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Abstract 15 

Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the 16 

gold-standard technique to determine the full chemical diversity in biological samples. This approach 17 

still has many limitations, however; notably, the difficulty of estimating accurately the number of 18 

unique metabolites being profiled among the thousands of MS ion signals arising from 19 

chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-20 

FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that 21 

implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of 22 

unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked with 23 

respect to database chosen by the user, which improves identification accuracy. Application of MS-24 

CleanR to the analysis of Arabidopsis thaliana grown in three different conditions improved class 25 

separation resulting from multivariate data analysis and lead to annotation of 75% of the final features. 26 

The full workflow was applied to metabolomic profiles from three strains of the leguminous plant 27 

Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces 28 
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euteiches; a group of glycosylated triterpenoids overrepresented in resistant lines were identified as 29 

candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny 30 

interface for intuitive use by end-users (available at: https://github.com/eMetaboHUB/MS-CleanR). 31 

Keywords: Untargeted metabolomics, LC-MS, annotation, Arabidopsis thaliana, Medicago 32 

truncatula, MS-DIAL, MS-FINDER. 33 

Untargeted, or discovery-based metabolomics has become an essential tool in all biological sciences 34 

including clinical research1,2, plant science3 and natural product mining4, among many other 35 

applications. Living organisms are estimated to contain more than one million distinct compounds5. 36 

According to the MetaboLights database (DB), 80% of untargeted metabolomics workflows rely on 37 

liquid chromatography-mass spectrometry (LC-MS) (https://www.ebi.ac.uk/metabolights/). Due to its 38 

broad coverage of metabolites, LC-MS based metabolomics has become the preferred tool to detect 39 

several hundreds of compounds encountered in a complex biological material. Many software 40 

programs have been developed to turn features (m/z × retention time (RT) pairs) extracted from LC-41 

MS raw data into chromatographic peak lists, including web-based interfaces such as XCMS6, 42 

Workflow4Metabolomics7, local GUI with MZmine8 and MS-DIAL9. Despite significant progress in 43 

feature extraction, it remains a challenge to estimate accurately the number of unique metabolites in a 44 

crude extract from the profile of one LC-MS experiment10. On average, untargeted LC-MS profiling 45 

yields hundred to thousands of features, which include isotopes, contaminants, adducts, dimers, 46 

multimers and heteromeric complexes, and artifacts. Patti and colleagues11 used the term ‘degenerate 47 

features’ to describe multiple signals derived from the same metabolite; they demonstrated that feature 48 

inflation is highly underestimated and insufficiently addressed in untargeted LC-MS based 49 

metabolomics. This may have important consequences by increasing both the false annotation rate and 50 

the number of ‘unknown’ features arising from wrongly attributed signals. This is especially true when 51 

the annotation process is based on in silico modeling of fragmentation patterns, as are Sirius12, MS-52 

FINDER13, MetFrag14 or CFM-ID15, since tandem mass spectrometry (MS/MS) spectra are processed 53 

without taking into account feature relationships. Thus, most untargeted metabolomics studies focus 54 

on a subset of identified metabolites for which spectral data are easily accessible from public 55 

repositories or in-house DBs.  56 

A few packages have been developed to deal with feature degeneracy: CAMERA16 is based on adduct 57 

relationships; RAMClust17 correlates features in multiple samples; MS-FLO18 uses Pearson’s 58 

correlation and peak height similarity to identify adducts, duplicate peaks and isotope features of the 59 

main monoisotopic ion, and MZunity19 which confronts adducts or neutral loss index to decipher 60 

relationship among the acquired high resolution pseudo-molecular ions list. Deep-learning approaches 61 

have also been developed based on LC-MS spectral peak shape filtering20,21. All these packages focus 62 

on a single type of degeneracy, however, and they are difficult to implement in a unified workflow. 63 
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Among the most advanced and versatile methods developed recently for untargeted metabolomics is 64 

the tandem MS-DIAL-MS-FINDER suite. MS-DIAL is an all-in-one program for metabolomics and 65 

lipidomics that relies on mass spectral libraries such as NIST 14 and MassBank of North America 66 

(MoNA) for metabolite annotation. MS-FINDER is a partner program of MS-DIAL, in which 67 

unknown structures can be elucidated from MS/MS spectra by the hydrogen rearrangement rules-68 

based scoring system. Here, we describe a third tool in this suite, called MS-CleanR, to remove 69 

degenerate features and improve annotation rates from untargeted LC-MS-based metabolomics data. 70 

Starting from the aligned peak list files determined by the MS-DIAL deconvolution process, our R 71 

package firstly removes noise signals by using generic filters. In the second step, the package groups 72 

the ion features based on the results of the MS-DIAL peak character estimation algorithm22 providing 73 

the ion linkages of adducts, correlated chromatograms, putative ion source fragments candidates and 74 

similar metabolite profiles among samples. In the third step, clustered ion features are merged between 75 

positive ionization (PI) and negative ionization (NI) modes and the adduct relationships are corrected 76 

accordingly. The cleaned-up feature list can be exported to MS-FINDER for annotation purposes. 77 

Finally, the package merges the MS-FINDER annotation output with the cleaned-up peak list and 78 

includes the possibility to prioritize identification according to the DBs used for MS-FINDER 79 

interrogation. The whole MS-CleanR workflow is easily accessible through a Shiny user interface 80 

(Figure 1) and it is available as open source code. 81 

 82 

METHODS 83 

Standards  84 

Individual solutions of natural products (NPs) compounds (Metasci, Toronto, Canada) were prepared 85 

at 100 µg/mL in H2O or MeOH according to the supplier’s recommendations. Mixes of 10 compounds 86 

were prepared by pooling 10 µL of each individual solution to a final concentration of 10 µg/mL. We 87 

selected 51 NPs eluting from 2-18 minutes as a first test mixture to construct DB-level 1 annotation. 88 

IROA Mass Spectrometry Library of Standards (Sigma-Aldrich, Darmstadt, Germany) in 96-well 89 

plate format (5 µg per well) were used. The contents of each well were dissolved in 50 µL of solvent 90 

(5% MeOH or MeOH/CH3Cl/H2O 1:1:0.3), as recommended by the manufacturer, to obtain a 91 

concentration of 100 µg/mL. Each plate was then sonicated for 5 minutes. Mixes of up to 12 92 

compounds with distinct exact masses were obtained by pooling 20 µL from each well. The final 93 

concentration in each mix was 8 µg/mL. We selected 167 standards eluting from 2-18 minutes as a 94 

second test mixture. 95 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.09.033308doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033308
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Plant material 96 

A. thaliana (wild-type Col-O) were grown either in hydroponic culture, in plastic pots (high density), 97 

or in Jiffy® pots. For hydroponic culture, seeds were sown in 96 plates in MS liquid medium + 1% 98 

sucrose. After 11 days, the medium was replaced by MS medium. After 14 days, seedlings were 99 

collected and gently dried on absorbent paper. For culture in plastic pots, seeds were sown densely on 100 

soil in plastic pots and cultivated in a growth chamber with a cycle of 16h light-8h dark, at 22°C in the 101 

light and 20°C in the dark, and at 80% relative humidity. After 21 days, the aerial parts of the plants 102 

were collected. For culture in Jiffy® pots, three seeds were sown per pot and cultivated in a growth 103 

chamber, as for the plants in plastic pots. After 32 days, rosette leaves were harvested. For each 104 

growing condition 200 mg of plant material per sample were collected, placed in a FastPrep tube (MP 105 

Biomedicals Lysing Matrix D, Illkirch, France) and frozen in liquid nitrogen. For extraction, each 106 

sample was ground with a Mixer Mill MM 400 grinder (Retsh, Eragny sur Oise, France) by applying 107 

two cycles of 30 seconds at 30 m/sec. Biphasic sample extraction was adapted from Salem et al. 108 

201623 by adding two cycles of 20 seconds at 6 m/sec. in the FastPrep-24TM benchtop homogenizer 109 

(MP BiomedicalsTM, Illkirch, France) in 1 mL M1 (methyl tert-butyl ether/methanol, 3:1, v:v) 110 

extraction solution. After grinding, FastPrep tube was transfered in glass tube and 5.7 mL of M1 was 111 

added with 4.3 mL of M2 (water:methanol, 3:1, v:v) and vortexed for 1 min. The phases were 112 

separated by centrifugation at 4°C and 4000 rpm for 5 minutes. The aqueous phases (400 µL) were 113 

evaporated under nitrogen and the extracts were resuspended in 750 µL MeOH:H2O (1:1). Samples 114 

were filtered through 0.2 µm PTFE filters (Thermo Scientific™) and transferred to vials. An 115 

extraction blank (without plant material) and a QC (Quality Control) sample (aliquot of all samples) 116 

were also prepared to validate the LC-MS profiles.  117 

Seeds of Medicago truncatula strains A17, DZA45.5 and F83005.5 (called F83 hereafter) were 118 

scarified with sand paper, sterilized in 3.2% bleach for 2 min then rinsed in water four times before 119 

soaking in water for 20 min. Seeds were placed on water agar and placed at 4°C for 4 days then for 120 

one night at 25°C to germinate. Germinated seedlings were transferred onto M medium24 then placed 121 

in a growth chamber at 22°C and 50% humidity with cycles of 16h light-8h dark for 14 days. The 122 

roots were ground with a Mixer Mill MM 400 grinder by applying two cycles of 30 seconds at 300 Hz. 123 

One hundred milligrams of ground tissue were placed in 2 mL FastPrep tubes containing 1.4 mm 124 

ceramic spheres (Lysing Matrix D) and extracted with 1 mL of acidified aqueous solution of methanol 125 

(MeOH/H2O/HCOOH, 80:19:1). After two cycles of 20 seconds at 6 m/sec. in the FastPrep-24TM (MP 126 

BiomedicalsTM), the samples were centrifuged at 4°C and 10 000 rpm for 10 minutes. The supernatants 127 

were transferred into vials. An extraction blank and QC (Quality Control) were also done for 128 

extraction and analytical validation.  129 
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UHPLC-HRMS profiling 130 

Ultra High Performance Liquid Chromatography-High Resolution MS (UHPLC-HRMS) analyses 131 

were performed on a Q Exactive Plus quadrupole mass spectrometer, equipped with a heated 132 

electrospray probe (HESI II) coupled to an U-HPLC Ultimate 3000 RSLC system (Thermo Fisher 133 

Scientific, Hemel Hempstead, UK). Samples were separated on a Luna Omega Polar C18 column 134 

(150×2.1mm i.d., 1.6μm, Phenomenex, Sartrouville, France) equipped with a guard column. The 135 

mobile phase A (MPA) was water with 0.05% formic acid (FA) and mobile phase B (MPB) was 136 

acetonitrile with 0.05% FA. The solvent gradient was: 0 min, 100% MPA; 1 min 100% MPA; 22 min, 137 

100% MPB; 25 min, 100% MPB, 25.5 min, 100% MPA; 28 min, 100% MPA. The flow rate was 138 

0.3 mL/min, the column temperature was set to 40°C, the autosampler temperature was set to 10°C 139 

and injection volume fixed to 2 μL for standard mixes and plant extracts. Mass detection was 140 

performed in positive ionization (PI) and negative ionization (NI) modes at 30 000 resolving power 141 

[full width at half maximum (FWHM) at 400 m/z] for MS1 and 17 500 for MS2 with an automatic 142 

gain control (AGC) target of 1e5. Ionization spray voltages were set to 3.5 kV (for PI) and 2.5 kV (for 143 

NI) and the capillary temperature was set to 256°C for both modes. The mass scanning range was m/z 144 

70-1050 Da for standards and m/z 100-1500 Da for plant extracts. Each full MS scan was followed by 145 

data-dependent acquisition of MS/MS data for the six most intense ions. 146 

Data processing 147 

LC-MS data were first processed with MS-DIAL version 4.12. MS1 and MS2 tolerances were set to 148 

0.01 and 0.05 Da, respectively, in centroid mode for each dataset. Peaks were aligned on a quality 149 

control (QC) reference file with a RT tolerance of 0.1 min and a mass tolerance of 0.015 Da. 150 

Minimum peak height was set to 70% below the observed total ion chromatogram (TIC) baseline for a 151 

blank injection. MS-DIAL data was cleaned with MS-CleanR by selecting all filters with a minimum 152 

blank ratio set to 0.8, a maximum relative standard deviation (RSD) set to 30 and a relative mass 153 

defect (RMD) ranging from 50-3 000. The maximum mass difference for feature relationships 154 

detection was set to 0.005 Da and maximum RT difference was set to 0.025 min. The Pearson 155 

correlation links were considered only for biological datasets with correlation ≥0.8 and statistically 156 

significant α = 0.05. Two peaks were kept in each cluster: the most intense and the most connected. 157 

The kept features were annotated with MS-FINDER version 3.26. The MS1 and MS2 tolerances were 158 

set to 5 and 15 ppm, respectively. Formula finder were exclusively processed with C, H, O, N, P and S 159 

atoms. DBs based on the genus and the family of the plant species (Table S3, Table S4, Table S7, 160 

Table S8) being investigated were constituted with the dictionary of natural product (DNP-CRC press, 161 

DNP on DVD v. 28.2) and the internal generic databases used were KNApSAcK, PlantCyc, HMDB, 162 

LipidMaps, NANPDB and UNPD. Annotation prioritization was done by ranking genus DB followed 163 

by Family DB and then generic DB (internal DB from MS-FINDER).  164 
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Statistical analysis  165 

Statistical analyses were done by using SIMCA-P+ (version 15.0.2, Umerics, Umea, Sweden). All 166 

data were scaled by unit variance (UV) scaling before multivariate analysis. The orthogonal projection 167 

to latent structure using discriminant analysis (OPLS-DA) was used to separate data according to A. 168 

thaliana growing conditions. The OPLS regression model used for the Medicago datasets was tuned 169 

with line resistance as the Y input: the following resistance indices 0, 1 and 2 were respectively 170 

indicated for the F83, A17 and DZA45.5 strains. Coefficient scores were used to rank variables 171 

according to their class biomarker: a high coefficient indicating a strong correlation with resistance 172 

traits. 173 

Mass spectral similarity network 174 

The .msp NI and metadata files generated at the end of the MS-CleanR workflow were imported into 175 

MetGem25 (version 1.2.2). A mass spectral similarity network was created with a cosine score cut off 176 

fixed at 0.65, a maximum of ten connections between nodes and at least four matched peaks. The 177 

resulting network was then imported into Cytoscape26 (version 3.7.2) to tune visualization. Nodes 178 

were thus colored according to their annotated chemical classes and their sizes were indicated relative 179 

to the OPLS coefficient score. Edge width was deepened according to their cosine value. 180 

RESULTS AND DISCUSSION 181 

MS-CleanR Workflow and Implementation  182 

Insert Figure 1 183 

Step 1: generic filters. We first applied several generic filters to pre-clean the feature table of noise. 184 

Starting from the alignment result file exported from MS-DIAL, the ratio between the mean of blank 185 

samples and quality control (QC) samples (pool of all extracts) was calculated. All features exceeding 186 

the user-defined threshold for this ‘blank ratio’ were removed. The ratio was calculated by using the 187 

height of each feature because the normalized height can produce an increase in some blank signals. 188 

This filter is also available in MS-DIAL, but MS-CleanR provides additional options for filtering ion 189 

features. A second filter, called ‘ghost blank peaks’, is based on the high background ion drift we 190 

observed in blank injections and in other samples that had a significant retention time (RT) shift 191 

(Figure S1). These peaks had a low ratio of blank to sample class that excluded them from the usual 192 

blank filtering approach. A third generic filter is based on an ‘unusual mass decimal’. When singly 193 

charged ions of basic organic molecules containing carbon, hydrogen, oxygen, and nitrogen are 194 

considered, ion features with a value of more than eight at the first decimal place of m/z (mass to 195 

charge ratio) are generally considered to be artifacts: this filter option can be disabled when working 196 

with exceptions (e.g., phosphorylated compounds). A fourth generic filtering approach is the ‘relative 197 
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standard deviation’ (RSD) among sample classes. A high RSD value highlights poor ionization 198 

repeatability. In our implementation, the RSD value was computed for each sample class and features 199 

were removed if the RSD values in all sample classes exceeded a user-defined threshold. This 200 

approach avoids incorrect feature deletions: in the case of large sample cohorts, for example, repeated 201 

QC injections usually result in large RSDs because of a high dilution effect in the samples. Finally, we 202 

introduced a fifth filter based on the ‘relative mass defect’ (RMD) calculation. The RMD is calculated 203 

in ppm as [(mass defect/measured monoisotopic mass) × 106)]. It can be used to filter compound 204 

classes23 and it should also be useful to remove artifactual signals. Based on all compounds exported 205 

from the Dictionary of Natural Products (DNP; available on DVD v.28.2 from CRC Press), we found 206 

that 95% of natural products (NP)s had RMD values of 156.5-969.6 ppm. When this window was 207 

extended to 99% of NPs, the range of RMD values was 52.05-2902.9 ppm. 208 

Step 2: Feature clustering. To improve further the filtering process, we implemented a features 209 

clustering function to be applied to those features remaining after the generic-based filtering described 210 

above. The main goal of this step is to select the features arising from a unique metabolite signal 211 

among each cluster by using the multi-level optimization of modularity algorithm28. Feature clustering 212 

is first based on the peak character estimation algorithm computed by MS-DIAL, which aggregates 213 

several possible relationships at the same RT range: ion correlation among samples, MS/MS fragments 214 

in higher m/z, possible adducts and chromatogram correlations22. Additionally, we also implemented 215 

an index of possible neutral loss and a calculation of dimers/heteromers to tag clustered feature 216 

relationships. Optionally, Pearson’s correlation between features located in the same RT window 217 

(typically of 0.025 minutes) can be computed, the strong correlation links being then considered 218 

during the clustering process. If the study involves the same set of samples acquired both in PI and NI 219 

mode, the MScombine29 tool, incorporated into MS-CleanR, can be used to detect possible links 220 

between positive and negative features appearing in the same RT window. This process corrects 221 

misidentified relationships to consider observed m/z differences acquired between both ion modes. 222 

The package can only treat PI or NI data independently, however. We observed that a unique 223 

metabolite signal in each cluster can be selected by: a PI/NI adduct link (e.g. [M+H]+/[M-H]-, 224 

[M+Na]+/[M+FA-H]-; the most intense peak of the cluster, and the peak with the most relationships to 225 

other features (i.e. the highest ‘degree’ of connection). Among each cluster, one to n features (tunable 226 

by the user) can be selected for further annotation: the most intense, the most connected or both. The 227 

other features are removed from consideration. 228 

Step 3: Feature annotation. After the above filtering steps, only a portion of the original features are 229 

exported to MS-FINDER, which greatly accelerate the processing time. This software computes 230 

feature annotations by querying internal DBs or imported DBs. Several DBs can be used to annotate a 231 
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single set of features by exporting the results for each DB used. Additionally, a “compound level” 232 

column can be added into external DBs to further prioritize annotation within each DB used.  233 

Step 4: Annotated peak list. This final step selects for each feature the best annotation among match 234 

possibilities exported from MS-FINDER. In the case of multiple DB interrogation, the workflow 235 

allows compound annotations to be ranked based on MS-FINDER score only or by prioritizing certain 236 

DBs, depending on user choices. This latter function can greatly improve the annotation accuracy 237 

particularly when dealing with taxonomically defined extracts30. MS-CleanR can also prioritize 238 

compounds based on “Compound_level” column tuned by the user in external DBs used for MS-239 

FINDER annotation. Finally, the resulting annotated peaks list can be converted into an .msp format 240 

for mass spectral similarity networking as in GNPS31 or MetGem25 (for the detailed mathematics of the 241 

workflow, see Supporting Information Text 1). 242 

Workflow benchmarking on pooled standards 243 

To validate our approach, we benchmarked the MS-CleanR workflow by using a mixture of 51 NPs 244 

standards profiled in NI and PI modes with a reverse phase column and a 25 minutes gradient. The 245 

resulting data were compiled in an in-house DB comprising RT, HRMS and MS/MS fragmentation 246 

patterns (DB-level 1 annotation according to the Metabolomics Standards Initiative-MSI32). To test 247 

whether the workflow retained features arising from unique metabolites and removed useless signals, 248 

we compared the results obtained by using a combination of MS-DIAL and MS-FINDER and DB-249 

level 1 annotation to those obtained by using MS-CleanR. For the latter, we created another DB of the 250 

same metabolite set encompassing accurate mass, molecular formula and SMILES strings (DB-level 2 251 

annotation according to the MSI) to reproduce real-case annotation processing. All five generic filters 252 

were used and the two most intense and two most connected features within each cluster were 253 

exported for annotation by using the ‘formula prediction and structure elucidation by in silico 254 

fragmentation tool’ in MS-FINDER (Table S1).  255 

Insert figure 2 256 

As anticipated, we observed significant feature inflation in this mixture of 51 NP standards: 869 257 

signals from PI and NI acquisition modes were detected (Figure 2). This approximately 95% feature 258 

inflation is consistent with a previous report of 10 000-30 000 features detected after injection of 900 259 

unique metabolites33 and with a study that used isotope labeling as a feature filtering approach11. Blank 260 

ratio filtering deleted 50% of the features and the other generic filters described above removed 15% 261 

of the remaining ones. Feature clustering resulted in a further reduction of 18%, resulting in a total of 262 

115 features retained. Overall, the workflow filtered out 80% of all detected signals. By using this 263 

approach, there was a remarkable improvement in the annotation rate (unique metabolites/detected 264 
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features) from 5% to 45% (Figure 2). Consequently, 21 metabolites displayed an isolated mz-RT 265 

signal whereas the others were grouped in clusters of two to eleven features (Figure 3A). Overall, 50 266 

metabolites were annotated, 44 of which matched perfectly with level 1 annotation DB (Table S1). 267 

The remaining ones were annotated as an isobaric/isomeric match because of prioritization of highest 268 

MS-FINDER scoring value (e.g., 4-Aminosalicylic acid and 5-Aminosalicylic acid). In the case of 269 

gramine, for example, the major pseudo-molecular ion had an m/z value of 130.06493 at RT 7.75 270 

minutes (Figure 3B). By applying feature clustering, we detected an in-source fragment corresponding 271 

to the neutral loss of the dimethylamine group at m/z 130.0649. This feature was removed and only the 272 

signal at m/z 103.054 and m/z 175.1228 were exported for annotation. Since m/z 175.1228 was the 273 

most intense peak, it was retained and annotated as gramine (∆ppm=0.4) with a perfect match. The 274 

peak detected at RT 11.47 minutes was grouped in a cluster of 11 features, mainly related to similar 275 

MS/MS spectra. In this case, the PI and NI clusters were merged according to their detected adduct 276 

([M+H]+ and [M-H]-, respectively) and the feature with highest MS-Finder annotation score was 277 

retained in the final peak list and identified as neohesperidin dihydrochalcone (∆ppm=0.4). 278 

Formononetin displayed complex adduct relationships in PI and NI modes and successive features 279 

with higher mz’s MS/MS fragment of formononetin in PI mode. The merging of PI and NI modes 280 

allowed the main feature in this complex cluster to be selected and provided a perfect match with level 281 

1 annotation DB. The only mismatch was encountered for phloridzin due to the neutral loss of a 282 

glucose moiety in both in PI and NI modes. Only genine was detected in PI mode, resulting in 283 

selection of this signal in the final peak list. 284 

Insert Figure 3 285 

To model more closely a real biological sample, we standardized our workflow by using a mixture of 286 

167 standard compounds from the IROA Mass Spectrometry library (Table S2). As above, we found 287 

significant feature inflation: 6732 signals after concatenation of PI and NI datasets (Figure S2). Unlike 288 

the standardization with NPs, above, the generic filters removed only 15% of features. The most 289 

important improvement was obtained by feature clustering, which filtered out 90% of the detected 290 

features leaving 611 signals. Among these, 127 features were identified with a perfect match 291 

compared to Level-1 annotation DB and 21 were annotated as an isomeric match (Table S2). Twelve 292 

features were removed due to their co-elution with other compounds and four had a significant RT 293 

shift due to their poor peak shapes. The final three compounds were not annotated because of neutral 294 

loss of the same moiety in PI and NI modes, which led to their misidentification. Overall, the 295 

annotation rate with this workflow was 27% (Figure S2) and 90% of unique metabolites were retained. 296 
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Evaluation of MS-CleanR on biological samples 297 

To evaluate the utility of the workflow on a real dataset, we set up an experiment to compare 298 

metabolome changes in Arabidopsis thaliana plants due to different culture conditions and age of the 299 

plants. Three cultural conditions were assessed (low density growth in Jiffy® pots for 32 days, high 300 

density growth in plastic pots for 21 days and hydroponic culture in liquid MS medium for 14 days) 301 

and 10 biological replicates were analyzed per culture condition. At harvest time, 4 leaves (2 302 

cotyledons and 2 leaves) were observed for hydroponic plants, the densely seeding plants showed not 303 

more than two small, but completed, developed leaves, while the jiffy growing plants harbored large 304 

and well developed rosette leaves. Extracts were made from the aerial parts of the plants grown in pots 305 

and from the roots and green tissues of plants in hydroponic culture, and the extracts were profiled by 306 

LC-MS. The datasets acquired in PI and NI modes were treated by using the MS-CleanR workflow 307 

with default parameters (see Methods). Sequential principal component analysis (PCA) was used to 308 

provide an unsupervised overview of the LC-MS fingerprints resulting from the generic filters and 309 

feature clustering (Figure 4). The PCA score plot of raw PI and NI mode data displayed 51% of total 310 

explained variance using the first two principal components. QC samples appeared in the center of the 311 

PCA score plot, demonstrating the reproducibility of the LC-MS analysis. As expected, the youngest 312 

plants growing hydroponically were completely separate on the first principal component (PC1) axis 313 

from the older plants growing in pots. The plants growing in Jiffy pots and plastic pots could not be 314 

distinguished in the raw dataset. After the generic filter step, the data from these latter two conditions 315 

formed more distinct clusters, the total explained variance was slightly improved at 58% and the 316 

number of features decreased by 35% (Figure 4). After the feature clustering step, the number of 317 

features was reduced by 80%. All datasets were annotated with in-lab DB (level 1) and with MS-318 

FINDER (level 2) by reference to external DBs of Arabidopsis (Table S3) and Brassicaceae 319 

compounds (Table S4) and an internal MS-FINDER plant-related DB (comprising PlantCyc, 320 

KNApSAcK, HMDB, LIPID MAPS and UNPD). In the raw PI and NI dataset exported from MS-321 

DIAL (1163 features), 42% of all features were annotated, 26% of them appeared in the Arabidopsis 322 

DB, 2% in the Brassicaceae DB,7% in the internal MS-FINDER DBs and 6% with in-lab DB (Figure 323 

4); 58% of all features were unidentified. The generic filters removed 15% of all features and 324 

increased the annotation rate to 59%. Feature clustering drastically reduced the number of features 325 

(254 m/z × RT pairs) and increased the annotation rate to 73%. Using annotation DB prioritization, 326 

53% of retained features were annotated in Arabidopsis genus and 13% at level 1 with in-lab DB, only 327 

27% remained unidentified. Orthogonal projections to latent structures discriminant analysis (OPLS-328 

DA) of the most highly ranked features identified three amino acids (oxoproline, citrulline and 329 

glutamine) that discriminate between growth in pots and hydroponic growth (Table S5). This may be 330 

related to differences in nitrogen availability in the hydroponics medium and in potting soil.  331 

Insert Figure 4 332 
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 333 

Metabolic profiling with MS-CleanR  334 

Untargeted metabolomic profiling has emerged as a method of choice to identify metabolic markers 335 

associated with beneficial traits in plants, such as resistance to biotic stresses. In this context, the MS-336 

CleanR workflow could greatly improve the results of untargeted metabolomics. To illustrate this 337 

point, we used as a model the legume Medicago truncatula and the pathogenic oomycete 338 

Aphanomyces euteiches, a major pathogen of several legume species34. Genome-wide association 339 

studies of 179 lines of M. truncatula have identified major loci involved in the resistance of the plant 340 

to A. euteiches. Moreover, genes encoding enzymes involved in the synthesis of antimicrobial 341 

metabolites are expressed in uninfected plants35. This suggests that antimicrobial metabolites in 342 

uninfected plants may be useful biomarkers with which to select legumes lines resistant to A. 343 

euteiches. To identify these metabolites, we applied the MS-CleanR workflow to analyze the 344 

metabolomes of roots from three different strains of M. truncatula that have different levels of 345 

resistance to A. euteiches infection: strain DZA45.5 has the highest level of resistance, A17 an 346 

intermediate level, and F83 is the most susceptible36. These three strains were analyzed by LC-MS in 347 

NI mode and potential biomarkers were highlighted by multivariate data analysis (Table S6). The 348 

metabolites that were differentially produced in the two most resistant strains (A17 and DZA45.5) 349 

when compared to the more sensitive one (F83) were identified by OPLS regression. 350 

Insert Figure 5 351 

After application of the MS-CleanR workflow, the PCA score plot showed a net clustering of the 352 

samples from each strain of M. truncatula. QC samples were centered on the PCA plot demonstrating 353 

very good reproducibility (Figure 5). When annotated by reference to DBs from Medicago or the 354 

legume family Fabaceae, 60% of the dataset was annotated (Figure 5) and an additional 9% with MS-355 

FINDER DBs. A molecular spectral similarity network was built to highlight common chemical class 356 

related to resistance traits (Figure 6). Among all annotated features, flavonoids and terpene glycosides 357 

compounds were prevalent. This latter class encompass mostly triterpene sapogenins which appeared 358 

to be highly correlated to the resistance traits according to the OPLS regression model. In particular, 359 

the four top ranked compounds belonged to two clusters related to sapogenins and one to flavonoids. 360 

Our untargeted approach revealed the presence of Apigenin-7-O-glucuronopyranoside (best MS-361 

FINDER score among several possible match in flavonoid class) only in the resistant DZ45.5 strain. 362 

This result corroborated a previous study by our group which demonstrated the implication of 363 

flavonoid pathway in resistance35. However, other detected flavonoids were not correlated to the 364 

resistance contrary to sapogenins class. Among the 151 terpene glycosides annotated in this study, 36 365 

were also identified by a large-scale sapogenin profiling study in various ecotypes of M. truncaltula37 366 

(Table S6). Interestingly, the three-top ranked sapogenins by OPLS model (Azukisaponin III, 367 
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Arjunolic acid 3-glucoside and Soyasaponin I) displayed an isobaric match with tow hederagenin 368 

glycoside and a bayogenin derivatives respectively annotated by Sumner and colleagues. These 369 

sapogenins accumulates preferentially in roots than in leaves. These organs, however, have distinct 370 

profiles of specific saponins, which may be explained by the adaptation of each ecotype to its biotic 371 

environment. A previous study, for example, showed that saponins derived from hederagenin 372 

glycoside in M. truncatula have antifungal activity38. Our study confirmed a higher level of these 373 

compounds in the strains resistant to A. euteiches (DZA45.5 and A17) than it is in the sensitive strain 374 

F83. Although the relevance of saponins to resistance of M. truncatula to A. euteiches remains to be 375 

confirmed, these findings demonstrate the potential value of applying metabolomics tools to identify 376 

biomarkers of plant resistance.  377 

Insert Figure 6 378 

CONCLUSIONS 379 

The main goal of LC-MS-based untargeted metabolomics is to convert chromatographic profiles of 380 

complex biological extracts into a comprehensive metabolite list. Professor Ian Wilson summarized 381 

the challenge thus: “LC-MS includes everything, which means you see everything. Thus, the challenge 382 

is to take oceans of data, and make rivers of information, and finally puddles of knowledge.” (NIH 383 

Metabolomics symposium, August 2013). We demonstrate here that feature degeneracy - the ocean of 384 

data - has a great impact on the final annotated peak list information, thus impacting the biological 385 

knowledge mined from untargeted metabolomic studies. We estimate, based on analysis of standard 386 

mixtures, that feature inflation is close to 95%, in agreement with other studies33,11. Our package MS-387 

CleanR, with its a point-and-click software on a Shiny interface, is a new component in the suite of 388 

tools comprising the GUI software MS-DIAL and the annotation capabilities of MS-FINDER which 389 

altogether provide a comprehensive workflow, from raw data to final annotated peaklist. MS-CleanR 390 

can reduce the number of features by 80-90% and keep most unique metabolite signals without 391 

compromising the final data structure. The opportunity to rank the annotation results with reference to 392 

in-house databases narrows down the final identification possibilities. Additionally, the package is 393 

able to combine both PI and NI mode (A. thaliana experiment) or to treat only one mode (M. 394 

truncatula study) depending of the study objectives. We demonstrate the utility of this workflow by 395 

analyzing secondary metabolites levels in three M. truncatula strains with different susceptibilities to a 396 

pathogenic oomycete. We could annotate 70% of the dataset with 60% at the genus or family level 397 

using DBs prioritization. The resulting mass spectral similarity network further supports annotation 398 

results since most clusters gathered the same metabolite chemical class. Still, our approach was unable 399 

to keep only unique metabolite features regarding the annotation rate comprising between 24 and 45% 400 

for standard mixtures. A limitation of our filtering process is its dependence to chromatographic 401 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.09.033308doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.09.033308
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

resolution, which can seriously impair the final results by clustering several unique metabolites 402 

together. In the present study, we chose a twenty minutes gradient, like those generally applied in most 403 

untargeted metabolomics studies. Extending the elution time might improve the chromatographic 404 

resolution but is difficult to apply in day-to-day work, especially for high-throughput experiments. 405 

These challenges will be addressed in future developments of MS-CleanR.  406 
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Figure 1: MS-CleanR workflow. Description of each step in the

Shiny user interface workflow and the options available at each step.
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Figure 2. Feature filtering of the LC–MS dataset from 51 NPs standards.

Generic filters and the feature clustering algorithm were applied to the

initial PI + NI mode dataset. The bar plot displays feature counts after

successive filters. The line plot displays annotation rate (unique

metabolites/feature counts in %).
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Figure 3. MS-CleanR feature clustering of 51 NPs. Clustering was based on the peak character estimation

and multi-level optimization of modularity algorithms. A) Cluster plot of the whole dataset excluding size

one clusters. B) UHPLC-HRMS base peak intensity (BPI) chromatogram of the standards mixture

containing 51 NPs. Three representative compounds and their respective clusters are indicated.
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Figure 4. LC–MS dataset processing of the metabolomes of A. thaliana plants growing in different

conditions. Top: Sequential PCA score plots of raw PI and NI mode data and the data after applying

generic filters and feature clustering. Dotted circles indicate biological sample type distribution

(yellow, QC injections; green, plants growing in Jiffy pots at low density; blue, plants growing in

plastic pots at high density; red plants in hydroponic culture). Bottom: The bar plot shows the

feature counts after successive filtering steps. The line plot displays the annotation rate (unique

metabolites/feature counts expressed as %) after successive filtering steps using annotation DBs

prioritization.
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Figure 5. LC–MS NI dataset processing of the metabolome of roots from three strains of M. truncatula. Left:

PCA score plot after applying the MS-CleanR workflow. Dotted circles enclose samples from each plant

strain. Right: Circular plot of the proportions of features annotated with reference to the indicated databases

(DB).
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Figure 6. Mass spectral similarity network of M. truncatula NI dataset (cosine ≥ 0.8). Nodes are colored

according to their chemical classes and sized relative to their OPLS regression coefficient score (See text for

details). Edge width is proportional to cosine value. Pie chart display annotated chemical class ratio in LC-MS

NI dataset (Others include coumarins derivatives, tanins and saccharides chemical classes). Bar plots display

normalized mean peak areas for the four most highly ranked structures by OPLS-regression modeling (Table

S6). One-way ANOVA and Dunnett’s post-hoc test (p≤0.05) were used to assess differences between the

sensitive (F83) and resistant (A17 and DZA45.5) M. truncatula strains (p≤0.05: *; p≤0.01: **; p≤0.001: ***).
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