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Abstract 13 

Single nucleus RNA-Seq (snRNA-Seq) methods are used as an alternative to single cell 14 

RNA-Seq methods, as they allow transcriptomic profiling of frozen tissue. However, it is 15 

unclear whether snRNA-Seq is able to detect cellular state in human tissue. Indeed, snRNA-16 

Seq analyses of human brain samples have failed to detect a consistent microglial activation 17 

signature in Alzheimer’s Disease. A comparison of microglia from single cells and single 18 

nuclei of four human subjects reveals that ~1% of genes is depleted in nuclei compared to 19 

whole cells. This small population contains 18% of genes previously implicated in microglial 20 

activation, including APOE, CST3, FTL, SPP1, and CD74. We confirm our findings across 21 

multiple previous single nucleus and single cell studies. Given the low sensitivity of snRNA-22 

Seq to this population of activation genes, we conclude that snRNA-Seq is not suited to 23 

detecting cellular activation in microglia in human disease. 24 
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Introduction 30 

 31 

 Single cell approaches allow us to study cell-to-cell heterogeneity (Habib et al., 2017), in 32 

brain material however, it is difficult to dissociate individual cells (Habib et al., 2017; Lake et 33 

al., 2016). This is further complicated if one is interested in studying the human brain, where 34 

often only frozen material is available. One alternative to study cellular transcriptional 35 

heterogeneity in brain tissue is single nucleus transcriptomics. Single nucleus RNA-Seq 36 

(snRNA-Seq) studies have shown concordance between single cell and single nucleus 37 

transcriptome profiles in mice (Bakken et al., 2018; Habib et al., 2017; Lake et al., 2017), but 38 

have limited the comparison to the identification of major cell types. It is unclear whether a 39 

snRNA-Seq approach is equally effective in identifying dynamic cellular substates such as 40 

microglial activation in human tissue.  41 

 42 

A recent breakthrough in the field of Alzheimer’s Disease (AD) using single cell RNA-Seq 43 

(scRNA-Seq) demonstrated clearly that microglia become activated in response to amyloid 44 

plaques in mouse models (Keren-Shaul et al., 2017). This response comprises a 45 

transcriptional switch to a state called Activation Response Microglia (ARM) (Sala Frigerio 46 

et al., 2019), or Disease-Associated Microglia (DAM, MGnD) (Keren-Shaul et al., 2017; 47 

Krasemann et al., 2017) . Ample evidence suggests that this microglial response is also 48 

relevant in human AD: microglia are believed to play a role in amyloid clearance (Efthymiou 49 

and Goate, 2017) and complement-mediated synapse loss (Fonseca et al., 2017), and 50 

histological studies have demonstrated considerable microgliosis around plaques in humans 51 

(McGeer et al., 1987). In addition, there is significant overlap between those genes involved 52 

in the microglial response, and genes within loci carrying AD genetic risk, as identified in 53 

Genome-Wide Association Studies (GWAS) (Efthymiou and Goate, 2017; Jansen et al., 54 

2019; Kunkle et al., 2019; Lambert et al., 2013; Marioni et al., 2018), for example, APOE, 55 

TREM2, APOC1, CD33 (Sala Frigerio et al., 2019). Most recently, the engrafting of human 56 

microglia into AD mouse models, followed by single cell RNA-sequencing, identified 66 57 

DAM genes relevant to human activation15, and a bulk RNA-Seq study of AD patients 58 

identified 64 DAM genes16. In stark contrast, a number of high-profile snRNA-Seq studies of 59 

microglia in human AD (Del-Aguila et al., 2019; Grubman et al., 2019; Mathys et al., 2019; 60 

Zhou et al., 2020) have not recovered a consistent microglial activation signature. A recent 61 
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cluster analysis by Mathys et al. of 48 AD patients and controls reported only 28 of 257 62 

orthologous activation genes in common with the DAM signature (Mathys et al., 2019). 63 

Differential expression analysis between AD and control patients revealed 22 genes 64 

upregulated in AD patients (5 overlapping with the DAM signature). Of these AD genes, only 65 

8 were also upregulated in another snRNA-Seq study of human AD (Grubman et al., 2019), 66 

and only 4 were also upregulated in another snRNA-Seq study of AD TREM2 variants (Zhou 67 

et al., 2020). The AD TREM2 variant study also only identified 11 DAM genes enriched in 68 

AD patients compared with controls. Del Aguila et al., analysing single nucleus 69 

transcriptomics from 3 AD patients, were unable to recapitulate an activation signature (Del-70 

Aguila et al., 2019). This has led to speculation that there is no such DAM signature in 71 

humans.  72 

 73 

Here we compared the performance of snRNA-Seq to scRNA-Seq for the analysis of 74 

microglia from human cortical biopsies, and demonstrated that technical limitations inherent 75 

to snRNA-Seq provide a more likely explanation for this lack of consistency in snRNA-Seq 76 

studies of AD. We confirmed our results using publicly-available data. 77 

 78 

Results 79 

 80 

snRNA-Seq recovers major cell types from human tissue, but not microglial state 81 

 82 

scRNA-Seq of FACS-sorted microglia was performed on temporal cortices of four human 83 

subjects who had undergone neocortical resection (see Supplementary Table 1 for subject 84 

data)(Mancuso et al., 2019). We generated snRNA-Seq libraries from these same subjects. 85 

Following quality filtering, PCA analysis and clustering of 37,060 nuclei, we identified 7 86 

major cell types (Supplementary Fig. 1a, b): oligodendrocytes (ODC, 34.0%), excitatory 87 

neurons (27.0%), interneurons (11.2%), oligodendrocyte precursors (OPC 9,4%), microglia 88 

(11.3%), astrocytes (6.0%), and endothelial cells (1.1%). We focus here on the microglial 89 

population, which was extracted from the main dataset. 90 

 91 
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We first checked whether clustering analysis of single nuclei could recover subpopulations of 92 

microglia comparable to the single cell approach. A comparison of single nucleus and single 93 

cell clustering suggested that we could only partially recover similar microglial subcluster 94 

structure using both methods (see Supplementary Text and Supplementary Fig. 1c-e).   95 

 96 

Gene expression profiling of human nuclei and cells 97 

 98 

To compare gene abundance in single microglial cells (14,823 cells) and nuclei (3,940 99 

nuclei), we performed a differential abundance analysis between cells and nuclei from the 4 100 

subjects (Fig. 1a). As demonstrated in previous studies (Bakken et al., 2018; Gerrits et al., 101 

2019; Habib et al., 2017; Lake et al., 2017), the majority of genes showed similar normalized 102 

abundance levels in cells and nuclei, with 98.6% of genes falling along the diagonal in Fig. 103 

1a (Pearson’s correlation coefficient = 0.92 , p < 2.2e-16). However, we identified a group of 104 

246 genes (1.1% of detected genes) that was less abundant in nuclei (fold change < -2, padj < 105 

0.05, blue in Fig. 1a). A second population of 68 genes (0.3%) was found to be more 106 

abundant in nuclei (fold change > 2, padj < 0.05, red in Fig. 1a). Additionally, 3,248 genes 107 

were exclusively detected in cells, and 5,068 genes exclusively detected in nuclei. 108 

 109 

The observed differences in abundance between cells and nuclei were consistent across all 110 

four subjects (Fig. 1b,  Supplementary Fig. 2a). Downsampling of cellular reads indicated 111 

that differences in abundance were not the result of different sequencing depths 112 

(Supplementary Fig. 2b,c). The full differential abundance results can be found in 113 

Supplementary Table 2.  114 

 115 

To assess the robustness of this finding, we used our nuclei-abundant genes and  cell-116 

abundant genes to compare enrichment across all pairs of 8 publicly-available single cell or 117 

single nucleus datasets (Supplementary Table 3, Fig. 1c). We consistently found our nuclei-118 

depleted (cell-abundant) genes to be depleted in other single nucleus microglia compared to 119 

single cell microglia (mean microglial Z-score of cell-abundant genes was 7.95 when 120 

comparing cells to nuclei, whereas cell-to-cell comparisons yielded a mean of 0.01, and 121 

nuclei-to-nuclei comparisons yielded a mean of 0.81, for Z-scores with padj < 0.05). We also 122 
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found our nuclei-abundant genes to be consistently enriched in other microglial nuclei 123 

compared with microglial cells (mean microglial Z-score -2.99 compared to -2.33 in nuclei 124 

against nuclei, no significant enrichment was found in cell-to-cell comparisons with padj < 125 

0.05). 126 

 127 

To assess functional enrichment among genes found to be more abundant in cells or nuclei, 128 

we ranked all genes according to log fold change (genes with a low abundance in nuclei had a 129 

negative log fold change) and performed a Gene Set Enrichment Analysis (GSEA,  130 

Subramanian et al., 2005) against gene markers from previous studies (Fig. 2a). For these 131 

analyses, a positive Normalised Enrichment Score (NES) represented nuclear enrichment, 132 

and a negative NES represented nuclear depletion. As expected, cytoplasmic RNA (defined 133 

by Bahar Halpern et al., 2015) was clearly enriched among genes found to be more abundant 134 

in cells (NES = -1.98, padj = 3.6e-05), as was mitochondrial mRNA (NES = -1.71, padj = 1.6e-135 

04, gene set extracted from Ensembl’s BioMart (Zerbino et al., 2018)). mRNA found to be 136 

more abundant in the nucleus by (Bahar Halpern et al., 2015) tended towards enrichment in 137 

nuclei but was not significant (NES = 0.87, padj = 8.2e-01), which is to be expected as 138 

scRNA-Seq captures both nuclear and cytoplasmic RNA. RNA of genes coding for ribosomal 139 

proteins were also depleted in nuclei (NES = -2.28, padj = 3.6e-05), as previously described1. 140 

Genes with shorter coding sequences (CDS) were depleted in nuclei (NES = -1.38, padj = 141 

2.5e-02), while longer CDS were enriched (NES = 2.07, padj = 2.1e-05), as already observed 142 

in earlier snRNA-Seq studies3. Finally, the genes defined by Gerrits (Gerrits et al., 2019) as 143 

cellular-enriched in a differential analysis of microglial cells versus (fresh) nuclei in humans 144 

were also enriched in cells in our data, showing a NES score of -2.15 (padj = 3.6e-05). 145 

 146 

To further characterise genes with higher or lower abundance in nuclei compared with cells, 147 

we performed GSEA, using Gene Ontology (GO) terms extracted from MSigDb (Liberzon et 148 

al., 2011) against the ranked log fold change. We selected the 100 terms with the highest 149 

NES, and the 100 terms with the lowest NES (padj < 0.05). Given the high overlap in terms, 150 

we clustered ontology terms based on the number of shared genes, in order to define “super” 151 

GO clusters (Supplementary Fig. 2e,f). We repeated the GSEA analysis using these super-152 

GO clusters (Fig. 2b, Supplementary Tables 4 and 5) and observed an enrichment of neuronal 153 

and synaptic terms in nuclei-abundant genes (also shown in the red population in Fig.1a). We 154 
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suspect a synaptosome contamination during centrifugation. This is supported by the 155 

enrichment of synaptosome genes (NES = 1.82, padj = 3.6e-05, Fig. 2a; Hafner et al., 2019) 156 

and ambient RNA – mRNA originating not from cells/nuclei but from free-floating 157 

transcripts in the solution (Macosko et al., 2015) –  (NES = 1.71, padj = 9.2e-05, Fig. 2a, 158 

Supplementary Fig. 2d) within the nucleus-abundant genes. The two gene sets share a strong 159 

overlap (Supplementary Table 6). These genes, although enriched in nuclei compared with 160 

cellular levels, still show low abundance (most of these genes show a normalised abundance 161 

of no more than 2 – Fig. 1a).  162 

 163 

Activation genes identified in mouse models of AD are depleted in human nuclei 164 

 165 

More interesting was the depletion of immune-related genes in nuclei (Fig. 2b). We therefore 166 

tested whether microglial activation genes7,8,17 were also depleted in nuclei (Fig. 2c, 167 

Supplementary Tables 5 and 6). Remarkably, we found a strong depletion of genes associated 168 

with mouse microglial activation: 45 of 257 orthologous DAM genes (Keren-Shaul et al., 169 

2017), (NES = -2.16, padj = 3.6e-05, Fig. 2c,d), and 28 of 200 orthologous ARM genes (Sala 170 

Frigerio et al., 2019) (NES = -2.01, padj = 3.6e-05, Fig. 2c,e), confirming that mouse 171 

microglial activation genes wereless abundant in nuclei. Genes upregulated by LPS 172 

stimulation in mice (Gerrits et al., 2019) also showed depletion in nuclei (NES = -1.86, padj = 173 

3.6e-05, Fig. 2c, Supplementary Figure 2g).    174 

 175 

Activation genes identified in mouse studies of AD are depleted in human nuclei 176 

 177 

We next examined genes that were identified as markers of the human microglial response to 178 

AD in the recent snRNA-Seq study by (Mathys et al., 2019) (Fig. 2c, f, g). Markers of this 179 

response (referred to by Mathys et al. as “Mic1”) had a NES score of -2.14 (padj = 3.6e-05), 180 

indicating that they were depleted in nuclei (Fig. 2c). The study identified 28 DAM genes as 181 

marker genes of the Mic1 response cluster (shown in orange in Fig. 2f); however the majority 182 

of DAM genes were not recovered using their snRNA-Seq protocol (purple in Fig. 2f). Fig. 183 

2g shows in green all the markers of the human activation cluster Mic1. Clearly, DAM genes 184 

and other Mic1 markers showed higher abundance in cells relative to nuclei (confirming the 185 
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NES score in Fig. 2c). Further, it seems likely that the recovered DAM genes (orange in Fig. 186 

2f) and Mic1 markers in general (green in Fig. 2g), were detected in the original snRNA-Seq 187 

experiment owing to their higher nuclear abundance compared with the nuclear abundance of 188 

other genes, including those DAM genes that were not recovered (purple in Fig. 2f).  189 

 190 

Discussion 191 

 192 

In summary, in our comparison of snRNA-Seq and scRNA-Seq of human microglia, we 193 

identified a set of genes (1.1% of the gene population) with at least 2-fold lower abundance in 194 

nuclei compared to their cellular levels (Fig. 1a-b). This small set is strongly enriched for 195 

genes previously associated with microglial activation in mouse models of AD, for example 196 

APOE, CST3, FTL, SPP1, and CD74 (Fig. 2b-e). Thus, while our work agrees with previous 197 

experiments demonstrating that snRNA-Seq can determine cell type (Supplementary Fig. 198 

1a,b), we argue that there are important limitations when studying cellular state in humans. 199 

This limitation is likely responsible for the difficulty in identifying consistent DAM- or 200 

ARM-like gene populations in the human brain in snRNA-Seq-based studies. We identified 201 

similar patterns of depletion in other single nucleus microglia (Fig. 2c).  202 

 203 

Examination of data from the Mathys et al. study of human nuclei in AD (Mathys et al., 204 

2019) shows that only genes with higher nuclear abundance levels were detected (Fig. 2f, g). 205 

This suggests that the discordance between human and mouse microglial activation is at least 206 

in part a consequence of limitations in the technology, rather than biological differences 207 

between the species as current snRNA-Seq suggest. Deeper sequencing (or increased sample 208 

sizes) may compensate for this lack of sensitivity. However, the sparse nature of snRNA-Seq 209 

and the high level of heterogeneity in human samples, combined with the fact that many 210 

relevant genes have a more than two-fold lower abundance in nuclei (e.g. APOE fold change 211 

= 2.57, CST3 fold change = 3.44, FTL fold change = 6.53), strongly suggests that this will 212 

remain a problem. 213 

 214 

While our data is (at least partially) in agreement (Fig. 2a, c) with Gerrits et al. (Gerrits et al., 215 

2019) which also compares nuclei with cells in human microglia, they did not report a 216 
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nuclear depletion of activation genes. We suspect the reason for this is (a) the low human 217 

sample number (n=2); (b) for the cluster analysis, Gerrits et al. scaled cell and nuclei 218 

expression to mitochondrial and ribosomal reads, essentially masking differences between 219 

nuclei and cells, and (c) for the differential expression analysis, Gerrits et al. compared fresh 220 

cells to fresh nuclei, as opposed to frozen nuclei. 221 

 222 

Alternative approaches may be more suitable for generating a brain atlas of human disease 223 

such as AD, particularly where we are limited to frozen material. In situ spatial 224 

transcriptomics (ST) negates issues related to tissue dissociation and cell or nucleus isolation 225 

(Ståhl et al., 2016), while at the same time retaining spatial information. This approach has 226 

recently been applied to examine transcriptomic changes and identify genes that are co-227 

expressed across multiple cell types in the amyloid plaque niche of the mouse brain (Chen et 228 

al., 2019). In humans, a similar methodology was recently applied to identify pathway 229 

dysregulation and regional differences in cellular states of the postmortem spinal tissue of 230 

Amyotrophic Lateral Sclerosis (ALS) patients states (Maniatis et al., 2019). Its application to 231 

AD patients may shed light on transcriptomic changes occurring in microglia which localize 232 

near plaques, and may also provide insights into the crosstalk occurring between 233 

neighbouring cells. 234 

 235 

In conclusion, while snRNA-Seq offers a viable alternative to scRNA-Seq for identification 236 

of cell types in tissue where cell dissociation is problematic, its utility for detecting cellular 237 

states in disease is limited.  238 

 239 

Data Availability 240 

 241 

Sequencing data from single microglial cells is available on GEO (accession number 242 

GSE137444). Sequencing data from single nuclei will be made available on GEO. 243 

 244 

Code Availability 245 

 246 
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Analysis of previous datasets was performed using the EWCE package (Skene and Grant, 247 

2016) for R and the MicroglialDepletion package 248 

(https://github.com/NathanSkene/MicroglialDepletion). 249 
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Isolation of human primary microglial cells 279 

Human primary microglial cells from the Mancuso et. al study (Mancuso et al., 2019) were 280 

used. Briefly, microglia were FAC-sorted from brain tissue samples resected from the lateral 281 

temporal neocortex of 4 epilepsy patients during neurosurgery. The full protocol is described 282 

in the original study. All procedures followed protocols approved by the local Ethical 283 

Committee (protocol number S61186). Sequencing was performed as described for the nuclei.  284 

 285 

Isolation of nuclei from human subjects 286 

Nuclei from frozen biopsy tissue were isolated as follows: brain tissue was sliced on dry ice, 287 

then homogenized manually (15 gentle strokes) with 1mL ice-cold  Homogenisation Buffer 288 

(HB) with 5µL Rnasin Plus. The homogenate was strained with a 70µm strainer and washed 289 

with 1.65mL to a final volume of 2.65mL. 2.65mL of Gradient medium was added (Vf = 290 

5.3mL). To isolate the nuclei, the sample was added to a 4mL 29% cushion using a P1000, 291 

and the weight adjusted with HB. The sample was centrifuged in a SW41Ti rotor at 7,700 292 

rpm for 30 minutes at 4°C. The supernatant was removed with a plastic Pasteur pipette, 293 

followed by removal of the lower supernatant with P200. Nuclei were resuspended in 200µL 294 

of resuspension buffer, transferred to a new tube, washed again with 100-200µL resuspension 295 

buffer, and pooled with the previous solution. Clumps were disrupted by pipetting with P200, 296 

then filtered through a Falcon tube with 0.35µm strainer. 9µL of sample was mixed with 1µL 297 

of propidium iodide (PI) stain, loaded onto a LUNA-FL slide and allowed to settle for 30 298 

seconds. We viewed nuclei with the LUNA-FL Automated cell counter to check numbers and 299 

shape.  300 

 301 

Single nucleus sequencing 302 

RNA sequencing was performed using the 10X Genomics Single Cell 3` Reagent Kit (v2) 303 

according to manufacturer protocols. cDNA libraries from fresh-frozen nuclei were 304 

sequenced on an Illumina HiSeq platform 4000. Supplementary Table 1 provides sequencing 305 

information per sample (for cells and nuclei).  306 

 307 

Single nucleus analysis 308 
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Alignment. Cellranger v2.1.1 was used to demultiplex and align sequencing output to a 309 

human reference genome (assembly hg38 build 95). We used a “pre-mRNA” database to 310 

align single nuclei to exons as well as introns (10x Genomics, n.d.). Following alignment, 311 

nuclei from one patient sample (RM101.1) were removed due to poor quality (low read and 312 

gene count). See Supplementary Table 1 for sample information. Unfiltered count matrices 313 

were used for downstream analysis.  314 

Extraction of microglial nuclei. Data was processed using the Seurat v3.0.2 package (Butler 315 

et al., 2018; Stuart et al., 2019) in R v3.6.1. For each patient, the count matrix was filtered to 316 

exclude nuclei with fewer than 100 genes. Counts were depth-normalised, scaled by 10,000 317 

and log-transformed. FindVariableFeatures was run using a variance-stabilising 318 

transformation (“vst”) to identify the 2,000 most variable genes in each sample. Data from 319 

the 4 patients was then integrated using Seurat’s FindIntegrationAnchors with default 320 

parameters, and IntegrateData using 40 principal components (PCs). The dataset consisted of 321 

37,060 nuclei, with a mean read depth of 4,305 counts per nucleus, and 1,791 genes per 322 

nucleus. Integrated data was scaled (default Seurat parameters). We ran a Principal 323 

Components Analysis (PCA), then calculated Uniform Manifold Approximation and 324 

Projection (UMAP) embeddings using 40 PCs. We identified clusters using Seurat’s 325 

FindNeighbours and FindClusters functions, again using 40 PCs. Based on abundance of 326 

known celltype markers, we assigned each cluster to a cell type. Microglial clusters were 327 

identified using known markers including P2RY12, CSF1R, CX3CR1, and extracted for 328 

downstream analysis.  329 

Pre-processing of microglial nuclei per patient. Microglia from each patient sample were 330 

analysed individually as described for all cell types above, with the following modifications: 331 

raw counts were filtered to remove genes and counts that were ± 3 standard deviations away 332 

from the median value. After normalization, doublets were identified using DoubletFinder 333 

v2.0.2 (McGinnis et al., 2019) using 40 PCs, assuming a 7.5% doublet rate. Following 334 

removal of doublets, filtering and Seurat normalization were performed again. Data from 335 

patients was then integrated and clusters were identified as above. We discarded small 336 

clusters than contained markers for microglia as well as other cell types. After pre-337 

processing, 3,927 nuclei remained, with a mean count depth of 1,295 and a mean gene count 338 

of 879 genes per nucleus. 339 

 340 
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Single cell analysis 341 

Full details of single cell processing are available in Mancuso et al.(Mancuso et al., 2019). 342 

Only cells from the four patients included in the single nucleus study were used here.  343 

 344 

Comparisons of single cells and single nuclei 345 

Cluster analysis (see supplementary text). In order to identify microglial cell states in the 346 

nuclei data we calculated gene markers for each cluster using Seurat’s FindMarkers function, 347 

selecting only markers with a positive fold change. Gene markers for cell clusters were 348 

extracted from the original Mancuso et al. study. Markers for nuclei and cells are available in 349 

Supplementary Table 7. For the analysis, we kept the top 40 significant markers (padj < 0.05) 350 

based on log fold change for the nuclear clusters and cellular clusters. For each nucleus, we 351 

calculated the mean abundance levels of each cell cluster marker set against the aggregated 352 

abundance of random control gene sets, using Seurat’s AddModuleScore function. This gave 353 

us the MS40 score for each marker set. We performed two-sided Fisher’s Exact tests with 354 

Benjamini Hochberg corrections to determine the overlap of cell cluster markers with nuclear 355 

cluster markers (selecting the top 40 markers for each set), using the union of all genes in the 356 

cell and nuclei datasets as a background (padj < 0.05 was considered significant).    357 

Differential Abundance. We discarded all non-microglial clusters (brain macrophages, 358 

neutrophils), leaving 3,721 nuclei and 14,435 cells. Differential abundance analysis was 359 

performed with the Seurat package, using a two-sided Wilcoxon rank sum test, with a 360 

Bonferroni correction for multiple testing. Genes with padj < 0.05 and fold change > |2| were 361 

considered significant. As Seurat applies a pseudocount of +1 to data before calculating log 362 

fold changes, a fold change of 2 corresponds to a log fold change of 0.63. Log fold changes 363 

calculated by Seurat were used for further analysis in gene set enrichment analysis. 364 

Scatter plots. We calculated the mean of the normalized abundance levels for cells and for 365 

nuclei, and log-transformed these values.  366 

Assessment of nuclear-enriched or cell-enriched gene sets in public scRNA-Seq and snRNA-367 

Seq datasets. We followed the methodology described in (Skene et al., 2018): genes that were 368 

significantly more abundant in nuclei or more abundant in cells (see “Differential abundance” 369 

methodology above) were used, creating two gene sets. 8 public datasets were reduced to 370 

contain six major cell types: pyramidal neurons, interneurons, astrocytes, interneurons, 371 

microglia and oligodendrocyte precursors. Within each dataset, for each gene in our gene sets, 372 
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we calculated a celltype specificity score using the EWCE R package (Github version 373 

committed July 29, 2019; Skene and Grant, 2016). For each pair of datasets, X and Y, we 374 

subtracted the mean microglial specificity score of Y from X. We then calculated the same 375 

scores for 10,000 random gene sets: the probability and z-score for the difference in specificity 376 

for the dendritic genes is calculated using these. Finally, the depletion z-score for each gene set 377 

was equal to: (mean subtracted microglial specificity score – bootstrapped mean) / 378 

(bootstrapped standard deviation). A large positive z-score thus indicated that the gene set was 379 

depleted in microglia of dataset Y relative to dataset X. Benjamini-Hochberg multiple testing 380 

corrections were applied. 381 

Public datasets. For the Karolinska Institutet (KI) dataset (Skene et al., 2018), we used S1 382 

pyramidal neurons. For the Zeisel 2018 dataset (Zeisel et al., 2018) we used all ACTE* cells 383 

as astrocytes, TEGLU* as pyramidal neurons, TEINH* as interneurons, OPC as 384 

oligodendrocyte precursors and MGL* as microglia. For the Saunders dataset (Saunders et 385 

al., 2018), we used all Neuron.Slc17a7 celltypes from the frontal cortex (FC), hippocampus 386 

(HC) or posterior cortex (PC) as pyramidal neurons; all Neuron.Gad1Gad2 cell types from 387 

FC, HC or PC as interneurons; Polydendrocye as OPCs; Astrocyte as astrocytes, and 388 

Microglia as microglia. The Lake datasets both came from a single publication (Lake et al., 389 

2018) which had data from frontal cortex, visual cortex and cerebellum. The cerebellum data 390 

was not used here. Data from frontal and visual cortices were analyzed separately. All other 391 

datasets - Dronc Human (Habib et al., 2017), Dronc Mouse (Habib et al., 2017), Allen 392 

Institute for Brain Science (AIBS) (Hodge et al., 2019), Tasic (Tasic et al., 2016) and Habib 393 

(Habib et al., 2016) – were used as described previously (Skene et al., 2018). Supplementary 394 

Table 3 lists all datasets. An R package is available for the analysis at  395 

https://github.com/NathanSkene/MicroglialDepletion. 396 

Functional analysis. We performed Gene Set Enrichment Analysis (GSEA) using the R 397 

package fgsea v1.8.0 (Sergushichev, 2016), using default parameters. Gene sets were mapped 398 

against a list of genes ranked according to fold change between cellular abundance and 399 

nuclear abundance. Gene ontology (GO) sets were obtained from MSigDB (Liberzon et al., 400 

2011; Subramanian et al., 2005). Other gene sets were obtained from previous studies (see 401 

Supplementary Table 6). padj < 0.05 (Benjamini-Hochberg correction) was considered 402 

significant. 403 

Clustering of gene ontology terms. GSEA of GO terms resulted in many functional categories 404 

with overlapping genes. In order to reduce this redundancy, the top and bottom 100 GO terms 405 
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according to normalized enrichment score (with padj < 0.05) were clustered as follows: a 406 

Jaccard index (the size of the intersection of the two datasets, divided by the size of the union 407 

of the two datasets, multiplied by 100) of the overlapping genes was calculated between each 408 

significant GO set. The resulting similarity matrix was converted to a dissimilarity matrix, 409 

and hierarchical clustering was performed on the matrix. We selected a k value of 16 to group 410 

the GO terms based on the hierarchical clustering (see Supplementary Table 2). Gene sets 411 

were merged, and each new “super” GO was assigned an annotation manually. GSEA 412 

analysis was performed on these super-GO gene sets as described above.  413 

Gene sets from previous studies. We extracted gene sets from previous studies for this 414 

analysis. A full list of gene sets is available in Supplementary Table 6. Where data was 415 

selected from mouse datasets, we converted the mouse gene to its human ortholog using R’s 416 

BioMaRt package v2.40.5 (Durinck et al., 2009), selecting only orthologs that displayed 1-to-417 

1 orthology. For the ARM gene set we selected the top 200 ARM genes based on log fold 418 

change (Sala Frigerio et al., 2019). For the Gerrits human gene set, we took the union of all 419 

genes that showed significant differential abundance between cells and nuclei (microglia) 420 

from donor 1 and donor 2 (Gerrits et al., 2019). For the LPS gene set, we took the union of all 421 

genes significantly upregulated in LPS in cells and in nuclei (microglia) from the Gerrits 422 

study (Gerrits et al., 2019).    423 

Downsampling of cell counts. To match cell sequencing depth to nucleus sequencing depth 424 

(see Supplementary Fig. 2b,c), we sampled without replacement the number of reads in the 425 

cells by a proportion of 0.32, using the downsampleMatrix function of the DropletUtils R 426 

package v1.4.3 (Griffiths et al., 2018; Lun et al., 2019). This resulted in a read depth of 1,304 427 

compared with the original read depth of 3,979 reads per cell.   428 

Definition of ambient RNA profile in nuclei. We extracted nuclei with less than 700 counts 429 

from the original unfiltered raw count matrix of all cell types (resulting in 2,414 nuclei with a 430 

mean read depth of 590), and summed the gene counts, under the assumption that these were 431 

empty drops rather than nuclei. We took the top 150 genes to represent the ambient RNA 432 

profile. The mean read depth of these genes in the empty drops was 121 reads per cell.   433 

 434 
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Figures 690 

 691 

Fig. 1: Gene abundance in single microglial cells versus single microglial nuclei of 692 

human cortical tissue. a. Mean normalised gene abundance in cells (x axis) and nuclei. (y 693 

axis). Red: genes with significantly higher abundance in nuclei (padj < 0.05, fold change > 2). 694 

Blue: genes that are significantly less abundance in nuclei (padj < 0.05, fold change < -2). 695 

Genes were normalized to read depth (per cell), scaled by 10,000 and log-transformed. 696 

MALAT1 (which had normalized abundance levels of 6.0 and 6.9 respectively in cells and 697 

nuclei) has been removed for visualisation purposes. FC = fold change. Full results are 698 

available in Supplementary Table 2. b. Scatterplot as in a), per patient (with the same genes 699 

highlighted). Supplementary Table 1 contains patient data. c. Each bar represents a 700 

comparison between two datasets (X versus Y), with the bootstrapped z-scores representing 701 

the extent to which cell-enriched genes (top panel) and nuclear-enriched genes (bottom panel) 702 

have lower specificity for microglia in dataset Y relative to that in dataset X. Larger z-scores 703 

indicate greater depletion of genes, and red bars indicate a statistically significant depletion 704 

(p.adj < 0.05, by bootstrapping). KI = Karolinska Institutet ; AIBS = Allen Institute for Brain 705 

Science. 706 
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Fig. 2: Functional analysis of genes that are enriched or depleted in nuclei. a. Gene Set 708 

Enrichment Analysis (GSEA) of gene sets related to cellular location and gene coding 709 

sequence length (CDS). Background genes were ranked according to log fold change of 710 

nuclei versus cells. Red: higher Normalised Enrichment Score (NES), i.e. more genes 711 

associated with nuclear enrichment ; blue: negative NES scores (depletion in nuclei). *** 712 

represents significance (padj < 0.0005). CDS = coding sequence. b. GSEA of super-Gene 713 

Ontology gene sets against ranked nucleus-cell log fold changes. Only top and bottom 714 

categories (according to NES) are shown. Colours as in a). GO = Gene Ontology ; SSU 715 

RRNA = small subunit ribosomal RNA ; INF = Interferon ; LC = leukocyte. c. GSEA of 716 

selected gene sets from previous studies of microglial activation, against fold change as in a). 717 

*** represents significance (padj < 0.0005). Mic0 = markers of microglial cluster 0 in human 718 

brain tissue ;  Mic1 = markers of microglial cluster 1 (response to plaques) defined by 719 

(Mathys et al., 2019) in human brain tissue. ARM = Activation Response Microglia (Sala 720 

Frigerio et al.8). DAM = Disease-Associated Microglia (Keren-Shaul et al.7) d. Scatterplot as 721 

in Fig. 1a), highlighting in green the DAM genes. A regression line for the highlighted genes 722 

is shown in green (slope = 0.60). e. Scatterplot as in d), highlighting in green the ARM genes. 723 

A regression line for the highlighted genes is shown in green (slope = 0.64). f. Scatterplot as 724 

in d), highlighting the DAM genes recovered in the study of human activation in AD (Mathys 725 

et al., 2019). Purple: DAM genes not recovered in their study ; orange: DAM genes recovered 726 

in their study. g. Scatterplot as in d), Green: human activation marker genes defined by 727 

(Mathys et al., 2019). A regression line for the highlighted genes is shown in green (slope = 728 

0.56). Gene sets are available in Supplementary Table 6.  729 
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Fig. S1: Clustering of single nuclei from human tissue. a. UMAP plot of 37,060 nuclei 730 

from cortical tissue of 4 neurosurgical patients, coloured according to cell type. Mg = 731 

Microglia ; OPC = oligodendrocyte precursor cells ; ODC = oligodendrocytes ; Astro = 732 

Astrocytes ; Endoth = Endothelial cells ; Exc. neurons = excitatory neurons. b. Violin plots 733 

show selected markers of the different cell types (data is normalised for count depth and log-734 

transformed). c. UMAP plot of 3,721 microglial nuclei from cortical tissue of 4 neurosurgical 735 

patients, coloured according to cluster number, after in silico extraction of microglia (based 736 

on markers such as P2RY12) and reclustering. d. Module scores for gene sets extracted from 737 

the original Mancuso et al. single cell microglia study (Mancuso et al., 2019). The top 40 738 

genes according to log fold change were selected for each gene set. e. Overlap of top 40 739 

marker genes from cellular clusters on the horizontal axis (Mancuso et al.) and nuclear 740 

clusters on the vertical axis. The blue scale represents the number of genes in common, 741 

numbers represent padj values. Vertical coloured bars correspond to the clusters shown in c). 742 

N.S. = not significant (padj > 0.05). MS40 = Module Score of top 40 gene markers ; CAM = 743 

macrophages ; CRM = cytokine response ; in vitro 1 = activation-like module (similar to in 744 

vitro macrophages) ; in vitro 2 = activation-like module (similar to in vitro monocytes) ; in 745 

vivo HM = homeostatic. Nuc = Nuclear clusters. Cluster markers are provided in 746 

Supplementary Table 7.  747 

 748 

  749 
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Fig. S2: Gene abundance in single microglial cells versus single microglial nuclei of 750 

human cortical tissue. a. Correlation matrix of gene abundance fold changes (single cell vs 751 

single nucleus abundance) between patients. b. Downsampling of reads: boxplots for 752 

numbers of reads (top) and numbers of genes (bottom) for single cells before downsampling, 753 

single cells after downsampling, and single nuclei. Boxplots show median, with 25% and 754 

75% quantiles. c. Scatterplot of mean gene abundance in cells against mean gene abundance 755 

in nuclei (as in Fig. 1a) after downsampling of reads in cells. Data is normalised to count 756 

depth and log-transformed. Points in red represent genes with significantly higher abundance 757 

in nuclei, while those in blue are significantly less abundant in nuclei (padj < 0.05, fold change 758 

> |2|). d. Scatter plot, as in Fig. 1a) showing the ambient mRNA in green (the same dataset 759 

was used in Fig. 2d). Ambient RNA is defined as the 150 most abundant genes in the 700 760 

nuclei with the lowest total read counts. e, f. Dendrograms of e. top 100 Gene Ontology (GO) 761 

terms enriched in nuclei, and f. top 100 GO terms depleted in nuclei. GO terms were 762 

clustered based on overlap between their gene sets. The colours show how GO terms were 763 

clustered. These clusters are described in Supplementary Table 4. g. Scatterplot as in Fig. 1a), 764 

highlighting in green genes that are upregulated during LPS stimulation in mice (Gerrits et 765 

al., 2019). A regression line for the highlighted genes is shown in green (slope = 0.78).   766 

 767 

  768 
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Supplementary Text: Clustering of microglial cells and nuclei in human cortical tissue 769 

 770 

We sequenced nuclei from cortical tissue of 4 neurosurgical patients. Single cell sequencing 771 

of FAC-sorted microglia was performed on cortical tissue of the same patients in a previous 772 

study(Mancuso et al., 2019). Subject data is available in Supplementary Table 1. Following 773 

quality filtering, data integration, PCA analysis and clustering of nuclei, we identified 7 main 774 

cell types in 37,060 nuclei: oligodendrocytes (ODC, 34.0%), excitatory neurons (27.0%), 775 

interneurons (11.3%), oligodendrocyte precursors (OPC 9,4%), microglia (11.3%), astrocytes 776 

(6.0%), and endothelial cells (1.1%). Supplementary Fig. 1a and Supplementary Fig. 1b show 777 

UMAP embeddings for all nuclei, coloured by cell type, and selected markers for each cell 778 

type, respectively.   779 

 780 

Microglial nuclei were isolated and reclustered. We identified 3,721 microglia (expressing 781 

MEF2A, P2RY12, CX3CR1, CSF1R), a macrophage cluster (enriched for CD163 and MRC1, 782 

67 nuclei), a neutrophil cluster (72 nuclei), and a cluster containing microglial as well as 783 

astrocytic markers (marked by GFAP, 68 nuclei). The neutrophil and ambiguous clusters 784 

were discarded, leaving only microglia and brain macrophages for downstream analysis 785 

(Supplementary Fig. 1c). Cluster markers are provided in Supplementary Table 6. 786 

 787 

In order to determine if nuclei could recover microglial clusters identified in cells, we 788 

selected the top 40 markers defined by Mancuso et al. (Mancuso et al., 2019) for each of the 789 

clusters they identified in the original analysis of microglial cells. For each nucleus, we 790 

scored each set of markers based on the abundance of those markers in the nucleus, using 791 

Seurat’s AddModuleScore function. These scores, referred to as MS40 scores, are highlighted 792 

in Supplementary Fig. 1d. Our nuclei were able to recover a cytokine response cluster 793 

(CRM), marked by CCL3, CCL4, and an activation-like cluster, equivalent to the “in vitro 794 

microglia” identified in the original study (original markers included APOC1, GPNMB, 795 

SPP1, APOE). Homeostatic markers appeared ubiquitously through-out the nuclei dataset, 796 

and we were not able to distinguish a reduction of these markers in the activation-like 797 

response cluster, as we would expect from transcriptomic profiling of microglia in mice 798 

(Keren-Shaul et al., 2017; Sala Frigerio et al., 2019). Finally, the CAM (macrophage) cluster 799 
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(CD163, MRC1), separated out from the bulk of the microglia, and was easily-recognisable 800 

based on its MS40 score. Cluster markers are provided in Supplementary Table 6.  801 

 802 

In order to quantify the differences between cells and nuclei in more detail, we examined the 803 

overlap of the top 40 markers between nuclei clusters and cell clusters (Supplementary Fig. 804 

1e). The cell macrophage (CAM) and cell cytokine (CRM) clusters showed the largest 805 

overlaps with Nuc1 and Nuc7 (27 and 24 of 40 markers, respectively). Other clusters only 806 

showed overlaps of between 1 and 5 genes. Cluster Nuc3 showed similar overlaps between 807 

“in vitro 1” and “in vitro 2” (5 genes). Cluster Nuc0 showed an overlap of 5 genes with “in 808 

vivo HM”, and cluster Nuc2 showed an overlap of 2 genes with “in vivo HM”. Cluster Nuc4 809 

showed similarities with the “in vitro 2” cluster, suggesting it could be a cluster of activation, 810 

however all 5 overlapping genes were mitochondrial genes. Cluster Nuc3 markers RPS12, 811 

TPT1, FTL, RPS18 and EEF1A1 also appeared as markers of “in vitro 2”. 812 

 813 

We performed similar analyses using more markers, however we found that introducing more 814 

markers resulted in nuclei markers overlapping with more than one cell cluster. We also 815 

noticed that introducing more markers resulted in overlaps between markers of the cellular 816 

clusters with each other. Selecting 40 markers allowed us to align cellular and nuclear 817 

clusters in an almost one-to-one fashion (see Supplementary Fig. 1e). 818 

 819 

Overall, cytokine clusters and macrophage clusters were recovered well using single nucleus 820 

methods, however, differences between other microglial subpopulations were not 821 

convincingly recovered.   822 

 823 
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