex, but 
estimates free energy by a computationally less expensive implicit solvent model (GBSA). M396, 
our starting template for design, is known to neutralize SARS-CoV-1 by binding its RBD and 
preventing the virus from binding and entering the human ACE2 receptor; our MM/GBSA 
calculations for M396 in complex with the SARS-CoV-1 spike protein yield -52.2 kcal/mole 
(±7.2). M396 is known not to bind to the SARS-CoV-2 spike protein [18] and yields -48.1 
kcal/mole (± 8.3) in complex with SARS-CoV-2 via MM/GBSA, assuming the same conformation 
as with SARS-CoV-1. Our 20 selected antibody designs, which are derived from M396, are 
predicted to have improved interaction with the RBD of the SARS-CoV-2 spike protein with 
MM/GBSA free energies as low as -82.0 kcal/mole, also assuming the same conformation as 
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with SARS-CoV-1. These results suggest that these M396-derived antibody mutants potentially 
bind and neutralize SARS-CoV-2.  

Conclusion 

Starting on Jan 23, 2020, we used two high-performance computers at LLNL over the course of 
22 days to support over 200,000 CPU hours and 20,000 GPU hours, performing 178,856 in silico 
free energy calculations of candidate antibodies in complex with the SARS-CoV-2 RBD. We 
performed this work using just the SARS-CoV-2 sequence and previously published neutralizing 
antibody structures for SARS-CoV-1. Our predicted structures of SARS-CoV-2 proved to be 
accurate within the targeted RBD region when compared to experimentally derived structures 
published weeks later. With our predicted SARS-CoV-2 structures, we used our in silico design 
platform to evaluate 89,263 mutant antibodies by iteratively proposing mutations to SARS-CoV-
1 neutralizing antibodies to optimize binding within the SARS-CoV-2 RBD. We selected 20 initial 
antibody sequences predicted to target the SARS-CoV-2 RBD. Starting from a baseline free 
energy of -48.1 kcal/mol (± 8.3), our 20 selected first round antibody structures are predicted to 
have improved interaction with the SARS-CoV-2 RBD with free energies ranging as low as -82.0 
kcal/mole. The baseline SARS-CoV-1 antibody in complex with the SARS-CoV-1 RBD has a 
calculated free energy of -52.2 kcal/mole and neutralizes the virus by preventing it from binding 
and entering the human ACE2 receptor. These results suggest that our predicted antibody 
mutants may bind the SARS-CoV-2 RBD and therefore potentially neutralize the virus. 
Additionally, our antibody mutants score well according to multiple antibody developability 
metrics via the Therapeutic Antibody Profiler. 

These 20 antibody designs are now being expressed and experimentally tested for binding to 
SARS-CoV-2 spike protein, which will provide invaluable feedback to further improve the 
machine learning–driven designs. We are also continually improving our platform and 
performing additional in silico calculations, which will be included in future updates to this 
document. In addition, we are currently (1) performing higher fidelity molecular dynamics 
calculations to increase the accuracy of predictions using [26, 27], (2) investigating binding 
“hotspots” via single point mutation computational analysis, and (3) exploring any potential 
impacts from glycosylation at the RBD site.   

The Supplementary Materials to this document include (1) the 10 homology-based structural 
models we developed of SARS-CoV-2 in complex with SARS-CoV-1 neutralizing antibodies and 
(2) all antibody mutant sequences and in silico free energy calculations performed for 89,263 
mutant antibodies derived from the M396 SARS-CoV-1 neutralizing antibody, which we used to 
select a first round of 20 candidate antibodies for experimental evaluation.  
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Methods 

Homology-based structural modeling of the SARS-CoV-2 
Spike protein structure as a starting point for antibody 
design 

In the absence of a known SARS-CoV-2 spike protein 
structure, we characterized the surface glycoprotein 
sequence YP_009724390.1 [13] by constructing a 
homology-based structural model using the AS2TS system 
[14] and SARS-CoV-1. To assess regions of sequence-
structure conservation or variability between SARS-CoV-1 
and SARS-CoV-2 (sequence similarity=71%), we created a 
set of initial structural models using available templates. 
The comparative analysis between constructed models and 
all available templates from PDB was performed using the 
StralSV algorithm [28], which identifies protein fragments 
that exhibit structural similarities despite low primary 
amino acid sequence similarity and regions where some 
structure conformation uncertainties can be observed. We 
used results from these searches for modeling missing 
loop regions and assessment of possible structure 
conformation diversity in preliminary models.  

In the constructed final models, the conformation of side-
chain atoms was predicted using SCWRL [29] when 
residue-residue correspondences did not match. Residues 
that were identical between the template and the SARS-
CoV-2 spike protein were copied from the templates onto 
the models. The structural and stereochemical quality of 
the models was checked using a contact-dot algorithm in 
the MolProbity software package [30], and the final 
constructed models were finished with relaxation using 
UCSF Chimera [31]. Figures 4 and 5 show two of our 
constructed structural models of the SARS-CoV-2 spike 
protein in complex with a FAB (S230 and M396 in Figs. 3 
and 4, respectively) of a SARS-CoV-1 neutralizing antibody. 
A set of all provided models was constructed to help 
assessment of possible different conformations in the 
spike-antibody complexes.  

Binding calculations with FoldX 

For our ddG FoldX calculations of 89,263 mutant 
antibodies in complex with the RBD, we started with 
structure minimization using the "minimize structure" 

Figure 5 One of constructed structural models 
of SARS-CoV-2 Spike protein (blue) in complex 
with the FAB of a SARS-CoV-1 neutralizing 
human antibody M396 (heavy chain in green, 
light chain in red). 

Figure 4: Homology-estimated structure of 
SARS-CoV-2 S-protein in complex with anti-
SARS-CoV-1 neutralizing antibody S230 
fragment: template PDB 6NB6.  
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procedure available in UCSF Chimera [31]. This process was followed by up to 50 iterations of 
the "RepairPDB" function in FoldX. We performed ddG calculations on the defined list of 
mutations using the "BuildMODEL" procedure, which estimates stability (dg) defined by the free 
energy of a protein. We used up to 46 runs in this procedure to check if calculated rotamers of 
specified mutations converged to the optimal or trapped solution. A first set of our ddG 
estimates was calculated as a difference in free energy (dg) between the mutant and wild-type 
(labeled “FoldX ddG Average” in Supplementary Materials). Additional ddG estimates were 
calculated using the "AnalyseComplex" algorithm for which we used the wild-type and mutated 
models to calculate ddG based on energy changes in interface only within RBD-FAB complexes 
(labeled “FoldX ddG Interface” in Supplementary Materials).  

Binding calculations with Rosetta 

To estimate ddG values using Rosetta, we started from structure minimization using the "relax" 
procedure. For each S protein-FAB complex model, we made 10 relaxed structures from which 
we chose the representative model with the lowest free energy. In these structures, we 
calculated ddG estimates as change of stability using the "ddg_monomer" algorithm with 50 
iterations and settings as described in [32] (labeled “Rosetta ddG Total Energy” in 
Supplementary Materials). Additional ddG estimates were calculated using the "Flex_ddG" 
protocol [33], which evaluates energy changes by focusing on interfaces within RBD-FAB 
complexes only (labeled “Rosetta ddG Flex” in Supplementary Materials). In addition, Rosetta 
calculations (Total Energy and Flex) were performed for all possible single-point mutations for 
each of the 31 locations selected for mutation (19 amino acid mutation possibilities *31 
locations = 589 total Rosetta single-point mutation calculations).   

Binding calculations with molecular dynamics 

We used molecular mechanics/generalized Born solvent accessible surface area (MM/GBSA) 
calculations for antibody/antigen interaction free energies [19]. MM/GBSA uses fully solvated 
molecular dynamics for conformational sampling of the protein complex but estimates free 
energy by a computationally cheaper implicit solvent model (GBSA). All molecular dynamics 
simulations were performed with OpenMM [34], a toolkit for molecular simulation, using the 
AMBER force field [35]. Positional constraints (1 kcal/mole*Å2) were place on the backbone 
atoms (C, N, and CA) during heating of the system. The system was heated in 50 K increments 
for 100 ps at each temperature. Once the system was at 310 K, all constraints were removed 
and equilibration was performed for 9 ns. Ten individual 5 ns dynamics simulations were 
performed from the equilibrated system for conformational sampling. The last 1 ns of the 
dynamics in 50 ps increments from each of the simulations was used for the MM/GBSA 
calculation (200 total structures). The MM/GBSA calculations were performed using 
MMPBSA.py that is part of the AMBER suite of programs.   

Other decision-informing criteria 

As a bioinformatic heuristic, we computed the number of mutations that are considered to be 
“unlikely” (labeled “number of unconventional mutations” in the dataset provided in the 
Supplementary Materials) for each mutant antibody considered. This heuristic describes 
mutations that are low probability under a mutational probability distribution derived from the 
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Blosum62 substitution matrix [36]. This mutational probability distribution gives some 
substitutions higher probabilities (e.g., A->S; 0.1168) and some lower (e.g., A->W; 0.00594), 
where the total of the probabilities of the 19 “destination” amino acids is 1.0. If a given point 
mutation is given a probability of < 0.052 (i.e., less than 1/19th) the mutation is declared 
“unconventional” and this count is incremented by one. For example, for Alanine (A), 11 of 19 
mutations are “unconventional” with this heuristic. 
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Supplementary Materials 

Included in the Supplementary Materials are (1) the 10 homology-based structural models we 
developed of SARS-CoV-2 in complex with SARS-CoV-1 neutralizing antibodies and (2) all 
antibody mutant sequences and all in silico free energy calculations performed for over 89,263 
mutant antibodies derived from the M396 SARS-CoV-1 neutralizing antibody used in selecting 
the 20 first round candidate antibodies.  
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