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Abstract 29 

DNA methylation in gene or promoter or gene body could restrict/promote the gene transcription. 30 

Moreover, methylation in the gene regions along with CpG island regions could modulate the 31 

transcription to undetectable gene expression levels. Therefore, it is necessary to investigate the 32 

methylation levels within the gene, gene body, CpG island regions and their overlapped regions and 33 

then identify the gene-based differentially methylated regions (GeneDMRs). Here, R package 34 

GeneDMRs aims to facilitate computing gene based methylation rate using next generation 35 

sequencing (NGS)-based methylome data. The user-friendly R package GeneDMRs is presented to 36 

analyze the methylation levels in each gene/promoter/exon/intron/CpG island/CpG island shore or 37 

each overlapped region (e.g., gene-CpG island/promoter-CpG island/exon-CpG island/intron-CpG 38 

island/gene-CpG island shore/promoter-CpG island shore/exon-CpG island shore/intron-CpG island 39 

shore). Here, we used the public reduced representation bisulfite sequencing (RRBS) data of mouse 40 

(GSE62392) for evaluating software and found novel biologically significant results to supplement 41 

the previous research. The R package GeneDMRs can facilitate computing gene based methylation 42 

rate to interpret complex interplay between methylation levels and gene expression differences or 43 

similarities across physiological conditions or disease states.  44 
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1. Introduction 57 

Generally, gene expression is restricted by DNA methylation. However, the presence of methylation 58 

in gene or promoter or gene body could result in promotion of gene transcription. Irizarry et al. (2009) 59 

revealed the correlation between substantial portion of DNA methylation sites and gene expression 60 

along the genome. DNA methylation in promoters usually restricts the genes in a long-term 61 

stabilization of repressed states, while most gene bodies are also extensively methylated in different 62 

status; therefore, methylation of such regions can be the potential therapeutic targets (Jones, 2012; 63 

Yang et al., 2014). CpG islands, regions of high density of DNA methylation of cytosine and guanine 64 

dinucleotides (CpGs), are playing an important role in gene regulation and transcriptional repression 65 

(Goldberg et al., 2007). Moreover, the shore regions beyond CpG islands are also involved in 66 

modulating gene expression (Irry et al., 2009; Doi et al., 2009).  67 

Identifying causal relationships via genotype–phenotype correlations is a substantial challenge and 68 

many studies across life sciences try to integrate multi-omics datasets in that effort (Suravajhala et al., 69 

2016). Recently, one of the largest genetic study investigated global gene expression and DNA 70 

methylation patterns in 265 human skeletal muscle biopsies from the FUSION study with > 7 million 71 

genetic variants. This integrated approach led to potential causal mechanisms for eight physiological 72 

traits: height, waist, weight, waist–hip ratio, body mass index, fasting serum insulin, fasting plasma 73 

glucose, and type 2 diabetes (Taylor et al., 2019). This underlines the importance of having gene-74 

based methylation rates to integrate with differential expression or co-expression across physiological 75 

and phenotypic or disease states. 76 

Studying DNA methylation patterns in biological samples using next generation sequencing (NGS) 77 

methods are becoming increasingly common. There are several tools available to detect differentially 78 

methylated cytosine (DMC) (e.g., R package IMA (Wang et al., 2012), MethylKit (Akalin et al., 79 

2012)) or differentially methylated region (DMR) (e.g., R package ELMER (Silva et al., 2018), 80 

MethylMix (Gevaert, 2015; Cedoz et al., 2018), Minfi (Aryee et al., 2014), MIRA (Lawson et al., 81 

2018), RnBeads (Assenov et al., 2014; Müller et al., 2019)). These packages mainly focus on the 82 

specific differentially methylated regions like genes (DMGs) from cancer dataset (Gevaert, 2015; 83 

Cedoz et al., 2018) or only promoters (DMPs) (Assenov et al., 2014; Müller et al., 2019). However, 84 

detections of DMR based on gene body features associated with CpG islands are scarce, such as the 85 

DMRs in all exons (DMEs) and introns (DMIs) or a specific exon and intron. To the best of our 86 

knowledge, there are no tools that detect the DMP/DME/DMI/DMG associated with CpG 87 

islands/CpG island shores. We present here a user-friendly R package GeneDMRs 88 

(https://github.com/xiaowangCN/GeneDMRs) to facilitate computing gene based methylation rate 89 

using next generation sequencing (NGS) based methylome data. GeneDMRs analyzes the methylation 90 

levels in each gene/promoter/exon/intron/CpG island/CpG island shore or each overlapped region 91 
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(e.g., gene/promoter/exon/intron CpG island and gene/promoter/exon/intron CpG island shore). We 92 

evaluated the R package GeneDMRs using the publicly available reduced representation bisulfite 93 

sequencing (RRBS) data from mouse (Accession ID: GSE62392). 94 

 95 

2. Materials and Methods 96 

2.1 Data structure in DNA methylation  97 

Genome-wide DNA methylation analysis are mainly based on three approaches, i.e., enzyme 98 

digestion, affinity enrichment and bisulfite conversion (Laird, 2010). Whole genome bisulfite 99 

sequencing (WGBS) aims to find the whole methylome (Frommer et al., 1992) while reduced 100 

representation bisulfite sequencing (RRBS) primarily focuses on the enrichment of CpG-rich regions 101 

by recognizing the site CmCGG after restriction enzyme MspI digestion (Meissner et al., 2005), but 102 

both techniques rely on bisulfite conversion. From WGBS or RRBS data, cytosine site information 103 

(e.g. chromosome and position) and its methylation status can be obtained using available 104 

bioinformatics tools. GeneDMRs package can directly use the resulting methylation coverage file 105 

(i.e., .bismark.cov) from Bismark software or similar file with chromosome, start position, end 106 

position, methylation percentage, number of methylated read and number of unmethylated read (five 107 

or six columns). With such dataset, we provide below the statistical framework to compute gene-108 

based methylation rate. 109 

2.2 Gene-based DMRs and analysis workflow 110 

The gene-based regions could be divided into single window, gene, promoter, exon, intron, CpG 111 

island and CpG island shore and their overlapped feature regions including gene-CpG island, gene-112 

CpG island shore, promoter-CpG island, promoter-CpG island shore, exon-CpG island, exon-CpG 113 

island shore, intron-CpG island and intron-CpG island shore (Figure 1).  114 

The methylation mean of a cytosine site by weighting for one group (a case or control) is calculated by 115 

(1): 116 

!
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…………………………… . (1), 117 

where 𝑀𝑅! and 𝑇𝑅! are the methylated and total reads number at a given cytosine site of individual 𝑖, 118 

𝑛 is the total number of individuals in one group and 𝑊! is the weight of reads of individual 𝑖. 119 

For a window/gene (promoter, exon, intron)/CpGi/other overlapped region (Figure 1) of one group, the 120 

methylation mean by weighting is calculated by (2): 121 
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where 𝑀𝑅!% and 𝑇𝑅!% are the methylated and total reads number of the involved cytosine/DMC site 𝑗 123 

at a given gene/CpGi/other region of individual 𝑖, 𝑚 is the total number of cytosine/DMC sites 124 

involved in this region, 𝑛 is the total individual number of one group and 𝑊!% is the weight of reads of 125 

the involved cytosine/DMC site 𝑗 of individual 𝑖. For the target region, the cytosine/DMC within the 126 

region is selected, and then methylation mean of each group is calculated. Here, the DMC sites refer 127 

to the differentially methylated cytosine sites after Significant_filter(siteall_Qvalue, qvalue = 0.01, 128 

methdiff = 0.05). Thus, if the users want to use the DMC sites for the methylation mean, they should 129 

calculate the Q-values and methylation difference by Logic_regression() and filter out the DMCs by 130 

Significant_filter() at first (Figure 2). This step was also used in our previous study for methylation 131 

difference calculation to discover hyper and hypo-methylated DMGs (Wang and Kadarmideen, 132 

2019a). 133 

Logistic regression model were used to fit methylation levels with the different groups following R 134 

package MethylKit (Akalin et al., 2012): 135 

ln # !i

"#!i
$ = u + βTi, 136 

where πi is the methylation mean at a given window or gene-based region or site, u is the intercept, 137 

and Ti is the group indicator.  138 

More categorical variables can also be incorporated in this model as the additional covariates by 139 

Logic_regression(covariates = NULL). Chi-squared (χ2) test was used to determine the statistical 140 

significance of methylation differences among different groups and then to achieve the P-values. To 141 

account for multiple hypothesis testing, P-values can be adjusted to Q-values by various methods, 142 

e.g., “bonferroni”, “holm” (Holm, 1979), “hochberg” (Hochberg, 1988), “hommel” (Hommel, 1988), 143 

“BH” (Hochberg, 1995), “fdr” (Hochberg, 1995) and “BY” (Benjamini and Yekutieli, 2001).  144 

Differentially methylated windows (DMWs) or gene-based DMRs or DMCs (Figure 2) are mainly 145 

filtered by Q-values and methylation level differences between two groups, e.g., 146 

Significant_filter(qvalue = 0.01, methdiff = 0.05). The methylation difference can be calculated in 147 

Logic_regression(diffgroup = c("group1", "group2")) by selecting any two groups. The differentially 148 

methylated genes (DMGs) will be defined as the hyper/hypo-methylated gene when the methylation 149 

difference is positive/negative after case-control comparison (e.g., group2 - group1). 150 

Based on gene-based regions, DMRs for specific regions could be detected, such as genes (DMGs), 151 

promoters (DMPs), exons (DMEs), introns (DMIs), CpG islands (DMCpGis), CpG island shores 152 

(DMShores) and the overlapped regions like gene-CpG islands (DMG-CpGis), gene-CpG island 153 
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shores (DMG-Shores), promoter-CpG islands (DMP-CpGis), promoter-CpG island shores (DMP-154 

Shores), exon-CpG islands (DME-CpGis), exon-CpG island shores (DME-Shores), intron-CpG 155 

islands (DMI-CpGis) and intron-CpG island shores (DMI-Shores) (Figure 2). In addition, the ordinal 156 

positions of exons and introns were identified for each gene, which can be used in the further analysis, 157 

for example the correlations of methylation levels between all promoters and all first exons. The 158 

overall workflow of GeneDMRs package includes file input, quality control, methylation mean 159 

calculation, statistical test, significant filter and results visualization (Figure 2). 160 

2.3 Application to real data 161 

The reduced representation bisulfite sequencing (RRBS) data for testing the developed method was 162 

download from Gene Expression Omnibus (GEO) with the accession number GSE62392 163 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62392). The downloaded RRBS data was 164 

originally generated from RRBS of sorted common myeloid progenitor (CMP) populations that were 165 

isolated from 3 pools of G0 as control group and 2 pools of G5 as case group of mice samples (Colla 166 

et al., 2015). Mouse data used here is an example and GeneDMRs package is applicable to all species. 167 

We applied several pre- and post-mapping quality control (QC) to this data as follows. Adapters and 168 

reads less than 20 bases long of RRBS data were trimmed by Trimmomatic software (version 0.36) 169 

(Bolger et al., 2014). The clean reads were mapped to the mice reference genome by Bowtie 2 170 

software (version 2.3.3.1) (Langmead and Salzberg, 2012). The house mouse (Mus musculus) 171 

reference genome (mm10) used in this study was downloaded from the University of California Santa 172 

Cruz (UCSC) website (http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/mm10.2bit). 173 

The .2bit file was subsequently converted to .fasta file by twoBitToFa software 174 

(http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/twoBitToFa). Finally, read coverages of 175 

detected methylated or unmethylated cytosine sites and their methylation percentages were obtained 176 

by using Bismark software (version 0.19.0) (Krueger and Andrews, 2011). In this study, we only 177 

considered the numbers of methylated and unmethylated cytosines in CpG sites for each sample and 178 

the non-CpG (CHG and CHH, H representing A/C/T) sites were discarded.  179 

2.4 Input and quality control 180 

The resulting methylation coverage files from Bismark software of five mouse RRBS data were 181 

directly used as input in GeneDMRs package. The public mouse (mm10) bed file (i.e., .bed) for 182 

Reference Sequence (refseq) and CpG island (cpgi) database were downloaded from the UCSC 183 

website (http://genome.ucsc.edu/cgi-bin/hgTables). RefSeq and CpG island bed files were used as 184 

input files in GeneDMRs package which then can output four files (inputrefseqfile, inputcpgifile, 185 

inputgenebodyfile and inputcpgifeaturefile) by altering the feature parameter in the reading function, 186 

e.g., Bedfile_read(feature = TRUE/FALSE). Bedfile_read() function divides each gene of refseq bed file 187 

into four gene body features (i.e., promoters, exons, introns and TSSes) and each CpG island of cpgi 188 
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bed file into two CpG island features (i.e., CpG islands and CpG island shores) based on R package 189 

genomation (Akalin et al., 2015). Moreover, Bedfile_read() function annotates specific gene to each 190 

promoter by the further step. If the strand of one promoter is “+”/“-“, the middle position of this 191 

promoter will be the start/end position of the matched specific gene. However, for the specific genes 192 

with more than one National Center for Biotechnology Information (NCBI) ID, GeneDMRs package 193 

will choose the first one. For example, the adenosine A1 receptor gene (Adora1) has four NCBI IDs 194 

(i.e., NM_001291930, NM_001282945, NM_001039510 and NM_001008533) and only the first ID 195 

(NM_001291930) will be chosen. 196 

When a polymerase chain reaction (PCR) experiment suffers from duplication bias, some clonal reads 197 

will impair accurate determination of methylation (Akalin et al., 2012). In addition, lower read 198 

coverages (e.g., lower than 10) will cause the biases for methylation percentage calculation (Wang 199 

and Kadarmideen, 2019b). Therefore, cytosines with a percentile of read coverage higher than the 200 

99.9th and read coverages lower than 10 were discarded for the qualified reads by 201 

Methfile_QC(high_quantile = 99.9, low_coveragenum = 10). 202 

2.5 Biological enrichment for the differentially methylated genes (DMGs) 203 

After Significant_filter() function for DMGs, these genes with methylation differences can be used for 204 

biological enrichment. The enrichments for GO terms and pathways are analyzed and visualized by 205 

Enrich_plot(enrichterm = c(“GO”, “pathway”), category = TRUE/FALSE) based on R package 206 

clusterProfiler (Yu et al., 2012). If the category = TRUE, the enrichment will display in hyper-207 

methylated and hypo-methylated categories. In addition, the differentially expressed genes (DEGs) 208 

with Log fold change (LogFC) information can also be used in Enrich_plot(expressionfile_significant 209 

= NULL), then the visualized enrichment will be in four categories that are hyper/hypo-methylated and 210 

up/down-regulated genes. The up/down-regulated DEG can be defined when the LogFC is 211 

positive/negative or derived from the previous research results. Here, we use the previous results for 212 

multiple-category enrichments that are downregulated and upregulated genes in G4/G5 compared to 213 

G0 CMP (fdr = 0.05) of mice samples (https://ars.els-cdn.com/content/image/1-s2.0-214 

S1535610815001403-mmc2.xlsx) (Colla et al., 2015). 215 

 216 

3. Results and Discussion 217 

3.1 Comparisons of different R packages for methylation analysis 218 

Currently, a series of R packages can analyze methylation data to detect DMCs or DMRs (Table 1). 219 

Most of them are not however completely focusing on the regions in genes or within gene bodies or 220 

CpG islands and hence GeneDMRs package could be a complementary tool to obtain methylation 221 
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levels at these levels. As shown in Table 1, ELMER v.2 package reconstructs altered gene regulatory 222 

network (GRN) by combining enhancer methylation and gene expression (Silva et al., 2018). IMA 223 

(Wang et al., 2012) and MethylKit (Akalin et al., 2012) aim at genome-wide cytosine sites analysis for 224 

BeadChip and RRBS data, respectively. Generally, methyAnalysis, MethylationArrayAnalysis and 225 

Minfi are packages for specific purposes, where methyAnalysis applies CpG island information to 226 

visualize in the heatmap plot and Minfi can find the hypomethylation blocks (Aryee et al., 2014). If 227 

considering methylated genes, MethylMix package mainly focuses on identifying disease specific 228 

hypo and hypermethylated genes and it defines the methylation difference of a methylation state with 229 

the normal methylation state (Gevaert, 2015; Cedoz et al., 2018), while RnBeads package could 230 

consider the gene, gene promoter, CpG island and genomic tiling regions [15, 16]. Overall, none of 231 

these R packages works for gene components, but GeneDMRs package is extended to exon and intron 232 

regions, and their interactions with CpG island features. In addition, the performance of was tested in 233 

the personal computer (CPU: 2.70 GHz, RAM: 8.00 GB) comparing with MethylKit package (Akalin 234 

et al., 2012). For all the reference genes, GeneDMRs package takes around 15 minutes while gene 235 

body dataset interacted with CpG island dataset requires the longest time, thus, the performance of 236 

GeneDMRs package is generally related to the number of analyzed targets (Figure 3). 237 

3.2 Differentially methylated gene-based regions and cytosine sites 238 

In the final step, five methylation coverage files from Bismark software were used in GeneDMRs 239 

package and their statistical summary is listed in supplementary table 1. The GeneDMRs package will 240 

automatically read the files with the file name like “1_1”, “1_2” and “2_1” for group and replicate 241 

numbers. The methylation patterns of all genes and DMGs in different CpG island regions by 242 

Group_cpgfeature_boxplot() and Genebody_cpgfeature_boxplot() are shown in supplementary figure 243 

1. Results suggest that the methylation levels of DMGs were higher than before and they are the same 244 

of CpG islands higher than shores (Supplementary figure 1). The all dataset for genes 245 

(regiongeneall_Qvalue), genes with CpG island features (regiongeneall_cpgfeature_Qvalue), gene 246 

bodies with CpG island features (genefeatureall_cpgfeature_Qvalue) and cytosine sites 247 

(genefeatureall_cpgfeature_Qvalue) after Logic_regression() are listed in Supplementary file 1, 2, 3 248 

and 4, respectively. 249 

The methylation difference of all the cytosine sites involved in the gene were centralized to a mean, 250 

so statistical power seemed be lower than before (Figure 4 and Supplementary figure 2). In addition, 251 

GeneDMRs package can detect different gene body regions (e.g., promoter, exon and intron), CpG 252 

island regions (e.g., CpGi and shore regions) and their overlapped regions by 253 

Methmean_region(cpgifeaturefile = inputcpgifeaturefile/NULL, featureid = " 254 

c("chr1","chr2")/all/alls", featurename = c("promoters","exons","introns","TSSes")/c("CpGisland", 255 

"Shores")) for different methylation mean calculations. According these results, we found that 256 
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DNMT3A was a hypo-methylated (NM_001271753) gene but the gene and one intron interacted in 257 

both CpG island and shore features were in hyper-methylation status when G5 CMP was compared to 258 

G0 CMP (Supplementary file 1, 2 and 3). Therefore, GeneDMRs package can accurately find 259 

significantly and biologically methylated gene body and CpG island regions along the whole genome 260 

and supplement the previous research (Colla et al., 2015).  261 

If we only use the DMCs to recalculate the methylation mean by replacing the RRBS cytosine sites, 262 

i.e., DMC_methfile_QC(inputmethfile_QC, siteall_significant), the methylation difference will be 263 

more obvious than before (Supplementary figure 3). The DMC-based methylation levels could 264 

represent the whole methylations for gene-based regions when the DMCs in one gene are involved in 265 

the important parts that affect the transcription. For WGBS data, statistical efficiency can be 266 

potentially improved by removing globally unmethylated sites with less methylation differences, 267 

because the total number of hypotheses affects the Q-values by the rank of combined P-values (Huh 268 

et al., 2017). The global DMC-based methylation levels (Figure 5) can be realized by 269 

Circos_plot(inputcytofile, inputmethfile_QC, inputrefseqfile, inputcpgifeaturefile) based R package 270 

RCircos (Zhang et al., 2013). 271 

3.3 Biological enrichment for DMGs 272 

The enrichments for groups, GO terms and pathways can be analyzed and visualized with/without 273 

categories following R packages clusterProfiler (Yu et al., 2012). For example, the GO terms can be 274 

visualized in no/one/two categories (Figure 6) by incorporating hyper/hypo-methylated and up/down-275 

regulated gene information. Thus, based on the DMGs and enrichments for GO term and pathway, 276 

GeneDMRs package can help to detect the specific significant regions, reveal the biological 277 

mechanism and enhance the previous studies that methylation pattern changes in specific-regions 278 

were involved in causing diseases (Colla et al., 2015). 279 

 280 

4. Summary 281 

Currently, there is no easy-to-use R package that could compute methylation levels at the gene based 282 

level. GeneDMRs, a user-friendly R package, can facilitate computing gene based methylation rate 283 

using NGS-based methylome data. This package aims to analyze the methylation levels in 284 

gene/promoter/exon/intron/CpG island/CpG island shore and their overlapped regions. Then, the 285 

differentially hyper/hypo-methylated genes can be visualized for enrichments of GO terms and 286 

pathways and reveal the biological mechanism accordingly. Such gene-based methylation analyses 287 

contributes to interpreting complex interplay between methylation levels and gene expression 288 

differences or similarities across physiological conditions or disease states.  289 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 13, 2020. ; https://doi.org/10.1101/2020.04.11.037168doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.11.037168


10 
 

List of abbreviations 290 

Adora1: Adenosine A1 receptor gene 291 

CMP: Common myeloid progenitor 292 

CpG: Cytosine and guanine dinucleotide 293 

DEG: Differentially expressed gene 294 

DMC: Differentially methylated cytosine 295 

DMCpGi: Differentially methylated CpG island 296 

DME: Differentially methylated exon 297 

DMG: Differentially methylated gene 298 

DMI: Differentially methylated intron 299 

DMP: Differentially methylated promoter 300 

DMR: Differentially methylated region 301 

DMShore: Differentially methylated CpG island shore 302 

DMW: Differentially methylated window 303 

GeneDMRs: Gene-based differentially methylated regions 304 

GEO: Gene Expression Omnibus 305 

GRN: Gene regulatory network 306 

LogFC: Log fold change 307 

NCBI: National Center for Biotechnology Information 308 

NGS: Next generation sequencing 309 

PCR: Polymerase chain reaction 310 

QC: Quality control 311 

RRBS: Reduced representation bisulfite sequencing 312 

UCSC: University of California Santa Cruz 313 

WGBS: Whole genome bisulfite sequencing 314 
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Availability and Implementation 315 

GeneDMRs is freely available at https://github.com/xiaowangCN/GeneDMRs   316 
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Tables 419 

Table 1. Comparisons of different R packages for methylation analysis. 420 

R package Target Analysis feature Issued 

time 

ELMER v.2 (Silva et al., 2018)  DMR Reconstruct altered gene 

regulatory network (GRN) by 

combining enhancer methylation 

and gene expression 

2018 

IMA (Wang et al., 2012)  Site-level and region-

level methylation 

Summarization for individual 

site as well as annotated region 

2012 

methyAnalysis DMR Chromosome location based 

DNA methylation analysis and 

heatmap plot with CpG island 

2018 

MethylationArrayAnalysis Probe-wise differential 

methylation and  DMR 

Differential variability analysis, 

estimating cell type composition 

and gene ontology testing 

2019 

MethylKit (Akalin et al., 2012)  Base or region of DNA 

methylation 

Functions for clustering, sample 

quality visualization, differential 

methylation analysis and 

annotation feature 

2012 

MethylMix (Gevaert, 2015) 

/MethylMix 2.0 (Cedoz et al., 

2018)  

DMR of gene Automate the construction of 

DNA-methylation and gene 

expression dataset from The 

Cancer Genome Atlas (TCGA) 

2015/2018 

Minfi (Aryee et al., 2014)  Differentially 

methylated position 

(DMP) and DMR 

Block finding to identify 

hypomethylation block 

2014 

MIRA (Lawson et al., 2018)  DMR Take advantage of genome-scale 

DNA methylation data to assess 

regulatory activity 

2018 

RnBeads (Assenov et al., 2014) 

/RnBeads 2.0 (Müller et al., 

2019)  

DMR of 

gene/promoter/CpG 

island  

DNA methylation-based 

prediction of age and sex; 

LOLA-based region set 

enrichment analysis for 

biological interpretation 

2014/2019 

 421 

 422 
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Figures 424 

 425 

 426 

Figure 1. The analyzed targets in the GeneDMRs package including widows, genes (promoters, exons, 427 

introns), CpG islands (CpGis, Shores) and the overlapped feature regions (e.g., A: Promoter-Shore1, 428 

B: Exon1-Shore1, C: Exon1-CpGi, D: Intron1-CpGi, E: Exon2-CpGi, F: Exon2-Shore2, A + B: 429 

Gene-Shore1, C + D + E: Gene-CpGi, F + G: Gene-Shore2). 430 

 431 

 432 

Figure 2. Overall workflow of GeneDMRs package. 433 
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 435 
Figure 3. The performance of GeneDMRs package. 436 

 437 

 438 
Figure 4. (A) Manhattan plots for all genes. Note: The red line indicates the significant level of Q-439 

value < 0.01. (B) Methylation differences in all genes. Note: Plots showing red, purple, orange, 440 

yellow, blue and green colors indicate genes with a Q-value less than 0.01 and methylation difference 441 

(%) greater than 0, 5, 10, 15, 20 and 25, respectively. (C), (D) and (E) Percentages of all, hypo-442 

methylated and hyper-methylated DMGs in different chromosomes, respectively. 443 
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 445 

Figure 5. Circular graph of the global methylation levels. Note: From the outermost track to innermost 446 

circle, the circles indicate genome chromosomes (i.e., mouse), DMGs, gene densities, CpG island 447 

densities, CpG island shore densities and methylation levels. The densities and methylation levels 448 

were calculated by 1,000,000 base pair (bp) windows, i.e., Window_divide(windowbp = 1000000). 449 
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 451 

Figure 6. GO term enrichments. (A) GO terms without category. (B) GO terms with one category of 452 

hyper/hypo-methylated genes. (C) GO terms with two categories of hyper/hypo-methylated and 453 

up/down-regulated genes.  454 

 455 

 456 

 457 

 458 

 459 

 460 
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Supplementary materials 462 

Supplementary table 1. Statistical summary of data source. 463 

Supplementary figure 1. (A) Methylation patterns of all genes for different groups and gene bodies in 464 

different CpG island regions. (B) Methylation patterns of all DMGs for different groups and gene 465 

bodies in different CpG island regions. Note: P value is calculated by the methylation comparison 466 

between CpG island and CpG island shore with Student’s t-tests. 467 

Supplementary figure 2. (A) Manhattan plots for all cytosine sites. Note: The red line indicates the 468 

significant level of Q-value < 0.01. (B) Methylation differences in all cytosine sites. Note: Plots 469 

showing red, purple, orange, yellow, blue and green colors indicate genes with a Q-value less than 470 

0.01 and methylation difference (%) greater than 0, 5, 10, 15, 20 and 25, respectively. (C), (D) and 471 

(E) Percentages of all, hypo-methylated and hyper-methylated cytosine sites/DMCs in different 472 

chromosomes/gene bodies/CpG islands, respectively. 473 

Supplementary figure 3. (A) Heat map cluster for methylation levels of all DMGs (n = 246). (B) Heat 474 

map cluster for methylation levels of all DMC-based DMGs (n = 2022). Note: DMGs and DMC-475 

based DMGs were filter by Significant_filter(qvalue = 0.01, methdiff = 0.1). 476 

Supplementary file 1. Details of 20,837 genes with chromosomes, positions, methylation levels, read 477 

numbers, P-values, Q-values and methylation differences. 478 

Supplementary file 2. Details of 14,822 genes interacted by CpG island features with chromosomes, 479 

positions, methylation levels, read numbers, P-values, Q-values and methylation differences. 480 

Supplementary file 3. Details of 41,562 gene bodies interacted by CpG island features with 481 

chromosomes, positions, methylation levels, read numbers, P-values, Q-values and methylation 482 

differences. 483 

Supplementary file 4. Details of 634,001 cytosines with chromosomes, positions, methylation levels, 484 

read numbers, P-values, Q-values and methylation differences. 485 
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