
1 
 

 

Immuno-informatics Characterization SARS-CoV-2 Spike Glycoprotein for 

Prioritization of Epitope based Multivalent Peptide Vaccine  

Saba Ismail1, Sajjad Ahmad1, Syed Sikander Azam* 

Computational Biology Lab, National Center for Bioinformatics (NCB), Quaid-i-Azam 

University, Islamabad, 45320, Pakistan. 

 

1Both authors contributed equally to this work as first author. 

*Corresponding author: Syed Sikander Azam 

National Center for Bioinformatics, Quaid-i-Azam University, Islamabad-45320, Pakistan.  

Tel: 0092-51-90644130 

E-mail addresses: syedazam2008@gmail.com, ssazam@qau.edu.pk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

` 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.04.05.026005doi: bioRxiv preprint 

mailto:syedazam2008@gmail.com
mailto:ssazam@qau.edu.pk
https://doi.org/10.1101/2020.04.05.026005


2 
 

Abstract 

The COVID-19 pandemic caused by SARS-CoV-2 is a public-health emergency of international 

concern and thus calling for the development of safe and effective therapeutics and prophylactics 

particularly a vaccine to protect against the infection. SARS-CoV-2 spike glycoprotein is an 

attractive candidate for vaccine, antibodies and inhibitor development because of many roles it 

plays in attachment, fusion and entry into the host cell. In this study, we characterized the SARS-

CoV-2 spike glycoprotein by immune-informatics techniques to put forward potential B and T 

cell epitopes, followed by the use of epitopes in construction of a multi-epitope peptide vaccine 

construct (MEPVC). The MEPVC revealed robust host immune system simulation with high 

production of immunoglobulins, cytokines and interleukins. Stable conformation of the MEPVC 

with a representative innate immune TLR3 receptor was observed involving strong hydrophobic 

and hydrophilic chemical interactions, along with enhanced contribution from salt-bridges 

towards inter-molecular stability. Molecular dynamics simulation in solution aided further in 

interpreting strong affinity of the MEPVC for TLR3. This stability is the attribute of several vital 

residues from both TLR3 and MEPVC as shown by radial distribution function (RDF) and a 

novel analytical tool axial frequency distribution (AFD). Comprehensive binding free energies 

estimation was provided at the end that concluded major domination by electrostatic and minor 

from van der Waals. Summing all, the designed MEPVC has tremendous potential of providing 

protective immunity against COVID-19 and thus has the potential to be considered in 

experimental studies.  

 

Keywords: 
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1. Introduction  
 

In December 2019, a new strain of coronavirus emerged in Wuhan city of Hubei province in 

China and has since spread globally. The virus belongs to clade B of family Coronaviridae in the 

order Nidovirales, and genera Betacoronavirus and caused pulmonary disease outbreak [1,2]. It 

is positive-sense RNA, enveloped and non-segmented virus and named as SARS-CoV-2 as it 

share 82% sequence identity with SARS coronavirus (SARS-CoV)[3,4].  SARS-CoV-2 caused 

coronavirus disease-19 (COVID-19) and evidence suggest a zoonotic origin of this disease [5]. 

Though the zoonotic transmission is not completely understood but facts provide the ground that 

it proliferates from the seafood market Huanan in Wuhan and  human-to-human transmission 

resultant into the exponential increase in number of cases [6,7]. As of March 24, 386,332 cases 

are reported worldwide with 16,747 deaths and 102,333 recovered patients. Among the active 

cases, 267,252 are currently infected, 255,166 (95%) are in mild conditions and 12,086 (5%) are 

seriously ill. serisouly illed. Among the 119,080 closed cases, 102,333 (86%) are recovered 

whereas 16,747 (14%) die. On March 11, the World Health Organization (WHO) affirmed 

COVID-19 as a pandemic (https://www.worldometers.info/coronavirus/).  

 

SARS-CoV-2 utilizes a highly glycosylated, homotrimeric class I viral fusion spike protein to 

enter into host cells [8]. This protein is found in a metastable pre-fusion state which undergoes a 

structural rearrangement facilitating viral membrane fusion with the host cell[9–11]. The binding 

of S1 subunit to a host-angiotensin-converting enzyme initiates this process and disrupts the pre-

fusion trimeric structure resulting into S1 subunit dispersion and stabilizes the S2 subunit to a 

post-fusion conformation[12]. The receptor-binding domain (RBD) of S1 goes through a hinge-

like conformational change that temporarily hides or exposes the determinants of receptor 

binding in order to occupy a host-cell receptor [11]. Down and up conformation states are 

recognized where former is related to the receptor-inaccessible state and the later one explains 

receptor-accessible state and considered as less stable [13–16]. This critical role of the spike 

protein makes it an important target for antibody-mediated neutralization, and detailed study of 

the pre-fusion S structure would provide information at atomic-level helping in the design and 

development of a vaccine [17–21]. Current data indicates that SARS-CoV-2 spike and SARS-

CoV spike both share the same functional receptor (host cell) —angiotensin-converting enzyme 

2 (ACE2) [22,23]. Interestingly, ACE2 binds to SARS-CoV-2 spike ectodomain with ∼15 nM 

affinity, about 10-20 folds higher than ACE2 binding to SARS-CoV spike [24]. One possible 

reason for SARS-CoV-2 capability of spreading infection from human-to-human is SARS-CoV-

2 spike’s high affinity for human ACE2[25]. Series of cellular immune and humoral responses 

can be triggered by SARS-CoV-2 infections [26]. Immunoglobulin G (IgG) and IgM were 

noticeable after the 2 weeks of onset of infection which are specific antibodies to SARS-CoV-2. 

High titers of neutralizing antibodies and SARS-CoV-2 specific cytotoxic T lymphocyte 

responses have been identified in the patients who have improved from SARS-CoV-2. This 

phenomenon clearly suggest that both cellular and humoral immune reactions are vital to 

clearing the SARS-CoV-2 infection [26–30]. 

 

The study presented, herein, is an attempt to get insights about antigenic determinants of SARS-

CoV-2 spike glycoprotein and highlight all antigenic epitopes [31] of the spike that can be used 

specifically for the design of a multi-epitope peptide vaccine construct (MEPVC) [32]to counter 

COVID-19 infections. The epitopes predicted by immunoinformatics techniques were fused 

together as well as to β-defensin adjuvant [33,34] to boost the antibody production and long-
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lasting immunological responses. Blind docking protocol was implemented to gain MEPVC best 

possible binding mode with respect to representative innate immune receptor TLR3 [35]. The 

docked solution was further utilized in dynamics simulations to study the structural dynamics 

and stability of the complex [36]. Finally, to confirm intermolecular interactions and point all 

noteworthy residues crucial for intermolecular stability, binding free energies [37] for the system 

were estimated. In a nutshell, this study reflects excellent outcomes for experimental 

vaccinologists to develop a vaccine to control pandemic COVID-19 infections. 

2. Materials and Methods  

 Complete flow of the in silico designed methodology for MEPVC targeting SARS-CoV-2 9 

spike is demonstrated in Fig.1.  

2.1. Epitopes Mapping for Spike Protein 

 

The amino acid sequence of spike glycoprotein protein from SARS-CoV-2 was retrieved from 

NCBI SARS-CoV-2 data hub and considered first in the epitope mapping phase, where T cell 

epitopes derived from B-cell were predicted using immune epitopes data base (IEDB)[38].  

Linear B cell epitopes were mapped using Bepipred Linear Epitope Prediction 2.0 [39]  and 

those with score greater than 0.5 were subjected to T-cell epitopes identification step. The 

epitopes were projected for association with reference set of major histocompatibility complex 

(MHC): MHC class I [40] and MHC class II [41] alleles on the basis of percentile score. 

Epitopes with lowest percentile score were considered only as high affinity binders. The selected 

epitopes were then used in MHCPred 2.0 [42] to decipher their binding affinity potential for 

predominant HLA II DRB*0101 and only those with IC50 value < 100 nM were categorized as 

excellent DRB*0101 binders [43]. VirulentPred [44] was employed next to reveal virulent nature 

of the epitopes setting the cut-off to 0.5. Antigenic epitopes were highlighted by VaxiJen 2.0 

[45]. Allergenic epitopes were discarded through AllerTop 2.0 [46] and toxic potential of non-

allergic epitopes was evaluated via ToxinPred [47]. The non-toxic epitopes were lastly 

investigated for their ability of inducing IFN-γ using an IFN epitope server [48]. Conservation 

across the world population of the final set of epitopes was done through IEDB epitope 

conservation analysis tool [49].  

 

2.2. Multi-Epitopes Peptide Vaccine Construct (MEPVC) Designing and Post Analysis   

All filtered epitopes were linked together through AAY linkers [50] to design a multi-epitope 

peptide (MEP). The resultant peptide was further linked to an immunological β-defensin (an 

adjuvant) to construct a multi-epitope peptide vaccine construct (MEPVC) and in this way 

immunogenicity can be enhanced. The physicochemical properties of designed MEPVC was 

predicted by ProtParam tool [51] of EXPASSY server. The three dimensional (3D) structure of 

the MEPVC was modeled ab initio by 3Dpro of SCRATCH protein server [52]. Following, loop 

modeling was done in the 3D structure of MEPVC via GlaxyLoop [53] from GlaxyWeb and 

subsequently refined through GalaxyRefine [54]. Disulfide engineering was applied on the 

MEPVC refined model via Design 2.0 [55] as disulfide bonds strengthen structure stability. The 
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MEPVC sequence was translated reversibly for optimization of codon usage according to 

Escherichia coli K12 expression system in order to get high expression rate [56]. For this, Java 

Codon Adaptation Tool (JCat) [57] was used and expression of the cloned MEPVC was assessed 

by GC % and codon adaptation index (CAI) value. SnapGene (https://www.snapgene.com/) was 

used to clone the optimized MEPVC cDNA into pET-28a (+) expression vector.  

2.3. In Silico Immune Profiling of MEPVC 

Immunogenic potential of the MEPVC was conducted in silico using C-ImmSim server [58,59]. 

The server used machine learning techniques along with position-specific scoring matrix (PSSM) 

for prediction of the host immune system response to the antigen. The immune system responds 

from three mammalian anatomical regions: bone marrow, lymph nodes and thymus. The input 

parameters for the immune simulations are as follows: number of steps (100), volume (10), 

random seed (12345), HLA (A0101, A0101, B0702, B0702, DRB1_0101, DRB1_0101), number 

of injection set to 1. The rest of parameters were treated as default.   

2.4. Molecular Docking of MEPVC 

The MEPVC affinity for an appropriate immune receptor as an agonist was checked in the step 

of molecular docking[60]. TLR3 available under PDB id of 1ZIW was retrieved and used as a 

receptor molecule. TLR3 also named as CD283 is a transmembrane protein belongs to the family 

of pattern recognition receptor [61]. It detects viral infection-associated dsRNA and evoke the 

activation of interferon regulatory transcription factor (IRF3) and (Nuclear Factor kappa-light-

chain-enhancer) NF-kB [62]. Unlike other TLRs, TLR3 uses TIR-domain-containing adapter-

inducing interferon-β (TRIF) as a primary adapter [63]. IRF3 eventually induces the 

development of type I interferons leading to the activation of innate immune system and 

eventually to long lasting adaptive immunity [64].  The TLR3 receptor and MEPVC were used in 

a blind docking approach through an online PATCHDOCK server interface [65]. The interacting 

molecules were docked according to the shape complementarity principle. The clustering RMSD 

is allowed to default 4.0 Å. The output docked solutions were immediately refined with Fast 

Interaction Refinement in Molecular Docking (FireDock) server [66] which provides an efficient 

framework for refining PATCHDOCK complexes. The refined complexes were examined and 

one with lowest global energy was considered as top ranked. The opted complex was subjected 

to in-depth MEPVC conformation with respect to the TLR3 using UCSF Chimera 1.13.1[67].         

2.5. Molecular Dynamics (MD) Simulation  

MD simulation was applied on the selected top complex for 50-ns to understand complex 

dynamics and stability for practical applications. This assay was categorized into three phases:  

(i) parameters file preparation (ii) pre-processing, and (iii) simulation production [68]. In first 

phase using an antechamber module of AMBER16 [69], complex libraries and set of parameters 

for TLR3 and MEPVC were generated. The complex system was solvated into 12 Å TIP3P 

solvation box achieved through Leap module of AMBER. The intermolecular and intramolecular 

interactions of the system were determined by ff14SB force [70] field. Counter ions in the form 

of Na+ were added to the system for charge neutralization. In the system pre-processing stage, 

complex energy was optimized through several rounds: minimization of complete set of 
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hydrogen atoms for 500 steps, minimization of system solvation box energy for 1000 steps with 

restraint of 200 kcal/mol – Å2 on the remaining system, minimization of complete set of system 

atoms again for 1000 steps with applied restraint of 5 kcal/mol –Å2 applied on system carbon 

alpha atoms, and 300 steps of minimization on system non-heavy atoms with restraint of 100 

kcal/mol –Å2 on other system components. The complex system then underwent a heating step 

where the complex was heated gradually to 300K through NVT ensemble, maintained through 

Langevin dynamics [71]  and SHAKE algorithm [72] to restrain hydrogen bonds.  Complex 

equilibration was achieved for 100-ps. Pressure on the system was maintained using NPT 

ensemble allowing restraint on Cα atoms of 5 kcal/mol – Å2. In the simulation production, 

trajectories of 50-ns were produced on time scale of 2-fs. Non-bounded interactions were 

differentiated by describing cut-off distance of 8.0 Å.CPPTRAJ module [73] was lastly used for 

statistical computation of different structure parameters to probe complex stability. The MD 

simulation trajectories were visualized and analyzed in Visual Molecular Dynamics (VMD) 1.9.3 

[74].  

2.6. Axial Frequency Distribution Analysis  

Axial frequency distribution or simply AFD [75] is a novel analytical technique run on 

simulation trajectories to access ligand 3D conformation with respect to reference receptor atom. 

Such local structural movements are not captured by any other available technique.  AFD can be 

mathematically presented by Eq.I, 

𝐴𝐹𝐷 =  ∑ 𝑚𝑖, 𝑗𝑘,𝑙
𝑖=1,𝑗=1 ……………………………………………………………………… Eq.I 

where, i and j are ligand atom coordinates on X and Y axis with cut-off value  k and l, 

respectively. The mi,j sums interactions frequency that fall in the coordinate (i,j).   

2.7. Calculating Binding Free Energy for TLR3-MEPVC  

The interaction energy and solvation free energy for TLR3 receptor, MEPVC, TLR3-MEPVC 

complex were calculated utilizing the MMPBSA.py module [76] of AMBER16. Also, an 

average of the above was estimated as a net binding free energy of the system. The binding free 

energy was computed through MM-PBSA method and its counterpart MM-GBSA of AMBER 

with objective to derive the difference between bound and unbound states of solvated 

conformations of the same molecule [77]. Mathematically, the binding free energy can be 

calculated though Eq.II, 

ΔG bind,solv = ΔG bind, vaccum + ΔG solv, TLR3-MEPVC – (ΔG solv, MEPVC + ΔG solv, TLR3)……………Eq.II 

For all three states of the system, the solvation energy was calculated by solving either Poisson 

Boltzman (PB) or Generalized Born (GB) equation and thus it will give electrostatic contribution 

of the solvation state. It also allow the addition of empirical term for hydrophobic contributions 

as shown in Eq.III.  

ΔG solv = G electrostatic, ϵ= 80 – G electrostatic, ϵ= 1 +ΔG hydrophobic………………………………… Eq.III 
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Calculation of the average interaction energy between TLR3 and MEPVC gives to delta- ΔG 

vacuum (Eq.IV) 

ΔG vacuum =ΔE moleular mechanics-T. ΔS………………………………………………………… Eq.IV 
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Fig.1. Computational approach adopted for the design of a SARS-CoV-2 spike protein based MEPVC.
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3. Results and Discussion 

3.1. Prioritization of Potential Epitopes  

The SARS-CoV-2 spike protein was targeted for MEPVC designing because of many filters 

it fulfilled required for a potential vaccine candidate. First, it does not share any significant 

homology to the human host and as such chances of autoimmune responses are negligible 

[78]. Second, the protein is also not found to have any sequence identity to the mouse 

proteome and thus accurate immunological findings can be deciphered from in vivo mice 

experimentations [79]. This spike protein only harbored one transmembrane helix ensuring 

the wet lab protein cloning and expression for antigen analysis easy [80]. Antigenicity is 

another factor that make this candidate highly suitable for vaccine designing as this allows 

efficient binding to the products of host immune system [81]. Further, this protein is strongly 

adhesive which makes it an excellent target for creation of adhesion based vaccine [82]. 

Lastly, all the sequences of SARS-CoV-2 spike protein are highly conserved thus a vaccine 

based on its sequence will be highly likely to have broad spectrum immunological 

implications [83]. Prioritization of potential epitopes for the SARS-CoV-2 spike protein 

commenced with the mapping of B-cell epitopes that predicted total of 34 epitopes of vary 

length ranging from one to 62 (S Table 1). The average score predicted for these B cell 

epitopes is 0.470, maximum (max) of 0.696 and minimum (min) of 0.188 (Fig.2). Each B-

cell epitope was then analyzed in MHC-1 alleles binding regions prediction [84]. A set of 

reference alleles to which these epitopes interact with are: HLA-A*01:01, HLA-A*02:01, 

HLA-A*02:01, HLA-A*02:03, HLA-A*02:03, HLA-A*02:06, HLA-A*02:06, HLA-

A*03:01, HLA-A*03:01, HLA-A*11:01, HLA-A*11:01, HLA-A*23:01, HLA-B*08:01, 

HLA-A*23:01, HLA-A*24:02, HLA-A*24:02, HLA-A*26:01, HLA-A*26:01, HLA-

A*30:01, HLA-A*30:01, HLA-B*57:01, HLA-A*30:02, HLA-A*31:01, HLA-B*58:01 , 

HLA-A*32:01, HLA-A*33:01, HLA-A*33:01, HLA-A*68:01, HLA-A*68:01, HLA-

A*68:02, HLA-A*68:02, HLA-A*30:02,  HLA-B*07:02, HLA-B*51:01, HLA-B*07:02, 

HLA-B*08:01, HLA-B*15:01, HLA-B*15:01, HLA-B*35:01, HLA-A*31:01, HLA-

B*35:01, HLA-B*40:01, HLA-B*40:01, HLA-B*44:02, HLA-B*44:02, HLA-B*44:03, 

HLA-B*44:03, HLA-B*51:01, HLA-A*01:01, HLA-B*53:01, HLA-B*53:01, HLA-

B*57:01, HLA-A*32:01, and  HLA-B*58:01. These alleles have > 97% population coverage. 

The predicted epitopes were then screened and stringent criteria of lowest percentile score 

was used to choose the excellent binders.  Afterward, the B cell epitopes were simultaneously 

run in MHC-II alleles binding [85]. Likewise MHC-I, reference set of MHC-II binding were: 

HLA-DRB4*01:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-DRB1*07:01, HLA-

DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*03:01,  HLA-DRB1*13:02, HLA-

DRB1*15:01, HLA-DRB3*01:01, HLA-DRB1*12:01, HLA-DRB3*02:02, HLA-

DRB1*08:02, HLA-DRB1*01:01, and HLA-DRB5*01:01. The MHC-II predicted epitopes 

were also filtered on basis of percentile score and then cross checked with the selected MHC-

I allele and those common in both classes were considered only which were 50 in numbers. 

The shortlisted common MHC-I and MHC-II epitopes then subjected to antigenicity check. 

In this check, ability of the filtered B-cell derived T-cell epitopes ability to evoke and bind to 

products of adaptive immunity. This yielded 38 epitopes all of which have strong ability to 

bind to the most prevalent DRB*0101 with average IC50 score of 35.6552, max of 98 and min 

of 0.89.The antigenic epitopes then underwent allergenicity check to discard allergic peptides 

that may cause allergic reactions [86]. This resulted into 31 epitopes. Non-toxic epitopes 

were 7 whereas 6 were IFN-gamma producer (Fig.3). The set of epitopes obtained at different 
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stages of epitope mapping phase is tabulated in Table 1.     These epitopes appear to provide 

coverage to 98% of the world population (Fig.4). The coverage can split as: 98.54% in East 

Asia, 96.06% in Northeast Asia, 97.46% in South Asia, 95.83% in Southeast Asia, 94.29% in 

Southwest Asia, 98.53% in Europe, 92.81% in East Africa, 89.82% in Central Africa, 96.45% 

in West Africa, 97.86% in North Africa, 94.81% in South Africa, 99.09% in West Indies, 

98.74% in North America, 25.01% in Northern America, 90.91% in South America, and 

95.58% in Oceania.  

 

Fig.2. B cell epitopes prediction by IEDB Bepipred linear epitope prediction method. Yellow 

and green peaks are those predicted as epitopes and non-epitopes, respectively. 

 

Fig.3. Venn diagram for the number of different categories of epitopes predicted at epitope 

mapping stage. NBCE (number of B cell epitopes), NTCE (number of T cell epitopes), NAEs 

(number of antigenic epitopes), NNAES (number of non-allergic epitopes), NNTEs (number 

of non-toxic epitopes), and NIFEs (number of IFN-gamma epitopes).
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Table 1. Number of epitopes obtained at each step of epitope mapping phase. 

B- Cell Epitopes T-Cell Epitopes 

Percentile score 
MHCPred 

Score (nM) 
Antigenicity Allergenisity Toxicity 

IFN-gamma 

producer 

Final 

Selection MHC 1 
MHC 

II 

SQCVNLTTRTQLPPAYTNSFTRGVY 

TRTQLPPAY 1.04 34 12.91 1.2923 Non-Allergen Non-Toxin 
 

- 

RTQLPPAYT 1.4 34 76.31 1.2195 Non-Allergen Non-Toxin 
 

- 

TTRTQLPPA 1.4 31 10.4 1.254 Non-Allergen Non-Toxin 
 

- 

FSNVTWFHAIHVSGTNGTKRFDN 
FSNVTWFHA 1.4 1.5 3.41 0.8156 Non-Allergen Non-Toxin 

 
- 

TWFHAIHVS 6.6 5.6 48.53 0.5374 Non-Allergen - 
 

- 

DPFLGVYYHKNNKSWME 
VYYHKNNKS 9.8 2.1 26.3 0.451 Allergen - 

 
- 

YYHKNNKSW 0.36 2.1 80.17 0.4536 Non-Allergen Non-Toxin 
 

- 

MDLEGKQGNFKNL KQGNFKNLR 2.65 7.1 31.7 0.9558 Non-Allergen Non-Toxin 
 

- 

KHTPINLVRDLPQGFS KHTPINLVR 3.2 0.51 34.36 1.0552 Non-Allergen Non-Toxin 
 

- 

TPGDSSSGWTA PGDSSSGWT 31 66 98 0.1337 Non-Allergen Non-Toxin 
 

- 

KSFTVEKGIYQTSNFRVQP YQTSNFRVQ 1.95 3.92 5.19 0.7821 Non-Allergen Non-Toxin 
 

- 

FPNITNLCPFGEVFNATRFASVYAWNRKRISNCVA 

PNITNLCPF 0.06 0.09 9.18 1.6189 Non-Allergen Non-Toxin 
 

- 

NITNLCPFG 15 2.7 19.5 1.5251 Allergen Non-Toxin 
 

- 

YAWNRKRIS 4.45 0.52 9.2 0.8209 Non-Allergen Non-Toxin Positive Selected 

FNATRFASV 0.2 2.6 24.6 0.5609 Non-Allergen Non-Toxin 
 

- 

FPNITNLCP 0.06 0.09 44.87 1.6A218 Non-Allergen Non-Toxin 
 

- 

YNSASFSTFKCYGVSPTKLNDLCFT 
FSTFKCYGV 0.4 9.5 8.45 0.414 Non-Allergen Non-Toxin 

 
- 

PTKLNDLCF 0.52 32 12.85 2.5304 Non-Allergen Non-Toxin 
 

- 

GDEVRQIAPGQTGKIADYNYKLP 
GQTGKIADY 0.77 15.5 12.11 1.4019 Non-Allergen Non-Toxin 

 
- 

IAPGQTGKI 1.4 30.33 66.99 1.6527 Non-Allergen Non-Toxin Positive Selected 

NLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGV

EGFNCYFPLQSYGFQPTN 

FRKSNLKPF 2.6 3.1 3.41 0.628 Non-Allergen Non-Toxin 
 

- 

NLKPFERDI 7.6 1.8 6.41 0.9116 Non-Allergen Non-Toxin 
 

- 

KSNLKPFER 0.14 1.9 38.9 0.949 Non-Allergen Non-Toxin 
 

- 

ELLHAPATVCGPKKSTNLVKN 
PKKSTNLVK 3.3 17 85.11 0.4877 Non-Allergen Non-Toxin 

 
- 

KKSTNLVKN 1.55 14 90.7 0.4876 Non-Allergen Non-Toxin 
 

- 

NCTEVPVAIHADQLTPT NCTEVPVAI 3.8 23.5 40.18 0.5598 Allergen Non-Toxin 
 

- 

RVYSTGSNVFQ VYSTGSNVF 0.17 6.2 55 0.3099 Allergen Non-Toxin 
 

- 

VNNSYECDIPI NSYECDIPI 1.9 8.4 23.93 0.2216 Non-Allergen - 
 

- 

ASYQTQTNSPRRARSVASQ PRRARSVAS 0.17 3.9 13.3 0.4829 Non-Allergen Non-Toxin Positive Selected 
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ASYQTQTNS 4.9 8.6 23.88 0.5213 Non-Allergen Non-Toxin 
 

- 

SPRRARSVA 0.1 4 0.89 0.7729 Non-Allergen Non-Toxin 
 

- 

YTMSLGAENSVAYSNN 
MSLGAENSV 1.45 3.3 60.95 0.873 Non-Allergen Non-Toxin 

 
- 

SLGAENSVA 0.67 4.9 61.5 0.6459 Allergen Non-Toxin 
 

- 

RNFYEPQIITTD 
YEPQIITTD 3 2.8 47.86 0.8297 Allergen Non-Toxin 

 
- 

NFYEPQIIT 11.35 17 85.11 0.1785 Allergen Non-Toxin 
 

- 

VNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGI 

TVYDPLQPE 2.2 33 5.448 0.5391 Non-Allergen Non-Toxin Positive Selected 

VYDPLQPEL 2.91 33.3 14.79 0.4525 Non-Allergen Non-Toxin Positive Selected 

PDVDLGDIS 7.75 30 20.65 2.0111 Non-Allergen Non-Toxin 
 

- 

FKNHTSPDV 6.4 2.2 45.71 0.4846 Non-Allergen Non-Toxin Positive Selected 

SCCKFDEDDSEPVLKG HTSPDVDLG 2.9 30 67.45 1.5209 Non-Allergen Non-Toxin 
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                              Fig.4. World population coverage of the final set of predicted epitopes.  

3.2. MEPVC Designing 

Prioritized T cell epitopes derived from B cells were fused together tandemly by AAY linkers 

to make a multi-epitope peptide (MEP). AAY linker avoid formation of junctional epitopes 

and as such enhance epitope presentation [87]. To the N-terminal of MEP, EAAAK linker 

was added to attach β-defensin as an adjuvant leading to the design of a MEPVC. The 

MEPVC is schematically shown in Fig.5A. MEPVC offers many advantages compared to a 

separate antigenic peptide. Such vaccines induce both CD4+ and CD8+ responses and the 

antigens optimization are optimal.    EAAAK is a rigid spacer and allow separation of the 

attached domain and promoting efficient immune processing of the epitopes [88]. β-defensins 

are potent immune adjuvants as they are capable of significantly enhancing production of 

lymphokines resulting into antigen-specific Ig production and T cell-dependent cellular 

immunity. The sequence of MEPVC is: 

GIINTLCKYYCRVRGGRCCVCSCCPKEEQIGKCSTRGRKCCRRKKECAAKYAWNRK

CISACYIAPGQTGKICCYPRRARSVCSACYTVYDPCQPCAAYVYDPLCPELCAYCKN

HTSCDV. 

3.3. MEPVC has Appropriate Biophysicochemical Properties 

Physicochemical properties of the MEPVC were evaluated in order to assist experimentalists 

in the field to setup experiments accordingly in vitro and in vivo. The length of MEPVC is 

spanned across 110 amino acids and has molecular weight of 13.30 kDa. Vaccine construct 

with weight less than 110 kDa is generally believed to effective vaccine target because of its 

easier purification.   Theoretical pI of MEPVC is 9.8 and aids in locating MEPVC on 2D gel. 

MEPVC aliphatic index is 69.08 projecting the vaccine thermostable at different 

temperatures. The total number of negatively charged and positively charges residues are 8 

and 22, respectively. The grand average of hydropathicity (GRAVY) score computed for the 

MEPVC is -0.545, illustrating hydrophilic nature of the protein and is likely to interact with 

water molecules. The estimated half-life of MEPVC in mammalian reticulocytes, in vitro is 
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30 hours, yeast, in vivo is greater than 20 hours, and Escherichia coli, in vivo higher than 10 

hours. The antigenicity of the MEPVC was cross-checked and predicted highly antigenic 

with value of 0.69. Total entropy of the protein is 17.0170 which is considered ideal and also 

the vaccine has no transmembrane helices (alpha helical transmembrane protein, 0.0474783 

and beta barrel transmembrane protein, 0.0060384) hence no difficulties can be anticipated in 

cloning and expression analysis. The predicted solubility upon overexpression of MEPVC is 

0.965751 reflecting higher solubility of MEPVC. 

3.4. Modeling and Refinement of MEPVC 

The 3D model of the MEPVC was constructed using ab initio 3Dpro predictor as no 

appropriate template was available for homology modeling and threading methods. The 3D 

structure of MEPVC is shown in Fig.5B. The structure secured 85.4% of residues in the 

Ramachandran favored, 12.6%, 1.9% and 0% residues in additionally allowed, generously 

allowed and disallowed regions, respectively. As the predicted MEPVC unit has number of 

loop regions that need to be modeled proper before moving forward. In total, five sets of 

residues: Alas7-Lys32, Ile63-Gly69, Cys73-Arg77, Thr87-Pro102, and Asn113-Val119 were 

loop modeled. The loop modeled structure increased the Ramachandran favored residues 

percentage to 92.3%, residues in allowed region reduced to 6.7%, residues of generously 

allowed region to 1.0% and disallowed remained to 0%. The structure was subjected to 

structure perturbations and relaxations to obtain a refined model. Among the generated 

structures (S-Table 2), the first model was selected as it has improved Rama favored score, 

lowest stable galaxy energy of 0.96, improved clash score of 23.1 and good MolProbity 

value. Similarly, the structure lacks poor rotamers in contrast to the original structure. The 

Ramachandran statistics for the refined 3D structure are in following order: Ramachandran 

favored residues (93.2%), additionally allowed region (5.8%), generously allowed region 

(1.0%) and disallowed region (0 %). The Z-score of the refined MEPVC is -4.3 and within 

the score range of same size protein in structure data bases (S-Fig.1).  
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Fig.5. A. Schematic depiction of the MEPVC. B. The original predicted 3D MEPVC 

structure and refined along with respective Ramachandran plots.  AAY linkers are shown in 

red while epitopes are in coal and yellow is for EAAAK linker. Cyan color represents the β-
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defensin adjuvant. In the Ramachandran plot, the torsion angles are shown by black squares 

dispersed across the core secondary structures (colored as red). The allowed regions can be 

understand by yellow, generously allowed by pale yellow and disallowed by white region. 

The top right, top left, bottom right and bottom left represent quadrants for left handed alpha 

helices, beta sheets, right handed alpha helix, and no elements, respectively.   

3.5. Disulfide engineering and in silico cloning of the MEPVC 

Further, disulfide engineering of the MEPVC was performed in order to optimize molecular 

interactions and confer considerable stability by attaining precise geometric conformation 

[89,90]. Eight pairs of residues were selected to be replaced with cysteine amino acid. These 

pairs are: Gln7-Ala19 (χ3 angle,+118, energy value, 4.20 kcal/mol), Cys18-Leu21 (χ3 

angle,+84.35, energy value, 3.69 kcal/mol), Lys44-Ala47 (χ3 angle,+74.17, energy value,5.59 

kcal/mol), Arg57-Ala61 (χ3 angle,+122.71 , energy value,6.14 kcal/mol), Ala72-Ala85 (χ3 

angle,-62.92, energy value,4.40 kcal/mol), Ala73-Ala82 (χ3 angle, , energy value, kcal/mol), 

Leu92-Glu95 (χ3 angle, -102.37 , energy value, 3.86 kcal/mol), and Phe111-Pro117 (χ3 

angle,-96.20 , energy value,4.14 kcal/mol). These residues have either higher energy level i.e. 

> 2 kcal/mol and χ3 angle out of range (< −87 and > + 97) were selected on purpose to make 

them stable. The original and disulfide mutant MEPVC structures are shown in Fig.6. The 

primary purpose of in silico cloning of the MEPVC was guide molecular biologist and 

genetic engineers about the possible cloning sites and predicted level of expression in a 

specific expression system for instance here in this study we used E. coli K12 system. Prior to 

cloning, reverse translation of the MEPVC sequence was conducted to have an optimized 

codon usage as per E. coli K12 to yield its max expression. The CAI value of the improved 

MEPVC sequence is 1 indicating ideal expression of the vaccine [91]. The GC content 

whereas is 53.2 % nearly to the E. coli K12 and range within the optimum ranged between 30 

% and 70%. The cloned MEPVC is shown in Fig.7. 

 

 

. 
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Fig.6. Disulfide engineering of the MEPVC (Top). The yellow bonds are the disulfide of the 

mutated residues to increase MEPVC stability. The red spheres in the MEPVC 3D structure 

(bottom) represent the mutated residues. 
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Fig.7. In silico cloning of MEPVC (shown in red) in pET28a expression vector.  

3.6. In silico Immune Simulation  

Both primary and secondary immune responses seem to play a significant contribution 

against the pathogen and may be compatible to the actual immune response. The in silico host 

immune system response to the antigen is shown in Fig.8.  High concentration of IgG +IgG 

and IgM was characterized at the primary response, followed by IgM, IgG1+ IgG2 and IgG1 

at both primary and secondary stages with concomitant of antigen reduction. Additionally, 

robust response of interleukins and cytokines were observed. All this suggest the efficient 

immune response and clearance of the pathogen upon subsequent encounters. Elevated B cell 

population including memory cells and different isotypes in response to the antigen, points to 

the long lasting formation of memory and isotype switching. The T helper cell population 

additionally with the cytotoxic T cell and their respective memory development are in strong 

agreement of strong response to the antigen. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 12, 2020. ; https://doi.org/10.1101/2020.04.05.026005doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.05.026005


19 
 

 

Fig.8. Computational immune simulation of the host immune system response to the 

MEPVC.  The antibodies are shown in left and cytokines and interleukins in right. 

3.7. Interaction of MEPVC and TLR3 Promotes Formation of Strong Complex 

Bioinformatic modelling driven molecular docking of the desingned MEPVC to one 

representative innate immune response receptor TLR3 was carried out in order to decode 

MEPVC potential of binding to the innate immune receptors. This was fundamental to 

understand as TLR3 is significant in recognition of virus associated molecular patterns and of 

activaiton of type I interferons and NF-kappa B. The docking assesment predicted top 20 

complexes sorted mainlny on scoring functions along with interacting molecules area size, 

desolvation energy, and complexes actual rigid transformation.  Following, the complexes 

were subjected to FireDock web server for refinement assay. This ease in discarding 

flexibility errors of the docking procedure and provide a deep refinement of the predictions 

thus limiting the chances of false positive docking calculations. According to the global 

energy, solution 8 was considered as a best complex with net global energy of -20.78 kJ/mol 

(Table 2). This energy is the output of -16.88 kJ/mol attractive van der Waals (vdW), 3.81 

kJ/mol repulsive vdW, 8.14 kJ/mol atomic contact energy (ACE), and -0.93 kJ/mol hydrogen 

bond energy.  The docked conformation and chemical interacting residues of the MEPVC 

with TLR3 is shown in Fig.9. Visual inspection of the complex leads to observation of deep 

binding of the MEPVC at the center of TLR3 and favor rigorously rigoursly hydrogen and 

weak van dar Waals interactions with various residues of TLR3. Within 3 Å, the MEPVC 

was noticed to formed interactions with 

His39,Val55,Asn57,Asp81,Phe84,Val103,Asn105,Gln107,His108,Thr126,Glu127,Ser132,Hi

s129,Thr151,His156,Gln174,GLu175,Lys200,Lys201,Glu203,Asn229,Ser256,Asp280,Ser28

2,Tyr283,Tyr302,Phe304,Tyr307,Lys330,Tyr383,Tyr326,Asn328,His359,Asn361, and 

Glu363.    
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Table 2. Refined PatchDock complexes as an outcome of FIreDock assay. 

Rank 
Solution 

Number  

Global Energy 
 

Attractive 

VdW 

Repulsive 

VdW 

ACE HB 

  
↓ 

    
1 8 -20.78   -16.88     3.81      8.14   -0.93   

2 3 -9.08   -11.71     1.36      2.37   -0.96   

3 4 18.96   -35.55     34.92      8.46   -2.21   

4 1 19.29   -12.32     15.65      6.68   -2.85   

5 10 23.90   -28.09     18.61      10.32   -2.74   

6 7 28.45   -24.64     22.73      12.98   -3.35   

7 6 34.28   -29.92     9.59      14.30   -1.52   

8 9 41.80   -28.57     10.33      16.83   -4.66   

9 5 47.06   -11.90     80.07      4.28   -2.03   

10 2 76.58   -40.07     43.84      20.00   -5.59  

VdW (van der Waals), ACE (Atomic Contact Energy), HB (Hydrogen Bonding) 

 

Fig.9. A. MEPVC (shown in dark magenta) conformation with respect to TLR3 receptor 

(shown in firebrick surface). B. TLR3 interacting residues (shown in yellow sticks) are 

involved in hydrophobic and hydrophilic interactions with MEPVC. 
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3.8. MD Simulations Supported Docked Complex Stability and Equilibrium   

The stability of MEPVC with TLR3 was further investigated through MD simulations. The 

trajectories of MD simulations were used in vital statistical analysis to decode backbone 

stability and residual flexibility. Root mean square deviation (RMSD) [92,93] was performed 

first that compute average distance of backbone carbon alpha atoms of superimposed frames 

(Fig.10A). The average RMSD for the system is 3.23 Å with max of 4.4 Å at 24-ns. An 

initial sudden change in RMSD can be seen up to 2.7-ns that may be due to adjustments 

adopted by the complex when exposed to dynamics forces and milieu. The second minor 

RMSD shift can be noticed between 22-ns to 26-ns. Afterward, the system is quite stable with 

not global and local conformational changes specified. Next, root mean square fluctuations 

(RMSF) [94] was applied on the system trajectories (Fig.10B). RMSF is the average residual 

mobility of complex residues from its mean position. Mean RMSF for the MEPVC-TLR3 

complex calculated is 1.60 Å with max of 8.6 Å pointed at the N-terminal of the MEPVC. 

Most of the interacting residues of the MEPVC with TLR3 are subject to minor fluctuations, 

a fact in analogy to complex high stability. The thermal residual deviation was assessed 

afterward by beta-factor (β-factor) [95], the outcomes of which is strongly correlated to the 

RMSF and hence further affirming system stability (Fig.10C). The average β-factor of the 

system analyzed is 88.64 Å² with max of 1956.23 Å². Lastly, we evaluated the compactness 

of the system by means of radius of gyration (Rg) [96] analysis (Fig.10D). High Rg and low 

Rg illustrate the magnitude of system compactness and system less tight packing. It further 

tell us the whether the system of interest in order or not. Highly compact system is an 

indication of system stability and vice versa. The mean Rg for our system is 55.8411 Å with 

max score of 74.884 reflecting higher ordered and compact nature of the system.       

 

Fig.10. MD simulations based analysis of RMSD (A), RMSF (B), β-factor (C), and Rg (D). 
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3.9. Hydrogen bonds Analysis 

Hydrogen bonds are dipole-dipole attractive forces and formed when a hydrogen atom 

bounded to a highly electronegative atom such as F, N, and O is attracted by another 

electronegative atom [97]. The strength of a hydrogen bond vary from 4 kJ to 50 kJ per mole. 

Hydrogen bonds are deemed vital in molecular recognition and provide rigidity in achieving 

stable conformation [98]. The frequency of hydrogen bonds in each frame of the MD 

simulation trajectories can be visualized in Fig.11A. These hydrogen bonds are extracted by 

mean of VMD HBonds plugin and are 104 in number as tabulated in Table 3. The cut-off 

distance set is 3.0 Å and cut-off angle 20 degrees. Each residue pair may for one, two or more 

each of which is counted separately. The min, mean and max number of hydrogen bonds 

between MEPVC and TLR3 are 1, 5, and 12, respectively.  

3.10. Radial Distribution Function and Inter Molecular Interactions  

The distribution and bonding pattern of intermolecular interactions of the MEPVC residues 

atom(s) with respect to the TLR3 were studied through radial distribution function (RDF) 

(Abbasi et al., 2016; Donohue, 1954; Kouetcha et al., 2017). RDF mainly describes distance 

‘r’ between two entities and is represented by g(r). The factor ‘r’ is extracted from simulation 

trajectories and range from o to ∞ [75]. The hydrogen bonds predicted by VMD were utilized 

in RDF that shown only 8 interactions between MEPVC and TLR3 with good affinity for 

each other. In these interactions, TLR3 residues (atoms) are: Asp52:OD1, Gln78:HE21, 

Glu98:OE1, Asp124:OD2, Lys171:HZ3, Asp251:OD2, Glu323:OE2, and Glu328:OE1 are 

found to have strong radii distribution to their counterpart MEPVC residues (atoms): 

Arg705:HH11, Arg705: O, Lys679:HZ3, Arg706:HH12, Glu675:OE1, Asn633:HD22, 

Arg643:HH22, and Tyr638: HH, respectively. The RDF plots for the above said interactions 

are illustrated in Fig.11B. The interaction between Asp124-OD2 and Arg706-HH12 has a 

refined distribution pattern and highest density distribution among all. The max g(r) value for 

this interaction is 3.51 observed at distance range of 1 Å. This is followed by Glu328-OE1-

Tyr638-HH with max g(r) value of 3.26 mostly interaction at distance range of 0.6 Å. The 

Glu323-OE2-Arg643-HH22 is also much refined having g(r) value of 1.98 and mostly 

interacts within distance range of 0.6 Å. The remaining interactions density distribution is not 

confined and vary considerably but important from MEPVC and TLR3 interaction point of 

view.   

3.11. Salt Bridges and TLR3-MEPVC Stability  

Salt bridges are non-covalent in nature and the outcome of interactions between two ionized 

states [101]. These interactions comprised two parts: an electrostatic interaction and a 

hydrogen bond. In salt bridges, lysine or arginine typically behave as base where glutamine 

or aspartate as acid and the bridge is created when carboxylic acid group allows a proton 

migration to guanidine and amine group in arginine. Salt bridges are the strongest among all 

non-covalent interactions and contribute to a major extent in biomolecular stability [102–

104].  In total, 17 salt bridges were identified between TLR3 and MEPVC within the cut-off 

distance of 3.2 Å as can be depicted from Fig.11C. The higher numbers of salt bridges were 

recorded for TLR3-Glu628 and MEPVC-Lys685. The mean number of salt bridges for this 

interaction is 18, max, 35 and min, 3. The count for other salt bridges from TLR3 to MEPVC 

is in following order: Asp124-Arg706 (mean, 3, max,7 and min,3), Glu98-Lys679 (mean, 5, 

max,10 and min,4), Asp402-Arg641 (mean, 12, max, 18 and min, 4), Glu146-Arg706 

(mean,7  max,11 and min,3), Glu146-Lys679 (mean,5  max,13 and min,2), Glu272-Lys655 
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(mean,9  max,22 and min,2), Glu323-Arg643 (mean,4  max,8 and min,3), Glu323-Arg646 

(mean,5  max,10 and min,3), Glu323-Lys655 (mean,13  max,25 and min,3), Glu328-Arg641 

(mean,10  max,17 and min,4), Glu628-Lys699 (mean,9  max,28 and min,2), Glu675-Lys171 

(mean,4  max,13 and min,2), Glu675-Lys172 (mean,10  max,16 and min,2), Glu98-Arg705 

(mean,9  max,14 and min, 5), Glu98-Arg706 (mean, 9 max,14 and min,3), and  Glu98-

Lys679 (mean, 5 max,11 and min,2).  
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Fig.11. Number of hydrogen bonds in each frame of MD simulation trajectories (A), RDF 

plots for hydrogen bonds in TLR3-MEPVC critical in interaction and stability (B), and salt 

bridges formed between TLR3 and MEPVC (C) during simulation time. 
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Table 3. Hydrogen bonds between TLR3 and MEPVC formed during MD simulations. 

Donor Acceptor Occupancy 

Gln78-Side Arg705-Main 0.04% 

Tyr638-Side Glu328-Side 34.02% 

Asn633-Side Asp251-Side 14.20% 

Arg705-Side Asp52-Side 98.52% 

Arg706-Side Asp124-Side 36.24% 

Lys679-Side Thr122-Side 8.52% 

Lys171-Side Glu675-Side 29.48% 

Arg708-Side Hie79-Side 0.06% 

Arg643-Side Glu323-Side 83.46% 

Tyr639-Side Tyr273-Side 0.02% 

Lys679-Side Glu98-Side 14.34% 

Lys171-Side Val649-Main 0.18% 

Gly630-Main Glu174-Side 6.26% 

Lys172-Side Thr634-Side 0.06% 

Lys679-Side Glu146-Side 7.34% 

Hie10-Side Asn742-Main 0.04% 

Tyr297-Side Val642-Main 0.02% 

Gly630-Main Ser176-Side 0.04% 

Asn228-Side Gln722-Side 0.58% 

Tyr639-Side Hie324-Side 0.70% 

Gln722-Side Asn228-Side 0.56% 

Arg643-Side Hie324-Side 11.54% 

Lys679-Side Ile121-Main 0.04% 

Gln722-Main Tyr254-Side 22.94% 

Arg705-Side Ser50-Side 0.22% 

Arg296-Side Ile659-Main 0.02% 

Asn200-Side Asn633-Side 3.04% 

Tyr278-Side Pro720-Main 6.86% 

Asn326-Side Tyr638-Side 0.08% 

Lys172-Side Gly630-Main 0.60% 

Lys301-Side Tyr638-Side 0.04% 

Hie743-Side Thr30-Side 1.56% 

Asn742-Side Hie10-Side 0.16% 

Tyr273-Side Ser651-Side 0.04% 

Hie10-Side Asn742-Side 4.32% 

Hie127-Side Val748-Side 4.40% 

Tyr273-Side Ser651-Main 2.66% 

Lys347-Side Gln658-Side 0.54% 

Asn223-Side Glu675-Side 0.16% 

Arg643-Main Tyr348-Side 0.10% 

Hie127-Side Val748-Main 0.88% 

Arg296-Side Cys652-Main 0.06% 

Gln658-Side Glu323-Side 0.98% 

Hie743-Side Hie10-Side 0.02% 
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Hie10-Side Tyr739-Main 0.02% 

Hie743-Side Hie31-Side 0.22% 

Tyr273-Side Cys652-Main 0.28% 

Asn633-Side Asn200-Side 1.08% 

Asn742-Side Hie31-Side 0.12% 

Asn633-Side Ser225-Side 0.48% 

Lys655-Side Glu323-Side 0.32% 

Asn151-Side Val748-Side 0.04% 

Hie31-Side Hie743-Side 1.08% 

Hie79-Side Thr744-Side 0.50% 

Hie10-Side Tyr739-Side 0.06% 

Lys172-Side Glu675-Side 0.58% 

Lys655-Main Tyr273-Side 0.36% 

Arg646-Side Glu323-Side 25.80% 

Hie31-Side Asn742-Main 4.54% 

Arg708-Side Hie127-Side 0.10% 

Ser225-Side Asn633-Side 0.04% 

Arg706-Side Hie100-Side 0.10% 

Arg643-Side Glu323-Main 0.02% 

Arg296-Side Gln658-Side 0.68% 

Lys699-Side Thr629-Side 11.72% 

Lys699-Side Thr629-Main 5.64% 

Lys699-Side Glu628-Side 6.90% 

Arg708-Side Ser103-Side 0.20% 

Tyr273-Side Gln658-Side 3.00% 

Gln658-Side Tyr273-Side 0.42% 

Lys699-Side Glu628-Main 0.46% 

Arg646-Side Tyr273-Side 0.28% 

Gln658-Side Glu272-Side 1.06% 

Lys699-Side Asn627-Side 0.06% 

Hie127-Side Asp747-Side 0.24% 

Gln696-Side Glu628-Side 0.02% 

Gln696-Side Asn627-Side 1.02% 

Arg222-Side Cys652-Main 0.04% 

Lys172-Side Asn633-Side 0.32% 

Glu628-Main Gln696-Side 0.56% 

Lys655-Side Glu272-Side 3.02% 

Thr697-Side Thr629-Main 23.12% 

Gln696-Side Glu628-Main 3.08% 

Thr697-Side Thr629-Side 0.18% 

Arg641-Side Asp402-Side 0.02% 

Gln696-Side Thr629-Side 0.68% 

Gln78-Side Thr744-Side 0.32% 

Thr744-Side Hie79-Side 0.14% 

Tyr639-Side Tyr297-Side 0.02% 

Thr697-Side Glu628-Main 1.28% 
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Lys679-Side Gln145-Side 0.02% 

Asn627-Side Gln696-Side 0.42% 

Thr629-Side Glu735-Side 0.04% 

Gly698-Main Thr629-Main 0.22% 

Thr629-Side Gln696-Main 0.16% 

Thr629-Side Gln696-Side 0.02% 

Gln78-Side Hie743-Main 0.02% 

Lys171-Side Glu675-Main 0.02% 

Gln145-Side Glu675-Side 0.10% 

Arg706-Side Glu146-Side 5.36% 

Lys655-Side Gln270-Side 0.02% 

Arg706-Side Glu98-Side 12.14% 

Asn627-Side Gln696-Main 0.20% 

Tyr254-Side Gln722-Side 0.02% 

 

3.12. Density Distribution and Local Structure Movements  

The vital hydrogen bond interactions involved between TLR3 receptor and MEPVC 

shortlisted by VMD were subjected to a novel AFD analysis to elucidate 3D movements of 

MEPVC atoms with respect to a reference TLR3 residues atom in simulation time. To this 

objective, interactions mentioned in the RDF were used in AFD. Preliminary investigation 

suggested that only three interactions: TLR3-Asp52-MEPVC-Arg705, TLR3-Glu328-

MEPVC-Tyr638, and TLR3-Glu323-MEPVC-Arg643 are mainly represented frequently and 

found in most of the simulation frames. The TLR3-Asp52-MEPVC-Arg705 is uncovered in 

4997 frames, TLR3-Glu328-MEPVC-Tyr638 in 4988, and TLR3-Glu323-MEPVC-Arg643 

in 4985 making these interactions ideal for interpreting density distribution of the interactions 

on XYZ planes and also appropriate for gaining ideas about conformational changes of the 

interacting atoms with respect to each other. As the local structure movements and rotations 

are responsible for functional shifts, their understanding in our system is important to be 

unveiled. For TLR3-Asp52-MEPVC-Arg705 (Fig.12), the density distribution is not uniform, 

dispersed and behave flexibility in affinity on all three axis for the receptor atom. Parallel, the 

strength of interaction is also observed affected due to these minor structural movements of 

the MEPVC residue atom. Though, the mentioned interaction depicts MEPVC is still within 

the vicinity of the TLR3 reference residue and enjoys this interaction flexibility with the said 

MEPVC residue during simulation. TLR3-Glu328-MEPVC-Tyr638 interaction (Fig.13) has 

less distribution area and has much higher intensity illustrating strong affinity of the 

interacting atoms for each other. It also gives an idea of the lesser movements of the atoms 

with respect to each other, an indication of a correct system conformation. The distribution 

area TLR3-Glu323-MEPVC-Arg643 is much dispersed though high intensity of the 

interaction can be seen in close vicinity (Fig.14).        
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Fig.12. AFD for TLR3-Asp52-MEPVC-Arg705 interaction. 
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Fig.13. AFD plot for TLR3-Glu328-MEPVC-Tyr638. 
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Fig.14. AFD plot for TLR3-Glu323-MEPVC-Arg643. 

3.13. MEPVC-TLR3 Complex Revealed High Binding Free Energies  
 

The net free energy of binding (ΔTOTAL) in both GB and PB models are revealed favorable 

MEPVC-TLR3 complex in pure water. The net GB and PB energy for the MEPVC-TLR3 

complex is -53.81 kcal/mol and -89.02 kcal/mol, respectively. To this energy, high 

contribution was noticed from gas phase energy (ΔG gas) compared to highly insignificant 

contributions from solvation energy (ΔG solv). In GB model, the ΔG gas energy for the 

system is -1889.76 kcal/mol whereas in PB model this energy is -1889.76 kcal/mol.  The ΔG 
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solv energy in case of GB is 1835.95 kcal/mol while in case of PB it is 1800.74 kcal/mol. The 

electrostatic contribution to the system estimated by MM force field in both methods is 

highly favorable to the net energy (i.e. -1752.51 kcal/mol). Likewise, the van der Waals 

contribution form MM is also reported significant in system stability (-137.25 kcal/mol). The 

electrostatic energy contribution (EGB and EPB) to the ΔG solv is found prime parameter 

leading to non-favorable contribution of ΔG solv energy in both techniques. The surface area 

energy (ESURF) computed in GB method is -20.22 kca/mol. In PB, ENPOLAR and 

EDISPER are the repulsive and attractive free energy and is -17.44 kcal/mol and 0 kcal/mol, 

respectively. Individual binding free energy for MEPVC-TLR3 complex, TLR3 receptor, 

MEPVC and net energy is tabulated in Table 4.     
 

Table 4. Binding free energies for MEPVC-TLR3 system. 
 

GB PB 

MEPVC-TLR3 Complex MEPVC-TLR3 Complex 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

VDWAALS -6191.82 42.04 4.2 VDWAALS -6191.82 42.04 4.2 

EEL -51977.55 163.19 16.31 EEL -51977.55 163.19 16.31 

EGB -9135.8 129.32 12.93 EPB -8914.84 123.4 12.34 

ESURF 236.0035 2.49 0.24 ENPOLAR 162.86 1.12 0.11 

G gas -58169.38 155 15.5 G gas -58169.38 155 15.5 

G solv -8899.79 128.24 12.82 G solv -8751.97 123.14 12.31 

TOTAL -67069.18 66.36 6.63 TOTAL -66921.36 69.42 6.94 

TLR3 Receptor TLR3 Receptor 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

VDWAALS -5255.53 38.07 3.8 VDWAALS -5255.53 38.07 3.807 

EEL -44981.18 160.75 16.07 EEL -44981.1 160.75 16.07 

EGB -7204.15 129.25 12.92 EPB -6992.97 121.61 12.16 

ESURF 199.02 2.05 0.2 ENPOLAR 140.11 0.93 0.09 

G gas -50236.72 147.41 14.74 G gas -50236.72 147.41 14.74 

G solv -7018 128.74 12.87 G solv -6852.86 121.47 12.14 

TOTAL -57241.85 54.49 5.44 TOTAL -57089.58 60.3 6.03 

MEPVC MEPVC 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

VDWAALS -799.03 15.45 1.54 VDWAALS -799.03 15.45 1.54 

EEL -5243.85 56.53 5.65 EEL -5243.85 56.53 5.65 

EGB -3787.82 47.6 4.76 EPB -3740.06 45.41 4.54 

ESURF 57.2 1.08 0.1 ENPOLAR 40.2 0.64 0.06 

G gas -6042.89 56.11 5.61 G gas -6042.89 56.11 5.61 

G solv -3730.62 47.43 4.74 G solv -3699.86 45.23 4.52 

TOTAL -9773.51 31.87 3.18 TOTAL -9742.75 33.63 3.36 

Differences (MEPVC-TLR3 - TLR3- Vaccine MEPVC) Differences (MEPVC-TLR3 - TLR3- Vaccine MEPVC) 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 

Energy 

Component 
Average 

Std. 

Dev. 

Std. Err. of 

Mean 
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VDWAALS -137.25 7.9 0.79 VDWAALS -137.25 7.9 0.79 

EEL -1752.51 48.84 4.88 EEL -1752.51 48.84 4.88 

EGB 1856.18 45.486 4.54 EPB 1818.19 45.33 4.53 

ESURF -20.22 1.29 0.12 ENPOLAR -17.44 0.51 0.05 

- - - - EDISPER 0 0 0 

ΔG gas -1889.76 48.37 4.83 ΔG gas -1889.76 48.37 4.83 

ΔG solv 1835.95 45.19 4.51 ΔG solv 1800.74 45.2 4.52 

ΔTOTAL -53.81 8.1955 0.8195 Δ TOTAL -89.02 11.55 1.15 

 

3.14. Net Energy Decomposition Discovered Hot-spot Residues  

The net free energy of the simulated system was subjected to per residues and pairwise 

residues decomposition to point residues that contribute majorly in system stabilization and 

lower energy. Molecular docking simulation studies demonstrated 64 residues from the TLR3 

receptor that are in direct contact with the MEPVC but per residue decomposition assay 

illustrated that among the residues only Hie31, Phe55, Glu98, Hie100, Met102, Ile121, 

Thr122, Asp124, Glu146, Glu146, Glu174, Ser176, Phe198, Asn200, Ser225, Met249, 

Asp251, Tyr254, Tyr273, Phe275, Tyr278, Tyr297, Glu323, Hie324, and Tyr348 are hotspot 

as they contribute rigoursly in binding interaction with MEPVC at the docked side. The side 

chain of Hie100, Thr122, Asp124, Glu174, Ser176, Tyr254, and Glu323 contribute 

significantly in chemical interactions and have energy value in following order: -2.86602 

kcal/mol, -3.71782 kcal/mol, -3.77019 kcal/mol, -3.80724 kcal/mol, -2.71475 kcal/mol, -

2.40187 kcal/mol, and -3.54158 kcal/mol, respectively. To these TLR3 hotspot residues, the 

MEPVC interacting residues were also observed in quite lower energies illustrating high 

affinity for the receptor residues for chemical interactions. From MEPVC, ASN633 (-4.11274 

kcal/mol), TYR638 (2.83056 kcal/mol), VAL642 (-2.12862 kcal/mol), ARG643 (-6.59981 

kcal/mol), GLU675 (-2.57531 kcal/mol), TRP682 (-2.54238 kcal/mol), ARG705 (-3.1088 

kcal/mol), and ARG706 (-4.45088 kcal/mol) are favorable residues in stable complex 

formation. The hotspot residues for both TLR3 and MEPVC are shown in S-Fig.2.  

3.15. Frame –wise Energy Decomposition  

The binding free energy of the TLR3-MEPVC complex, TLR3 receptor, MEPVC and the net 

system energy is further decomposed into 100 frames extracted from simulation trajectories 

(S-Fig.3). This information deemed vital in predicting the simulation time where higher 

intermolecular affinity was observed and can guide about the most suitable docked 

conformation. In general the complex, receptor and construct energies are higher in PB 

compared to GB but for the total energy, the PB energies are quite lower for frames in 

contrast to GB. For the complex, the min, max and average binding energy reported are -

67264.7 kcal/mol, -66901.5 kcal/mol, and -67069.5 kcal/mol, respectively in GB.  The PB 

max frame energy is -66751.4 kcal/mol, min is -67120.2 kcal/mol and average is -66921.6 

kcal/mol. The GB receptor max is -57111.5 kcal/mol whereas the min is -57381.8 kcal/mol, 

and average is -57242 kcal/mol. For PB receptor, max of -56961 kcal/mol of energy was 

noticed compared to the min -57249 kcal/mol. The MEPVC is showing high average energy 

(-9773.16 kcal/mol in GB and -9742.47 kcal/mol in PB), max (-9672.42 kcal/mol in GB and -

9644.54 kcal/mol in PB) and min (-9838.37 kcal/mol in GB and -9811.3 kcal/mol in PB). The 

net average energy for frames in GB is -53.8024 kcal /mol (max, -33.978 kcal/mol and min, -

72.791 kcal/mol) and in PB is -89.0949 kcal/mol (max, -65.151 kcal/mol and -120.384 

kcal/mol).  
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3.16. Pair-wise Energy Contribution 

Pair-wise energy contribution to the net energy of the system was accomplished in order 

understand pair residues role from both TLR3 and MEPVC in complex stability. We found 

that the Thr122 and Asp124 (-4.56 kcal/mol in GB and -5.45 kcal/mol in PB), Glu174 and 

Ser176 (-3.45 kcal/mol in GB and -3.77 kcal/mol in PB), Glu323 and Hie324 (-2.86 kcal/mol 

in GB and -3.99 kcal/mol in PB) of TLR3 receptor have high combine contribution to the net 

energy. In case of MEPVC, Asn633 and Thr634 (-3.21 kcal/mol in both GB and PB), Val642 

and Arg643 (-5,87 kcal/mol in GB and -3.27 kcal/mol in PB) and Arg705 and Arg708 (-2.74 

kcal/mol and 2.04 kcal/mol).  

4. Conclusions 

Taken together, we characterized SARS-CoV-2 spike glycoprotein for antigenic peptides and 

proposed a MEPVC by means of several computational immunological methods and 

biophysical calculations. The outcomes of this study could save time and associated cost that 

go into experimental epitope targets study. The MEPVC is capable of activating all 

components of the host immune system, have suitable structural and physicochemical 

properties. Also, it seems to have very stable dynamics with TLR3 innate immune receptor 

and thus has higher chances of presentation to the host immune system. However, additional 

in vivo and in vitro experimentations are needed to disclose its potential in fight against 

COVID-19. 
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S-Fig.1. PROSA-Z energy plot for the MEPVC. 

S-Fig.2. Residue wise decomposition of net binding energy into TLR3 receptor and MEPVC 

interacting residues. Top (GB) and bottom (PB).   

S-Fig.3. Binding energy decomposition per frame for TLR3-MEPVC complex (A), TLR3 

receptor (B), MEPVC (C) and net energy (D). 

 

S-Table 1. B cell epitopes predicted for the SARS-CoV-2 spike glycoprotein. 

 

S-Table 2. Top 5 refined model of the MEPVC. The input MEPVC is also provided.  
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