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Parameters Apical 
Dendrite 

Basal 
Dendrite Soma Axon Unit Modfile 

cm [0.5, 10] [0.5, 10] [0.5, 10] [0.5, 10] µFcm!" pas 

gpas [10!#, 10!"] [10!#, 10!"] [10!#, 10!"] [10!#, 10!"] Scm!" pas 

epas [−120,−60] [−120,−60] [−120,−60] [−120,−60] mV pas 

Ra [50, 200] [50, 200] [50, 200] [50, 200] Ωcm pas 

Ih [10!#, 10!$] [10!#, 10!$] [10!#, 10!$] - Scm!" Ih.mod 

NaT [0, 10!%] [0, 10!"] [0, 5] - Scm!" NaTs2_t.mod 

NaT - - - [0, 10] Scm!" NaTa_t.mod 

NaP - - [0, 1] [0, 5] Scm!" Nap_Et2.mod 

NaV - [10!#, 10!%] [10!#, 10!%] [10!#, 5] Scm!" NaV.mod 

KT - - [0, 1] [0, 1] Scm!" K_Tst.mod 

KP - - [0, 1] [0, 1] Scm!" K_Pst.mod 

Kv3.1 [0, 1] [0, 1] [0, 2] [0, 2] Scm!" Kv3_1.mod 

Kv2-like - - - [10!#, 10!%] Scm!" Kv2like.mod 

Im [10!#, 10!"] [10!#, 10!"] - - Scm!" Im.mod 

Imv2 - [10!#, 10!"] - - Scm!" Im_v2.mod 

SK - - [10!#, 10!%] [10!#, 10!%] Scm!" SK.mod 

CaHVA - - [10!#, 10!&] [10!#, 10!&] Scm!" Ca_HVA.mod 

CaLVA - - [10!#, 10!"] [10!#, 10!"] Scm!" Ca_LVA.mod 

gamma 
_CaDynamic

s 
- - [5

× 10!$, 0.05] 
[5
× 10!$, 0.05] 

 CaDynamics.mo
d 

decay 
_CaDynamic

s 
- - [20, 1000] [20, 1000] ms CaDynamics.mo

d 

 



Table S1: Conductance density bounds for spiny/aspiny cells. Red and blue highlight across rows or 
columns represent specificity to excitatory (spiny) and inhibitory (aspiny) cells respectively. Note that none 
of the aspiny cell reconstructions in the Allen Cell-Types database has apical dendrite markings, thus the 
conductances on the apical dendrite in our models is specific to spiny cells. 

 

Feature Name eFEL Name Type Description 

voltage_base voltage_base Numeric The average voltage during the last 
10% before stimulus onset in mV 

steady_state_voltage steady_state_voltage Numeric The average voltage after the stimulus 

voltage_deflection voltage_deflection 
_vb_sse Numeric 

The voltage deflection between voltage 
base and average voltage during the 
last 10% of the stimulus duration in mV. 

sag_amplitude sag_amplitude Numeric 
The difference between the minimal 
voltage and average voltage during the 
last 10% of the stimulus duration in mV. 

sag_ratio sag_ratio1 Numeric 
The ratio between the sag amplitude 
and the maximal sag extend from 
voltage base. 

decay_time_constant_ 
after_stim 

decay_time_constant 
_after_stim Numeric The decay time constant of the voltage 

right after the stimulus. 

Spikecount Spikecount Numeric Number of spikes in the trace, including 
outside of stimulus interval. 

spike frequency mean_frequency Numeric 

Mean frequency calculated as number 
of action potentials during stimulation 
divided by time between stimulus onset 
and last spike in Hz. 

time_to_first_spike time_to_first_spike Numeric Time to first spike in ms. 

AP_amplitude AP_amplitude_from 
_voltagebase Numeric Height at peak of action potential in mV 

from voltage base. Mean for all AP. 

AP_width AP_width Numeric Mean of width at -20 mV of AP in ms. 
Mean for all AP. 



AHP_depth AHP_depth Numeric 
Relative voltage values with respect to 
voltage_base at the first after-
hyperpolarization. Mean for all AP. 

adaptation_index2 adaptation_index2 Numeric 
Normalized average difference of two 
consecutive ISI starting from second 
ISI. 

ISI_CV ISI_CV Boolean The coefficient of variation of the ISI. 

depolarization_ 
block depol_block Boolean True if depolarization block is detected 

during spiking. 

check_AISInitiation check_AISInitiation Boolean 
True if time difference between same 
AP recorded at axon and soma is 
positive False otherwise 

 

Table S2: Ephys features used at different stages during model generation workflow. sag_ratio1 is not used 
in the optimization but used in the comparison between Nr5a1 and Rbp4 Cre-lines in Figure 6 of the main 
manuscript. 



 

 

Stage Parameters 

Frozen Param 

eters/Toleranc
e 

eFEL Features Stimulus 

Stage 
0 
 

• cm  
• epas  
• gpas  
• Ra  

 

– , – 
 

• voltage_base  
• steady_state_voltage  
• voltage_deflection_vb_ss

e 
• decay_time_constant 

_after_stim 

All depolarizing 
subthreshold 

Stage 
1 • ḡIh None, ±50% eFEL Features at Stage 0+ 

• sag_amplitude 

All depolarizing 
subthreshold + 
all 
hyperpolarizing 
subthreshold 

Stage 
2 

 
• ḡNaT, ḡNaP  
• ḡNaV  
• ḡKT, ḡKP  
• ḡKv3.1  
• ḡKv2like  
• ḡIm, ḡImv2  
• ḡSK  
• gamma/deca

y_ 
CaDynamics 

None, ±50% 

• voltage_base  
• steady_state_voltage  
• mean_frequency  
• Spikecount  
• time_to_first_spike  
• AP_amplitude_ 

from_voltagebase  
• AP_width  
• AHP_depth  
• adaptation_index2  
• ISI_CV  
• depol_block 
• check_AISInitiation 

×2 spiking 
traces with 
maximal 
amplitude + 
Rheobase 
trace + 
Maximal 
subthreshold 

 

Table S3: Details of Optimization Workflow: We fit conductance densities (ḡ) on the primary neurites- 
apical, basal dendrites, soma and axon, with the assumption that these conductances are distributed 
uniformly across each section of the reconstructed morphology belonging to the neurite. 



 
 
 

Figure S1: Performance of representative single cell models across transgenic lines. From left to 
right, Cre-line (only Cre-lines with at least 5 models are selected), morphology, experimental and model 
suprathreshold response, spike shape and fI curves are illustrated. The last two columns in the grid show 
the feature average (FA) at training and explained variance (EV) under colored noise stimulus. The 
representative model belongs to the cell located at the median of the feature average distribution of the 
member Cre-line. 

 



 
 
Figure S2: Convergence of the optimization workflow for a ground truth solution. Simulated 
response from the all-active model corresponding to CellID: 468193142 is fed to the workflow for a 
second round of optimization. (a) Comparison between subthreshold and suprathreshold responses as 
well as (b) fI curve and spike shapes for the input and reoptimized models. (c) The distribution of the hall 
of fame model parameters (circles) at the conclusion of the re-optimization. The best model (hof index = 
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0, full circle) is shown as well as the ground truth, input model (shown as ‘x’) overlaid to examine 
convergence. Note that the majority of the conductance parameters, especially the ones highlighted in the 
manuscript for downstream analysis in excitatory cells, i.e., passive parameters, h-channel conductance 
and axonal NaT, Kv31 have converged to their ground truth.  
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Figure S3: Illustration of the sensitivity analysis and its utility in revealing mechanistic differences 
between all-active and perisomatic models. (a) (top left) Output of the best model (least training error, 
i.e., hof index = 0) for Cell ID: 483101699 at 1s long stimulus of amplitude 270pA. In the following panels 
100 simulations are shown for the same protocol with each of the selected K+, Na+ channel groups 
(indicated by the color bar at the bottom of each panel) individually perturbed within a ±10% tolerance level 
about the optimized value. Finally, at bottom right the channels are perturbed together, equivalent to the 
sobol analysis computations and plot the simulations for 100 such parameter combinations. Only the 
parameters on the color bar are modified in the illustration, the rest of the channel densities remain 
unperturbed from their optimized value. (b) The comparison between the sobol indices as it relates to spike 
amplitude, width, AHP depth, spike count and ISI coefficient-of-variation for all-active and perisomatic 
models (10 excitatory cells each, bar: mean; error bar: std). Note the absence (due to the design of 
perisomatic models) of axonal conductances in the bottom panel, which play a key role for the all-active 
spiking features (top). 



 
 

Figure S4: Compatibility between Cre-line and transcriptomically defined cell-types and 
supervised classifier performance. (a) Correlation matrix between the transcriptomic types mapped to 
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Cre-lines by single-cell RNA-sequencing data in a Monte Carlo fashion. The resultant Cre- to Cre-line 
correlation matrix (only Cre-lines from the model set are shown) is passed through hierarchical clustering 
resulting in similarity between the Cre-lines (left, 11 refined cell-types shown along with the dendrogram; 
Cre-lines of the same color are members of the same type). Confusion matrices for the (b) SVM classifier 
with 6 refined subclasses as targets and 4 feature sets (accuracy: 66%, 76%, 48% and 63% respectively) 
similar to Figure 3b and (c) Random forest classification (69% accuracy with both feature sets for broad 
subclasses; 40%, 53% respectively for reduced and all parameters respectively for refined subclasses) 
illustrated in Figure 3d. 

 
 

 



 
 
Figure S5: Parameter diversity across cortical cell classes. (a) Similar to Figure 6(d) the dispersion 
matrix for the hall of fame parameters within and across cell for the 4 broad subclasses. The block diagonals 
for ’Pyr’ are compressed due to numerical advantage in comparison to the other inhibitory subclasses. For 
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each broad subclass the intra-class intra-cell dispersion (blue) is less than intra-class inter-cell (orange). 
Mann-Whitney U-test; Statistical significance: *: p-val < 0.05, **: p-val  < 10-2, ***: p-val  < 10-3. (b) The hall 
of fame models for each cell is not dependent on the initialization. The single-color strands belonging to 
one seed when sorted to training error (left) is lost when the models are arranged according to the 
generalization error, i.e., performance on unseen stimulus set. This points to an existence of attraction 
basin for this highly constrained optimization formulation.



 
 

 
 
Figure S6: Description of the computational resources employed during the model generation 
workflow. Resources utilized thus far include the in house Allen Institute for Brain Science High 
Performance Computing (AIBS hpc) cluster, Amazon Web Services (AWS) EC2 instances in conjunction 
with Wasabi cloud storage as AWS S3 substitute, Cori supercomputers at National Energy Research 
Scientific Computing Center (NERSC) and Supercomputing infrastructure at Blue Brain Project (BBP5), 
École Polytechnique Fédérale de Lausanne, Switzerland. In total close to 3.5 million core hours are utilized 
across these four Linux based systems for the ∼230 models. Reduction in compute time and subsequently 
core hours in AIBS hpc and AWS EC2 instances is mainly due to an algorithmic improvement in the latter 
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ipyparallel : ipcontroller + ipengines 

load balanced view, database backend :sqlite



stages of the model generation timeline, where solutions were discarded for which evaluation exceeded a 
300s cut-off. Number of requested cores at each job is equal across machines. 



 
 

 
 

Figure S7: Effect of adding timeout functionality within BluePyOpt. (a) Without timeout the 
evolutionary algorithm occasionally encounters a pathological parameter combination resulting in a stiff 
differential equation. The blank spaces represent the idle time for the rest of engines in a distributed 
infrastructure. (b) The histogram of the task execution shows that the evaluation time for rare individuals 
go up to 900s. (c) In comparison adding a timeout of 300s enables us to run a controlled optimization in the 
HPC clusters with drastic reduction in idle time (44% to 3%). The jump in the histogram (d) at 300s means 
that the engines are reassigned to evaluate new individuals without completing the numerical integration 
when the cut-off time is hit. For this illustration we have used the stage 2 for model generation of CellID: 
483101699 under identical parameter bounds. 
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