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One Sentence Summary: We find that the clinical kinetics of chronic lymphocytic leukemia 

relapse after stem cell transplant are underwritten by distinct genetic and epigenetic evolutionary 

trajectories and suggest that the selection pressures of the post-transplant, immunologic 

bottleneck are unlike those imposed by chemotherapy. 

 

Abstract: Resistance to the graft-versus-leukemia (GvL) effect remains the major barrier to 

successful allogeneic hematopoietic stem cell transplantation (allo-HSCT) for aggressive 

hematologic malignancies. The basis of GvL resistance for advanced lymphoid malignancies 

remains incompletely understood. We hypothesized that for patients with chronic lymphocytic 

leukemia (CLL) treated with allo-HSCT, leukemic cell-intrinsic features shape GvL outcomes by 

directing the evolutionary trajectories of CLL cells. Integrated genetic, transcriptomic and 

epigenetic analyses of CLL cells from 10 patients revealed that the clinical kinetics of post-

HSCT relapse are shaped by distinct molecular dynamics and suggest that the selection pressures 

of the GvL bottleneck are unlike those imposed by chemotherapy. No selective advantage for 

HLA loss was observed, even when present in pre-transplant subpopulations. Regardless of post-

transplant relapse kinetics, gain of stem cell modules was a common signature associated with 
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leukemia relapse. These data elucidate the biological pathways that underlie GvL resistance and 

post-transplant relapse. 

Introduction 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the earliest forms of 

successful cancer immunotherapy whose study has elucidated critical insights into tumor-

immune interactions (1, 2). As the only curative option for aggressive and advanced hematologic 

malignancies, allo-HSCT derives its potency from the underlying, donor-derived graft-versus-

leukemia (GvL) effect wherein donor immune cells recognize and eradicate recipient leukemic 

cells. Reduced-intensity conditioning regimens (RIC) for allo-HSCT are increasingly used to 

reduce treatment-related morbidity and preserve the curative GvL effect (3, 4), but post-

transplant disease recurrence limits their efficacy. Therefore, elucidating the mechanisms 

underpinning GvL resistance is vital to improve transplant outcomes.  

 

Multiple studies have identified various pathways of GvL resistance associated with relapse of 

myeloid malignancies, including loss of HLA class I and II genes, upregulation of inhibitory 

immune checkpoint molecules, and oncogene-driven immune evasion (5–9). For lymphoid 

malignancies however, less is known about potential mechanisms of GvL evasion. In particular, 

how underlying genetic and epigenetic features inform the clinical kinetics of post-transplant 

relapse or whether dysregulation of HLA class I and II genes influences GvL resistance remains 

unclear. 

 

To address these questions, we assembled a cohort of 10 patients with chronic lymphocytic 

leukemia (CLL), the majority of whom were treated with RIC allo-HSCT. We hypothesized that 
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leukemic-intrinsic features primarily shape the evolutionary dynamics of CLL cells during GvL 

resistance. We therefore focused on the evaluation of longitudinal changes in genomic, 

epigenomic and bulk and single cell transcriptomic features of CLL cells following transplant. 

By defining the genetic, epigenetic and transcriptomic changes that shape CLL relapse after allo-

HSCT, we demonstrate that these evolutionary paths are unique to the GvL immunologic 

bottleneck and identify the underlying mechanisms that influence the clinical kinetics of post-

HSCT relapse. 

Results  

Clinical kinetics of CLL relapse after allo-HSCT correspond to distinct evolutionary paths. 

We assembled a cohort of 10 CLL patients with varying time to progression after allo-HSCT 

(range: 83-1825 days), for whom paired pre- and post-transplant relapse specimens were 

available (see Methods). As expected for patients with CLL undergoing allo-HSCT, patients had 

received multiple lines of therapy prior to transplant (median: 3, range: 1-6) and 6 of 9 assessable 

patients had unmutated IGHV status (Figure 1A, Table S1).  

 

We performed whole-exome sequencing (WES) of DNA isolated from purified CLL cells from 

paired pre- and post-transplant relapse samples (see Methods) and matched donor and recipient 

germline DNA from 9 of 10 patients (median coverage of 160x; Table S2). Compared to 

treatment naïve CLL (10), we detected a greater number of non-silent single nucleotide variants 

(sSNVs) and somatic insertions and deletions (sIndels) per pre- and post-transplant exome (a 

median of 39 and 41), respectively (p<0.01; Figure S1A, Table S3, Methods), consistent with 

the extensive chemotherapeutic exposure in patients undergoing allo-HSCT. Nevertheless, the 

spectrum of CLL cancer drivers in sSNVs, sIndels, and copy number alterations (CNAs) was 
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similar to that previously observed (10) (Figure S1B, Table S4). Consistent with the aggressive 

nature of these leukemias, we observed multiple patients to have mutations and CNAs involving 

TP53 and SF3B1, but found no somatic alterations uniquely shared among post-transplant 

samples.  

 

To examine patterns of clonal dynamics associated with relapse, we used the tool PhylogicNDT 

(11, 12), which reconstructs phylogenetic and evolutionary trajectories of cells based on 

integration of somatic alterations detected from multiple samples. We clustered mutations 

together based on their cancer cell fractions (CCFs) and examined their change over time. 

Although all patients displayed multiple and diverse CLL drivers at baseline (Figure S1C, Table 

S5), their evolutionary dynamics during relapse segregated into two distinct patterns: clonal 

stability (defined by changes in all cluster CCFs <0.2) and clonal evolution (changes in any 

cluster CCF ≥0.2) (Figure 1B). We found that those samples with clonal stability originated 

from the 3 patients with the shortest times to relapse (median of 304 days; ‘early’ relapse), while 

clonal evolution was evident in the samples from the 6 patients with longer times to relapse 

(median of 798 days; ‘late’ relapse, p=0.024) (Figure 1C). We also found in silico evidence for 

GvL immune activity in the late relapsing patients. Predicted neoantigens with strong binding 

affinity (Methods; defined as binding affinity ≤50nM (13, 14)) were enriched in CLL clonal 

clusters that contracted post-transplant (present in 25% of contracting [see Methods], 4% in 

stable and 7% in expanding mutations; p<0.001, Figures S1D-S1E, Table S6). Additionally, 

contracting neoantigens overall had stronger predicted binding affinities than those that either 

expanded or remained unchanged (p=0.04; p=0.00014, respectively; Figure S1F) and were 

observed only in late relapsers, including patients 5328, 5331, and 5335 (Figure S1G). 
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To investigate the pre-transplant molecular profiles that may herald clonal stability or evolution, 

we performed differential gene expression analysis between pre-transplant CLL cells from early 

versus late relapsers and found 853 upregulated and 793 downregulated genes (FDR<0.25). Gene 

set enrichment analysis (GSEA) highlighted stem cell modules in the early relapses, suggesting 

the presence of stem cell-like states in the pre-transplant setting to be important for subsequent 

rapid relapse, particularly components of the polycomb-repressive complex 2 (PRC2) such as the 

EED and SUZ12 gene pathways (15) (Figure 1F, Table S7). Consistent with the lack of genetic 

evolution during early relapse, we found only 66 differentially expressed genes between pre- and 

post-HSCT samples in early relapses suggesting little transcriptional change. However, paired 

differential expression analysis between pre- and post-HSCT samples in late relapses revealed 

1002 differentially expressed genes (FDR<0.25) and upregulation of similar stem cell pathways 

in addition to Fc and B cell receptor (BCR) signaling (Figure 1G, Table S8). Altogether, these 

data support the notion that early CLL relapse after transplant is characterized by a pre-existing 

transcriptional state conferring resistance and comprising stem cell properties. This state 

therefore does not require evolution of the clonal architecture, and subsequent relapse manifests 

as genetic stability. In contrast, late CLL relapse, occurring after immune reconstitution, is likely 

subjected to a GvL selection pressure, manifested by neoantigen depletion. This immunologic 

bottleneck leads to acquired resistance, genetically, via clonal replacement and, transcriptionally, 

via upregulation of stem cell and FcR/BCR signaling pathways. 

Genetic evolution of CLL cells carries phenotypic consequences 

To evaluate the functional consequences of this genetic evolution, we sought to measure changes 

in associated gene expression of these heterogeneous clonal populations. We adapted a droplet 
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microfluidic-based platform (“inDrops”, Methods)(16) to obtain single cell transcriptome 

(scRNA-seq) data from PBMC samples collected from pre- and post-HSCT samples from 2 

patients with early relapse and clonal stability (patients 5339 and 5338, relapsing 304 and 443 

days after allo-HSCT) and 2 patients with late relapse and clonal evolution (patients 5341 and 

5328, relapsing 1801 and 1825 days after allo-HSCT) (Figure 2A, Table S9). We profiled a 

median of 1,261 CLL cells (range: 1,035-3,751) per sample as assessed by CD19 and CD5 gene 

co-expression. The samples were integrated computationally using Conos (17) to overcome 

inter-patient variability and identify major cell populations (Figure 2B, Figure S2B).  

 

The CLL cells comprised 6 transcriptionally distinct clusters that segregated by patient and 

timing (Figure 2C). For the patients who relapsed early, pre- and post-transplant CLL cells 

exhibited an indistinct population structure, evident by a high degree of intermixing of cells 

within clusters and consistent with their genetic and transcriptional stability seen on the bulk 

sample level (Figure 2D). In contrast, analysis of late relapsers revealed marked spatial 

segregation by timepoint with a defined population substructure evident in distinct post-

transplant clusters from both late relapses. Late relapse CLL cells from pre- and post-transplant 

timepoints were less intermixed within clusters (p=0.02; Figure 2E) and displayed a greater 

magnitude of gene expression change between the timepoints (p=0.02; Figure 2F). Similar 

findings were also obtained with an alternative analysis pipeline (Seurat), demonstrating that 

these transcriptional shifts are not dependent on the clustering algorithm (18) (Figure S2A-C). 

Thus, both genetic and scRNA-seq analyses indicate that early relapses comprise a 

heterogeneous population that is static over time, evidenced by a lack of genetic or 

transcriptional evolution during relapse after allo-HSCT.  
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The distinct post-transplant clusters seen in the late relapse patients also suggest the presence of 

multiple pathways of acquired resistance (i.e. cluster 6 in patient 5328 and clusters 4 and 5 in 

patient 5341). To delineate these pathways, we used pathway and gene set overdispersion 

analysis (PAGODA) to test annotated gene sets for coordinated variability across all CLL cells 

(19). Significantly overdispersed gene sets with similar cell-separation patterns were then 

combined to form a single ‘aspect’ of transcriptional heterogeneity. PAGODA revealed 5 major 

aspects of heterogeneity that distinguished the 6 CLL clusters, corresponding to ribosomal 

biogenesis, antigen presentation, apoptosis regulation, proliferation, and calcium/cAMP 

signaling (Figure 3A). In this manner, post-transplant pathways unique to late relapses could be 

identified. For example, in patient 5328, relapse was best characterized by overdispersion of 

apoptosis regulation, manifesting as downregulation of pro-apoptotic genes (e.g. TP53, DFFA, 

BAX) and upregulation of anti-apoptotic and cytoprotective genes (e.g. MTRNRL2, MTRNRL8) 

(20, 21). We also found loss of BACH2, a known tumor suppressor in B cell malignancies (22) in 

relapsed cells along with gain of known B cell leukemia-related pro-survival and anti-apoptotic 

genes (PIM2(23), MCL1 [pre vs. post, p<2.2 x 10-16]) (Figure 3A, B; S3A). In contrast, relapse 

in patient 5341 was not only associated with a distinct overdispersed gene set (cluster 4; 

calcium/cAMP signaling evidenced by TXNIP, DUSP1, ADD1, and FOS) but also displayed 

intra-leukemic heterogeneity between clusters 4 and 5, especially regarding apoptosis-related 

genes, suggesting inter- and even intra-leukemic diversity of pathways leading to late relapse 

(Figure 3B). 

HLA dysregulation provides no selective advantage for post-HSCT relapse of CLL 
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We also identified shared pathways among post-transplant populations in both late relapses (i.e. 

clusters 4, 5 and 6). Specifically, an aspect defined by genes involved in antigen presentation was 

shared among all three post-transplant, late relapse clusters (Figure 3A, 4A). Because loss of 

HLA expression has been found to contribute to relapse of myeloid leukemia after transplant (5, 

6), we investigated further the dynamics of HLA expression variability during relapse. From our 

single cell data, we unexpectedly detected expression of HLA class I and II genes on post-

transplant CLL cells despite relapse (Figure 4A-B), Moreover, we observed a wide range of 

HLA expression by CLL cells at both pre- and post-transplant timepoints in the late relapses. 

Analysis of the probability distribution of HLA class I or II genes demonstrated increased HLA 

expression for these two patients (Figure 4C, left, p<10-14 for all comparisons). Indeed, we could 

see that the lowest 2.5% of HLA-expressing CLL cells failed to expand during relapse in both 

late relapse patients 5328 and 5341, with these HLA ‘low’ cells comprising mostly pre-transplant 

cells (Figure 4C, right). At the bulk level, except for one sample with loss of HLA-A, we did 

not detect any somatic alterations in HLA class I, B2M or other genes involved in the antigen 

presentation pathway. Moreover, while baseline pre-HSCT bulk HLA class I gene expression in 

CLL was lower than observed in transplant-naïve samples, baseline bulk HLA class II expression 

was similar (Figure 4D). Notably, transcriptional downregulation of HLA class I or II genes 

during relapse was not observed. These data suggest that further HLA dysregulation provides 

little selective advantage during CLL relapse after transplant, even when present in pre-

transplant subpopulations. Thus, unlike relapses from myeloid disease after transplant, genetic 

and/or transcriptional alterations in HLA genes are not common in the setting of CLL relapse. 

Alterations in genotype can define transcriptional changes in late relapses 
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The marked transcriptional change at the single cell level demonstrated by late, rather than early, 

relapses prompted the question of whether these transcriptional phenotypes may be driven by 

genetic changes. We previously reported a lack of concordance between transcriptional and 

genetic changes in transplant-naïve CLL cells, suggesting the presence of convergent evolution 

(24). For patient 5341, we could identify the presence of a putative CLL driver mutation in the 

ribosomal gene RPS15 (p.G139C) through WES analysis; we were also able to detect this 

mutation within the corresponding samples’ scRNAseq data. Consistent with the bulk WES 

analysis, we detected a subset of cells expressing this RPS15 mutation at the pre-transplant 

timepoint (clusters 1, 2, and 3) (Figure 4E). However, within post-transplant cells, we identified 

two distinct expression states corresponding to absence (cluster 4) or presence (cluster 5) of the 

mutation (Figure S3C, P<0.01), with associated differential expression of the calcium/cAMP 

signaling aspect (Figure S3D) as well as TP53 and BACH2 tumor suppressors (P<0.01, cluster 4 

versus 5). 

Upon closer examination of the post-transplant clusters, we observed higher relative expression 

of the RPS15 gene (Figure 4F, G), along with evidence of increased ribosomal activity (Figure 

4H), within cluster 4 relative to cluster 5. These data link the presence of the mutation with 

lower RPS15 gene expression and diminished ribosomal biogenesis; conversely, absence of the 

mutation is associated with higher RPS15 expression and increased ribosomal activity. Together, 

these data demonstrate that genetic variants can segregate distinct expression states in the post-

HSCT relapsed setting unlike in transplant-naïve samples, and that late CLL relapse may 

undergo selection pressures favoring divergent, not convergent, evolutionary paths. 

Methylome instability is unique to late relapses after allo-HSCT 
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We previously demonstrated locally disordered methylation (measured by the percentage of 

discordant reads (PDR)) as an epigenetic mechanism of genetic variability within CLL, with 

increased PDR associated with a more aggressive clinical course in transplant-naïve CLL (25). 

We therefore investigated whether epigenetic dysregulation could underlie the observed 

phenotypic changes by comparing the change in PDR over time between early and late relapses 

(Table S10). The change in PDR for early relapses was minimal, while late relapses exhibited 

greater changes in PDR across multiple genomic elements (Figure 5A). By contrast, PDR did 

not change within CLL samples relapsing after chemotherapy alone, matched for timing with late 

relapses after transplant (Figure S3C, 5A). When we modeled the quantitative changes in PDR 

as a function of time, we confirmed a moderate increase in the rate of change of PDR for the late 

relapsers compared to the chemotherapy-treated subjects, suggesting time between samples was 

not a contributing factor to our PDR measurements (Figure 5B, Bayes factor=1.5) (26). 

Altogether, these findings are consistent with the notion of post-HSCT immune pressure 

selecting for increased intra-leukemic methylation variability as an underlying mechanism of 

phenotypic changes. Indeed, genes with increased promoter PDR in late relapses were enriched 

for multiple stem cell pathways, implicating a common stem-like state that is acquired during 

late relapses through increased methylome instability (Figure 5C-F, Table S11) and is 

consistent with the transcriptional upregulation of similar modules in this group (Figure 1E).  

Discussion  

We have investigated leukemic cell-intrinsic factors that contribute to GvL resistance by 

studying CLL relapse after transplant. We find that underlying genetic and epigenetic trajectories 

shape the kinetics of leukemic relapse. Indeed, early relapses after allo-HSCT were marked by a 

molecular stability that was remarkably consistent across genetic, transcriptional and epigenetic 
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measurements. In contrast, late relapses exhibited striking genetic and epigenetic change along 

with evidence of neoantigen depletion, consistent with manifest single cell transcriptional shifts 

that were unique to each patient.  

 

In addition, these evolutionary paths appeared unique to the transplant setting. For example, 

unlike in transplant-naïve CLL samples, we found a post-HSCT relapse to exhibit concordant 

genotype-phenotype relationships that defined transcriptional changes and suggested divergent 

evolutionary paths. Furthermore, in contrast to post-chemotherapy relapses exhibiting markedly 

stable methylomes, recurrences late after allo-HSCT were characterized by widespread 

methylome instability across the epigenome. These data suggest that the evolutionary 

consequences of the GvL bottleneck may in fact be distinct from those imposed by 

chemotherapeutic ones and that therapeutic strategies to prevent or treat cancer recurrence after 

such immunologic bottlenecks should account for this potential diversification. 

 

Our transcriptional and epigenetic data implicate stem cell pathways as contributory for CLL 

relapse after allo-HSCT given their enrichment in early relapsed CLL cells pre-HSCT and their 

acquisition in late relapsed CLL cells post-HSCT. Indeed, immune evasion and cell mobility are 

well-studied properties of stem cells (27–29). While the upregulation of pathways such as BCR 

and FcR signaling during late relapse suggest additional drivers of GvL resistance, our results 

highlight stem cell properties for future investigation as putative predictors of relapse and a 

mechanistic basis for GvL escape. 
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These studies demonstrate the applicability of single cell genomics to delineate genetic selection 

pressures for leukemic subpopulations within individual patients. For example, in contrast to 

previous reports in myeloid malignancies (5, 6), we could see no role for HLA gene 

downregulation during leukemic evolution. In fact, scRNA-seq enabled a high-resolution portrait 

of the static and even contracting dynamics of such alterations, demonstrating that even when 

they are present in pre-transplant subsets, no subsequent evolutionary advantage exists. These 

data suggest that the rules of GvL resistance differ depending on the leukemic subtype.  

 

Although our study focused on leukemic cells, understanding how immune cells, particularly T 

cells (30), also co-evolve during post-HSCT relapse is critical for reversing GvL resistance. 

Moreover, future studies should examine how the site of disease and the spatial 

microenvironment can impact these co-evolutionary interactions given their known influence on 

CLL behavior (31). Finally, although our study focused on CLL, these results should motivate 

similar efforts within other lymphoid lineages where additional factors modulating GvL 

resistance may be discovered. Nevertheless, our results in studying CLL in this context highlight 

the roles of stem cell genes and evolutionary dynamics in promoting relapse as well as suggest 

biological pathways for future investigation as putative predictors of GvL escape. 
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Materials and Methods 

Study Design 

The overall objective of this study was to identify leukemia-intrinsic features that shape CLL 

relapse after allo-HSCT. The cohort size was determined by sample availability, and we 

identified 10 patients treated for CLL at the DFCI that had paired, pre- and post-allo-HSCT 

samples available. Patients were consented to an institutional review board (IRB)-approved 

research protocol (01-206). The specimens were collected after informed consent under a study 

protocol that was approved by the DFCI Human Subjects Protection Committee and conducted 

in accordance with the Declaration of Helsinki. We undertook a comprehensive assessment of 

genetic, epigenetic and single cell transcriptomic features from purified CLL cells and 

investigated longitudinal changes in a pair-wise fashion. All samples and data were included in 

our analyses. Primary data is deposited in dbGaP, and results of primary analyses are included in 

Tables S1-S11. 

 

Patients and samples 

As described above, a total of twenty paired CLL samples were obtained pre- and post-HSCT 

from patients treated at the Dana-Farber Cancer Institute (DFCI) between 2006-2016. 18 of 20 

samples came from cryopreserved peripheral blood mononuclear cells (PBMCs), 1 from 

cryopreserved bone marrow mononuclear cells (BMMCs), and 1 from a formalin-fixed (FFPE) 

bone marrow biopsy (see Table S1). Seven paired CLL blood samples were obtained pre- and 

post-chemotherapy from patients enrolled on clinical research protocols approved by the Human 

Subjects Protection Committee at UCSD (CLL Research Consortium). PBMCs and BMMCs 

from all patients were isolated by Ficoll-Hypaque density gradient centrifugation, cryopreserved 
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with 10% dimethyl sulfoxide, and stored in vapor-phase liquid nitrogen until time of use. For all 

samples with at least 2x106 suspension cells (n=18 of 20 DFCI samples; n=14 of 14 UCSD 

samples), tumor cells were purified by flow cytometric isolation of CD19+/CD5+ cells for 

downstream nucleic acid extraction.  

 

IGHV and prognostic marker analysis  

As per convention, IGHV unmutated status was defined as greater than or equal to 98% 

homology to the closest germline match and IGHV mutated if homology was below this cut-off. 

Assessments for the cohort were done at the CLL Research Consortium Tissue Core (UCSD, San 

Diego) or at Integrated Oncology (New York, NY) as described in detail elsewhere. When 

available, routine pathological assessment of common CLL chromosomal abnormalities was 

included based on interphase FISH with Vysis probes (Abbott Molecular, Des Plaines, IL). 

 

Whole-exome sequencing data generation and preprocessing 

For whole-exome sequencing (WES), we used standard Broad Institute protocols as previously 

described (12). DNA of all samples was isolated using the All-prep DNA/RNA Mini kit (Qiagen 

Hilden, Germany). Tumor DNA was derived from CLL cells, and matched germline line DNA 

came from both pre-transplant CD4+ T cells as well as donor DNA derived from the transplant 

product. Tumour and normal DNA concentration were measured using PicoGreen® dsDNA 

Quantitation Reagent (Invitrogen, Carlsbad, CA). A minimum DNA concentration of 5 ng/µL 

was required for sequencing. All Illumina sequencing libraries were created with the native 

DNA. The identities of all tumour and normal DNA samples were confirmed by mass 

spectrometric fingerprint genotyping of 95 common SNPs by Fluidigm Genotyping (Fluidigm, 
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San Francisco, CA). Sequencing libraries were constructed with the Illumina Rapid Capture 

Enrichment kit. Pooled libraries were normalized to 2nM and denatured using 0.2 N NaOH prior 

to sequencing. Flowcell cluster amplification and sequencing were performed according to the 

manufacturer’s protocols using either the HiSeq 2000 v3 or HiSeq 2500. Each run was a 76 bp 

paired-end with a dual eight-base index barcode read. Standard quality control metrics, including 

error rates, percentage-passing filter reads, and total Gb produced, were used to characterize 

process performance before downstream analysis. Data analysis included de-multiplexing and 

data aggregation. 

 

Mutation calling. We used the Getz Lab CGA WES Characterization pipeline 

[https://docs.google.com/document/d/1VO2kX_fgfUd0x3mBS9NjLUWGZu794WbTepBel3cBg

08/edit] developed at the Broad Institute to call, filter and annotate point mutations, insertions 

and deletions. Paired-end Illumina reads were aligned to the hg19 human genome reference 

using the Picard pipeline 

[https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.1.0/picard_fingerprint_Cros

scheckFingerprints.php 

https://software.broadinstitute.org/gatk/documentation/tooldocs/4.0.0.0/picard_analysis_Collect

MultipleMetrics.php]. Cross-sample contamination was assessed with the ContEst (32) tool (5% 

threshold). Point mutations and indels were identified using MuTect(33) and Strelka(34), 

followed by annotation using Oncotator (35). Possible artifacts due to orientation bias, germline 

variants, sequencing and poor mapping were filtered using a variety of tools including 

Orientation Bias Filter (36), MAFPoNFilter (37), and RealignmentFilter. All somatic alterations 
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thus identified were further manually inspected in IGV (38) and apparent false positives were 

removed. 

 

Somatic copy number alteration identification. Copy number events were called and filtered 

using GATK4 ModelSegments (39) 

[https://gatkforums.broadinstitute.org/dsde/discussion/11682/; 

https://gatkforums.broadinstitute.org/dsde/discussion/11683]. In order to minimize false 

positives, we utilized a copy number panel-of-normals created based on germline samples 

processed using the same platform. We applied a custom conversion script to format the outputs 

of ModelSegments (both copy ratio and allelic fraction) to be compatible with ABSOLUTE (39, 

40), the tool used to estimate sample purity and ploidy as well as cancer cell fractions (CCFs). 

ABSOLUTE solutions were picked by manual inspection. The final chosen purity and ploidy 

solutions were used to estimate CCFs for detected somatic alterations in each sample. 

 

Evaluation of clonal evolution. Inference of clonal structure, phylogenetic relationship between 

clones and evolution between pre- and post-treatment time points within a sample was performed 

using the PhylogicNDT tool (11). For each PhylogicNDT assigned cluster within an individual, 

pairs of CCF values were drawn at the two points using their respective marginal posterior pdfs 

(N=10,000). The posterior probability that a cluster was evolving was estimated as the 

proportion of draws where the difference in CCF values was < 0.2. The Benjamini-Hochberg 

FDR correction method was used to account for multiple hypothesis testing for all clusters within 

an individual. An individual was considered to be evolving if there was at least one cluster with 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.033555doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033555


adjusted P value <0.1. Clusters were defined as ‘contracting’ or ‘expanding’ depending on the 

corresponding sign of the change in CCF. 

 

HLA and neoantigen prediction. We used Polysolver (41) for computational allele inference of 

major MHC class I genes from normal exome sequencing data (HLA-A, HLA-B and HLA-C). 

We predicted binding affinities for all possible 9 and 10-mers arising from coding mutations, 

insertions or deletions against all HLA alleles for a given patient using NetMHCpan-4.02 (42). 

Strong and weak affinity neoantigen binders were identified based on binding scores (≤ 50 nM 

for strong, ≤ 500 nM for weak), and those with undetectable gene expression levels were 

removed. 

 

RNA sequencing data generation and analysis 

A cDNA library was prepared from poly-A selected RNA and sequenced on an Illumina 

platform. Paired-end transcriptome reads were mapped to the UCSC hg19 reference genome 

using STAR. Differential expression analyses were conducted using DESeq2 R package v.1.26.0. 

Differentially expressed genes were identified using a cutoff of FDR p ≤0.25 and subsequently 

used for gene set enrichment analysis (GSEA) of the C2 subset of the Molecular Signature 

Database. Differentially enriched gene sets were identified using a cutoff of FDR p ≤0.25. 

 

Single cell transcriptome generation and analysis 

Sample Preparation and Processing 

Cryopreserved samples were thawed the day of experiments. Dead cells were removed via an 

Optiprep selection protocol such that cells collected just below the PBS layer were >95% viable 
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on trypan blue staining (16). Viable cells were subjected to immunomagnetic selection (MACS 

CD19 MicroBeads; Miltenyi Biotec, cat. No. 130-050-301), using MS columns, to isolate 

CD19+ and CD19- cells.  Cells were prepared at a concentration of 1.15 x 105 cells/mL in a 15% 

OptiPrep solution in PBS and kept on ice until time of encapsulation.  

 

Cell encapsulation was performed in a light-protected environment using the Olympus CKX53 

microscope, Point Grey Chameleon3 1.3 MP Mono USB3 Vision camera, and OEM Syringe 

Pump Modules. RT/lysis mix and barcoded hydrogel beads (BHBs; from 1CellBio (Watertown, 

MA)) were prepared as previously described (16) and directly before time of encapsulation.  

During encapsulation, cells and RT/lysis mix were kept at 4°C in their respective syringes using 

refrigerated copper coiling, and the collection tube was kept cool on an ice rack.  All reagents 

were simultaneously loaded onto microfluidic devices (microfluidic chip; 1CellBio (Watertown, 

MA)). The Harvard Apparatus Pump Software and the Point Grey camera software were used to 

control the parameters of encapsulation with the following working flow rates: 50-70 µL/hr for 

BHBs, 340-380 µL/hr for carrier oil, 250 µL/hr for cell suspension, and 250 µL/hr for RT/lysis 

mix, which produced a bead occupancy of 70-85% and droplets sizes ranging from 2.5 to 3.5 nL. 

Encapsulation time for 3,000 cells was approximately 9 to 12 minutes with a calculated cell 

doublet percentage of 5.45% to 7.22%.   

 

Library Preparation and Sequencing 

Library preparation and sequencing proceeded as previously published (16). Briefly, after the 

target number of cells was encapsulated, the emulsion of droplets was exposed to UV light (365 

nm at ~10 mW/cm2, UVP B-100 lamp) for 8 minutes on ice.  The emulsion was incubated at 
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50°C for 2 hr, 70°C for 15 min, and 4°C for 1 min before splitting into 3,000 cell aliquots.  The 

emulsion was broken using 10 µL of 20% (v/v) 1H,1H,2H,2H-Perfluorooctanolin in Novec-7500 

and stored in -80°C until libraries were ready to be processed. In vitro transcription was 

performed overnight for 16 hours at 37°C.  Fragmentation of amplified RNA libraries was 

performed for 1.5 minutes at 70°C. The final sequence-ready libraries were amplified by 7-9 

PCR cycles on average as determined by a diagnostic qPCR. Libraries were quantified by 

Agilent BioAnalyzer and multiplexed with unique PCR indices in sequencing batches of up to 

12,000 cells. The NextSeq Illumina Sequencer was used to sequence libraries using custom 

sequencing primers.  

 

scRNA-Sequencing Data Analysis 

Raw count data were analyzed using the dropEst software suite(43). The dropTag tool was used 

to annotate reads with cellular barcodes and collapse the different read files. Reads were aligned 

to the hg38 genome using tophat2 (44) provided with gene annotations from UCSC. Read 

quantification was performed using dropEst using the simple correction model (-m) and 

correctional correction of UMI errors (-u). 

 

The panel of samples was jointly analysed using the Conos suite(17) and pagoda2 packages 

(https://github.com/hms-dbmi/pagoda2). Briefly, normalization of individual datasets was 

performed using pagoda2, admitting cells with at least 500 molecules. Conos integration was 

performed using PCA rotation space, calculating top 30 PCs on a union of 2000 overdispersed 

genes for each pair of datasets. LargeVis embedding was used to visualize the joint 

subpopulations. Tumor cells were manually annotated as the CD19+/CD5+ cluster. The tumor 
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cells were then re-integrated separately using Conos using CPCA rotation with 30 PCs. The 

resulting joint graph of CLL cells was visualized using UMAP embedding. Clusters within the 

CLL cells were then determined using the Leiden algorithm, with the resolution of r=0.7. Higher 

resolution clustering (r=1.9) was then selected to annotate distinct subpopulations appearing in 

late relapse samples (clusters 4-6).  

 

An unsupervised clustering analysis was also performed using the Seurat R package v3.1.1(18). 

In particular, an integrated approach was taken in order to minimize individual patient effect yet 

maintain differences in timing. Principal component analysis (PCA) dimensionality reduction 

was performed with the highly variable genes as inputs. The PCs were then used to calculate a 

uniform manifold approximation and projection (UMAP) for the integrated data. Clusters were 

called at a resolution of 1 using the first 30 principal components. Tumor cell clusters were 

manually selected via CD5+/CD19+ and integrated again without input from additional immune 

cells from patients. Clusters on this tumor-specific data were called at a resolution of 0.5 using 

the first 30 principal components. 

 

Methylome sequencing and analysis 

RRBS libraries were generated from 25-100 ng of input DNA using the Ovation Methyl-Seq 

System (NuGen) following the manufacturer's recommendation. These reads were aligned to the 

human hg19 genome using BSmap with flags -v 0.05 -s 16 -w 100 -S 1 -p 8 –u. An average of 

23.1M reads per sample were aligned correctly. An average of 5.4M CpGs were covered per 

sample. The methylation state of each CpG was determined by comparing bisulfite-treated reads 

aligning to that CpG with the genomic reference sequence. The methylation level was computed 
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by dividing the number of observed methylated cytosines (which did not undergo bisulfite 

conversion) by the total number of reads aligned to that CpG. The proportion of discordant reads 

(PDR) was calculated for each CpG as previously described(25). Gene set enrichment analysis 

was limited to the C2 MSigDB gene set collection, available at: https://www.gsea-

msigdb.org/gsea/msigdb/genesets.jsp?collection=C2. Gene set enrichment analysis was 

performed for genes that exhibit consistently elevated PDR (greater than mean promoter PDR of 

0.1 in >50% of samples), and a Fisher’s exact test was used to measure the enrichment of these 

gene sets in late relapses (compared to early relapses). Statistical analysis for methylome data 

was performed with R version 3.4.0. 

 

Statistical analysis 

Statistical analysis was performed with R version 3.5.3, unless otherwise specified. Categorical 

variables were compared using the Fisher Exact test, and continuous variables were compared 

using the Student’s t-test, Wilcoxon rank sum test, or Kruskal-Wallis test as appropriate. 

Probability densities were estimated using kernel density estimations, implemented by the 

geom_density function within the ggplot2 package, and compared using the Kolmogorov-

Smirnov test. A Bayesian linear regression model was calculated via the MCMCregress function 

within the MCMCpack package. The Bayes factors of these were calculated using the ecdf 

function native to R. 

 

Analysis of cell intermixing 

To quantify the degree of intermixing between pre- and post- transplant cells for each patient, we 

calculated the proportion of neighbors belonging to the same time point as the cell of interest. 
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The nearest neighbors of each cell were determined as 500 closest cells on the existing 

embedding. The mean proportions were calculated for each patient and compared using a two-

sided Welch t-test. A similar calculation was done within Seurat using the FindNeighbors 

function and the integrated nearest neighbors matrix along with a neighborhood size of 100 cells. 

Quantification of gene expression distance 

To compare the extent of expression difference in tumor cells between pre- and post- transplant 

timepoints for the patients with early and late relapse, for each patient we sampled a random 

subset of a 100 cells from each timepoint, and then calculated the expression distance as a 

Jensen-Shannon divergence between the vectors for the two timepoints. The values in each 

vector give the probability of observing a molecule of a given gene in a given time point. The 

statistical significance of the mean inter-timepoint distance between early and late relapse 

patients was assessed using a one-sided Welch t test. 
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Figures:  

 
Fig. 1. Timing of relapse after allo-HSCT is defined by distinct evolutionary trajectories 

and stem cell expression programs. (A) Time to clinical progression after allo-HSCT for 10 

patients with CLL indicated along with relevant clinical histories and times of sample 

procurement. (B) Evolutionary patterns of mutation clusters shown by their cancer cell fractions 

(CCFs), inferred using PhylogicNDT. Time to progression is shown by the purple color bar. 

Putative CLL drivers detected for each cluster are shown. (C) Box plot of time to relapse after 

allo-HSCT in patients with (n=6) and without (n=3) clonal evolution. The P value was calculated 

by a two-sided Wilcoxon ranked sum test. “Evolution” was defined as having any cluster with 

absolute difference ≥0.2 between pre-HSCT and relapse timepoints (see Methods). (D) 
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Unadjusted P values of enriched stem cell gene sets in pretreatment allo-HSCT samples per 

GSEA, comparing samples collected from early versus late relapses. (E) Unadjusted P values of 

enriched signaling pathways per GSEA, comparing post- versus pre-HSCT samples of late 

relapses.  
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Fig. 2. Phenotypic changes in relation to the kinetics of genetic evolution. (A) Sample 

schematic and experimental workflow for capturing single CLL cell transcriptomes through the 

inDrops system from paired, pre- and post-HSCT PBMCs from two early and two late relapses. 

(B) Joint graph visualized using largeVis embedding showing clustering and annotation of cell 

subsets from PBMCs from all four patients. (C) Joint graphs using UMAP embedding of 

computationally identified CD19+CD5+ CLL cells, colored by cluster (left), patient (center) and 

relapse kinetics (right). (D) Individual joint graphs for both early and late relapse patients 

colored by timing. (E) kNN-based quantification of timepoint intermixing across clusters for 

each patient. The P value was calculated from a two-sided Welch t-test comparing means of 

individual cell values per patient, grouped into early (n=2) versus late (n=2) relapses. (F) Extent 

of gene expression change between pre- and post-transplant CLL cells for each patient. The P 

value was calculated from a one-sided Welch t-test. 
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Fig. 3. Transcriptional programs define inter- and intra-leukemic heterogeneity during late 

relapse. (A) Cells (columns) from patients 5328 and 5341 are organized by cluster assignment. 

For each cell, relapse kinetics, timing and principal component (PC)/aspect score are displayed. 

For each aspect, overdispersion score is shown by white/black color bar. Row labels summarize 

key functional annotations of gene sets for each aspect. For each aspect, gene expression patterns 

of top-loading genes are shown. (B) Joint graphs of CLL cells are visualized to demonstrate 

differential downregulation of tumor suppressor genes (e.g. TP53 and BACH2) and differential 

upregulation of oncogenic signalling (e.g. PIM2, MCL1) after allo-HSCT among late relapse 

clusters 4, 5 and 6.  
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Fig. 4. scRNA-seq analysis of late relapse clusters highlights unique features of post-

transplant CLL cells. (A) CLL joint graph colored by individual cell score for the aspect 

defined as antigen presentation. (B) CLL joint graph displaying only cells from the indicated late 

relapse patient and their associated expression of HLA class I or II genes. (C) Left, probability 

densities of the range of HLA class I or II gene expression values. P <10-14 for all four 

comparisons, by two-sample Kolmogorov-Smirnov test. Right, stacked barplots indicating the 

lack of expansion of HLA class I or II ‘low’ expressing cells after allo-HSCT. P values for 

contraction determined from Fisher’s exact test. (D) Bulk gene set expression values for HLA 

class I (left) and II (right) genes from purified normal B cells, untreated CLL, and paired pre- 

and post-HSCT CLL cells. P value determined from Student’s t test (paired t test for pre- vs 

post-HSCT). (E, F) Joint graph of CLL cells from patient 5341 colored by RPS15 mutation 

status (E) or gene expression (F). Dotted lines indicated approximate cluster boundaries. (G) 

Box plots showing RPS15 gene expression by cluster for cells from patient 5341. Cluster 4 vs 5 
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(dotted box), P value calculated from two-sided Wilcoxon rank sum test. (H) Joint graph of all 

CLL cells colored by the aspect defined as ribosomal biogenesis. 
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Fig. 5. Methylome instability characterizes late relapse after allo-HSCT. (A) Boxplots of the 

change in locally disordered methylation as measured by the percentage of discordant methylated 

reads (PDR). Shown are values for early relapse (n=4), late relapse (n=4) and matched post-

chemotherapy treated relapse patients (n=7). * = p<0.05 determined from Kruskal Wallis test. 
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(B) Graph depicts change in PDR as function of change in time to progression. Dotted line 

represents Bayesian linear model fitted to each group. Points represent weighted averages of all 

genomic regions per patient. Bayes factor=1.5. (C) Stem cell gene sets are enriched from sites of 

significant methylation differences (absolute change >10%) between pre-HSCT and relapse 

samples in late relapse patients. P values were calculated from Fisher’s exact test. (D-F) Ordered 

and disordered methylated reads for patients 5334 (early relapse) and 5328 (late relapse), 

respectively, for three stem cell gene-associated promoters.  
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Supplementary Materials: 

 
Fig. S1. Frequencies of mutations, CLL cancer drivers and neoantigens. (A) Boxplot of the 

sample specific frequency of non-silent mutations in treatment-naïve CLL samples as compared 
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to pre- and post-relapse.  P values determined from Wilcoxon ranked sum test.  (B) Comut plot 

representing change in cancer cell fraction of various somatic single nucleotide variants and copy 

number alterations (blue font) (rows) for 9 paired pre-/post-RIC patients (columns). Time to 

progression is shown by the purple color bar. Bar plot showing total number of mutations per 

patient per timepoint across top, as well as a bar plot showing percent of samples containing an 

individual mutation across left. Copy number alterations shown in blue. (C) Inferred 

phylogenetic structure for each patient using PhylogicNDT. Colors represent distinct mutational 

clusters. (D) Snapshot from the Integrated Genomics Viewer of a contracting neoantigen 

predicted from a mutation in the IGLL5 driver gene (g.chr22:23235972G>A), detectable in the 

pre-HSCT track (top) but not in the relapse track (bottom). (E) Stacked bar plot indicating the 

percentage of strong neoantigens (IC50 ≤ 50nM) among contracting, unchanged, or expanding 

neoantigens and the proportion contributed by each patient, colored by early or late relapse 

timing. Total number of strong neoantigens indicated at top of bar for each neoantigen class. P 

value determined from Fisher’s exact test. (F) Box plot indicates median binding affinity for all 

predicted contracting, unchanged or expanding neoantigens. P value determined from one-sided 

Wilcoxon ranked sum test. (G) Scatterplot of change in cancer cell fraction versus binding 

affinity for all neoantigens. Color denotes individual patients, with shades of red representing 

early and shades of blue representing late relapse after allo-HSCT. Dotted line denotes absolute 

change in CCF of ≥0.2. Dashed line denotes threshold for strong neoantigens, defined by an 

IC50 ≤ 50nM. 
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Fig. S2. Single cell transcriptome analyses. (A) UMAP joint graph (with Conos) of all cells 

from all patients, colored by patient. (B) Individual UMAP clusterings (with Seurat) of all 

CD19+CD5+ CLL cells for each patient, colored by timing. (C) kNN-based quantification of 

timepoint intermixing across clusters, identified by Seurat, on a per-cell basis for each patient. P 

value determined from two-sided Welch t-test comparing means of individual cell values per 

patient, grouped into early (n=2) versus late (n=2) relapses. 
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Fig. S3. Quantification of single cell gene expression values. (A) Boxplots of normalized gene 

expression values for BACH2, PIM2, and MCL1 comparing pre- to post-HSCT cells from patient 

5328. (B) Cluster 4 contains significantly fewer RPS15Mut cells than post-HSCT cluster 5 or the 

pre-HSCT clusters 1,2, and 3. P value calculated from Fisher’s exact test. (C) Significantly 

higher per-cell expression of the aspect defining cAMP signaling in cluster 4 than cluster 5. P 

value calculated from two-sided Wilcoxon ranked sum test. (D) Boxplot shows time between 

pre- and post-HSCT samples for early (n=4), late (n=4) or after chemotherapy-only relapsed 

groups. The P values were calculated from a two-sided Wilcoxon ranked sum test. 
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Table S1. Clinical characteristics. 
Patient ID 5327 5328 5330 5331 5334 5335 5338 5339 5340 5341 
Age at SCT 41 55 56 47 53 59 54 63 70 59 
Sex M F F F M F M M F M 
IGHV status M U U U N/A U N/A M M N/A 
Disease status prior 
to allo-HSCT 

PR PR PR PR PR PR PR PR PR PR 

Donor source PB PB PB PB PB PB PB PB PB PB 
Donor sex F M F M F M F M M F 
Donor type 
(matched) 

Rel Rel Rel Rel Rel Rel Rel Rel Un Un 

Conditioning 
intensity 

RIC RIC RIC RIC MA RIC RIC RIC RIC RIC 

Conditioning 
regimen 

flu/bu flu/bu flu/bu/r flu/bu/r cy/tbi flu/bu flu/bu flu/bu flu/bu flu/bu 

GvHD ppx t/m t/m t/m/rap/r t/m/rap/r t/m t/m/rap t/m/rap t/m/rap t/m t/m/rap 
Days from dx to SCT 2409 3395 2884 1278 2482 657 4599 5950 4380 2628 
Days from sample to 
SCT 

300 154 273 205 10 214 14 6 71 90 

Days from SCT to 
relapse sample 

782 1825 731 1068 83 643 442 304 194 1801 

Best response to 
SCT 

CR CR CR CR P MR PR PR CR CR 

Paired samples for 
WES 

Y Y Y Y Y Y Y Y N Y 

Paired samples for 
RNA-seq 

Y Y Y N Y Y Y Y N Y 

Paired samples for 
RRBS 

Y Y N N Y Y Y Y Y Y 

Paired samples for 
scRNA-seq 

N Y N N N N Y Y N Y 

 

M=mutated, U=unmutated; PR=partial response; PB=peripheral blood; Rel=related, Un=unrelated; RIC=reduced intensity, 

MA=myeloablative; flu=fludarabine, bu=busulfan, r=rituximab, cy=cyclophosphamide, TBI=total body irradiation; 

t=tacrolimus, m=methotrexate, rap=rapamycin; CR=complete response, P=progression, MR=mixed response; Y=yes, N=no 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 10, 2020. ; https://doi.org/10.1101/2020.04.09.033555doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033555


Included in Auxiliary Supplementary Materials 
Table S2. Whole exome sequencing metrics. 

Table S3. Somatic single nucleotide variants and insertions/deletions 

Table S4. Somatic copy number alterations (sCNAs) and ABSOLUTE-calculated cancer cell 
fraction estimates. 
Table S5. Clustering- and phylogeny-adjusted subclone-CCFs and driver annotations. 

Table S6. Neoantigens predicted per patient 
Table S7. Differentially expressed genes in pre-transplant CLL cells (early versus late) 

Table S8. Differentially expressed genes in late relapsers (pre- versus post-transplant) 

Table S9. Single cell RNA sequencing metrics 

Table S10. Promoter methylation values 

Table S11. Promoter PDR values 
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