
Supporting Material
Oncogenetic Network Estimation with Disjunctive Bayesian Networks: Learning from

Unstratified Samples while Preserving Mutual Exclusivity Relations

Phillip B. Nicol, Kevin R. Coombes, Courtney Deaver
Oksana A. Chkrebtii, Subhadeep Paul, Amada E. Toland, and Amir Asiaee

A Proof of Proposition 2 and 3

The propositions are special cases of maximum likelihood estimation of Table-CPDs for a given Bayesian
Network (BN) presented in Section 17.2.3 of [1].

B Proof of Theorem 1

Proof. We should set the gradient of the following objective function to zero and solve for θ:

f(θ) =

n∑
i=1

∑
zi

P(zi|xi;θ(t), ξ+, ξ−)`(θ; xi, zi), (1)

The general form of this tedious calculation can be found in Chapter 19 of [1]. Instantiating the calculation
in Section 19.2.2.3 of [1] performed for general Table-CPDs for the specific family of DBN’s CPDs completes
the proof. �

C An Elaboration on DAG Equivalence Classes

Many different network structures induce the same probability distribution over x ∈ {0, 1}p, i.e., likelihood.

Definition 1. We say that G and G′ are equivalent and show it by G ∼ G′ if for every θ and x, P(x;G,θ) =
P(x;G′,θ).

It is clear that ∼ defines an equivalence relation over DAGs. Since DAGs belonging to a same equivalence
class are indistinguishable likelihood-wise (i.e., with current data) we can select a representative for each
class and just search the space of all representatives to speed up the algorithm. We call this representative
DAG the canonical form of the equivalence class. In the following, we will show how we can make the
canonical form from the given graph G.

Remember that each DAG can be represented by an ordering O (upper triangular matrix) and a permutation
vector π, i.e., G = (O,π). To make the canonical form of graph G, one should remove redundant edges from
O and give unique labels to similar vertices by π. In the following, we show how to detect redundant edges
and similar vertices and finally we prove that if G and G′ have the same canonical form, they belong to the
same equivalence class, i.e., represent the same likelihood.

Definition 2. For each event (node) Xi, define Ci and Pi as the set of children and parents of i respectively.
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xj x(Pi) P(xi = 1|x(Pi), xj) P(xi = 1|x(Pi))
1 0 =0 1 1
2 0 6= 0 θi θi
3 1 =0 P(xi = 1|x(Pi) = 0, xj = 1) 0
4 1 6= 0 θi θi

Table 1: Comparing the local CPDs of node i in G′ and G where their only difference is the presence of the
edge e = (j, i) in G′.

C.1 Redundant Edges

Below, we define redundant edges as those that if removed they do not change the corresponding probability
distribution of the BN.

Definition 3 (Redundant Edges). An edge e in a Bayesian Network structure G is said to be redundant
if the resulting BN structure G′ that is obtained by removing e is equivalent to G, i.e., G ∼ G′.

Next, we show how we can identify redundant edges of a given graph for various version of DBN models.

C.1.1 Detecting Redundant Edges in Basic DBN and Measurement Error Models

Proposition 1. Let e = (j, i) be an edge from node j to node i in DAG G′. Under the Basic DBN and the
measurement error models, edge e is redundant if and only if every path from the root node N to j passes
through another parent of node i. Mathematically, let Φ be the set of all paths from the root N to j. Then,
e is redundant if and only if ∀φ ∈ Φ : φ ∩ Pi 6= ∅ where Pi is the set of parents of i in G.

Proof. The proof is similar for both models, so we use the notation of the Basic DBN model. Note that we
want to compare the likelihood of graphs G′ and G for the fixed sample x and fixed parameter θ, where G′

has one extra edge e. For convenience we consider Pi as the parents of i in G and P ′i = Pi∪{j} as i’s parents
in G′. The only difference between P(x;G, θ) and P(x;G′, θ) is in the contribution of j in the likelihood, i.e.,
P(xi|xPi) in G vs. P(xi|xPi , xj) in G′. Table 1 shows the local CPDs of i in G and G′.

The only difference of the two conditional distribution is in the line three of the table. Distributions are equal
if and only if P(xi = 1|x(Pi) = 0, xj = 1) = 0. In other words, we need to make the {x(Pi) = 0, xj = 1}
event impossible. To this end, whenever node j is active (xj = 1), at least one of the parents of i must be
active (xPi

6= 0).

We also know that in the Basic DBN model a node j is active if and only if there is at least one path φ of
active nodes from the root N to j. Therefore, if there exists at least one parent of i in every path φ from
root to j the {x(Pi) = 0, xj = 1} event will never occur which proves the proposition. �

C.1.2 Detecting Redundant Edges in the Spontaneous Activation Model

Redundant edges in the spontaneous activation model are different from those of the basic DBN and the
measurement error models. Below proposition characterizes redundant edges for the spontaneous activation
model.

Proposition 2. Let e = (j, i) be an edge from node j to node i in DAG G′. Under the spontaneous activation
model, edge e is redundant if and only if every node in every path from the root node N to j is a parent of
node i. Mathematically, let Φ be the set of all paths from the root N to j. Then, e is redundant if and only
if ∀φ ∈ Φ and ∀k ∈ φ : xk ∈ Pi where Pi is the set of parents of i in G.

Proof. The proof is similar to that of the Proposition 1 except in the last step where we want to make
{x(Pi) = 0, xj = 1} event impossible. In the spontaneous activation model, node j can become activate

2



in three general ways: 1) by an active path from N to j or 2) by an active path from a node k who
is spontaneously activated, or 3) by self activation with probability εj . In the former case, the proof of
Proposition 1 goes through. When activation of j is due to spontaneous activation of itself or any of its
ancestors, {x(Pi) = 0} is possible unless all of the nodes in all of the paths from N to j be parents of i. �

Remark. Note that due to the stringent definition of redundant edges for the spontaneous activation model
(Proposition 2) there are not many of them in a given graph and therefore sizes of equivalence classes
for the spontaneous activation model are small. As a result, the corresponding search space of canonical
forms is large andthe speed gain of searching only canonical forms becomes scant. To avoid this issue, we
use the definition of redundant edges of other models (basic and measurement error) for the spontaneous
activation model. This approximation is justifiable since the spontaneous activation probability of each node
is usually very small (εj ≤ 0.05) and therefore any path resulting from spontaneous activation has a very
low probability which makes {x(Pi) = 0, xj = 1} event close to impossible. With this approximation for
spontaneous activation model we gain scalability without completely compromising the theoretical properties
of the proposed algorithm.

C.2 Similar Vertices

Below, we define similar vertices as those that if their labels are swapped the corresponding probability
distribution of the BN will not change.

Definition 4 (Similar Vertices). Nodes i and j of a Bayesian Network structure G = (O,π) are similar
if the resulting BN structure G′ = (O,π′) that is obtained by swapping πi and πj is equivalent to G, i.e.,
G ∼ G′.

Next, we show how we can identify similar vertices of a given graph for all DBN models.

Proposition 3. Let G = (O,π) and G′ = (O,π′) be two DAGs with the same topological ordering O. Let
the set of parents and children of node i in G represented by Pi and Ci and in G′ by P ′i and C′i respectively.
Then G ∼ G′ if and only if Pi = Pj and Ci = Cj.

Proof. Intuitively, note that local CPDs of nodes i, j, and their children stays the same if labels of i and j
are swapped. Mathematically, the only contribution of i, j, and their children in the joint distribution of
BN represented by G are the following conditional probabilities:

1. P(xπi |x(Pi))

2. P(xπj
|x(Pj))

3. ∀k ∈ Ci ∪ Cj : P(xπk
|x(Pk))

Note that k is the child of of i, j, or both of them.

To have the same probability distribution the product of these three class of CPDs should be equal to the
product of their counterparts in G′, i.e., the following conditions must be satisfied:

P(xπi
|x(Pi))P(xπj

|x(Pj))
∏

k∈Ci∪Cj

P(xπk
|x(Pk)) = P(xπ′

i
|x(P ′i))P(xπ′

j
|x(P ′j))

∏
k∈C′i∪C′j

P(xπk
|x(P ′k))

Because of the swapping of i and j’s labels, we have π′i = πj , π
′
j = πi while P ′i = Pi, P ′j = Pj , C′i = Ci, and

C′j = Cj because O and the rest of π are fixed. Therefore, the necessary condition for G ∼ G′ becomes:

P(xπi |x(Pi))P(xπj |x(Pj))
∏

k∈Ci∪Cj

P(xπk
|x(Pk)) = P(xπj |x(Pi))P(xπi |x(Pj))

∏
k∈Ci∪Cj

P(xπk
|x(P ′k)) (2)

Proof of the first direction. We first show that if Pi = Pj and Ci = Cj then condition (2) holds.
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If Pi = Pj then P(xπ′
i
|x(P ′i)) = P(xπj |x(Pi)) = P(xπj |x(Pj)) and similarly P(xπ′

j
|x(P ′j)) = P(xπi |x(Pj)) =

P(xπi
|x(Pi)), which shows that the product of the first two CPDs in both graphs are equal.

Next, if Ci = Cj then Ci ∪ Cj = Ci ∩ Cj . This means that k can only be the child of both i and j (not just
single one of them). Therefore P ′k = Pk which results in the equality of the third terms P(xπk

|x(Pk)) =
P(xπk

|x(P ′k)), which completes the proof of the first direction.

Proof of the second direction. We prove the contrapositive. For that, assume Pi 6= Pj or Ci 6= Cj , then
we should show that there exist x and θ for which condition (2) gets violated. Below are the two branches
of the proof by contrapositive:

• Pi 6= Pj : Consider xπi = xπj = 0, ∃l ∈ Pi − Pj s.t. xl = 1, ∀l ∈ Pj : xl = 0, and the rest of random
variables can have arbitrary values. In words, i and j are inactive, all of j’s parents are inactive, and
there exists at least one parent of i which is active. For this setup, ∀k ∈ Ci ∪ Cj : P(xπk

|x(Pk)) =
P(xπk

|x(P ′k)), i.e., descendants of i and j are untouched.

We show that there exist θ for which the product of the terms 1 and 2 can not be equal. For the basic
DBN and measurement error models, in G we have P(xπi = 0|x(Pi))P(xπj = 0|x(Pj)) = (1− θπi)× 1
and in G′ the product will be P(xπj

= 0|x(Pi))P(xπi
= 0|x(Pj)) = (1− θπj

)× 1. So for any θπi
6= θπj

the likelihoods are different. In other words, unless θπi
= θπj

we have P(x;G,θ) 6= P(x;G′,θ), which
completes the proof for this case. Similarly, for the spontaneous activation model the condition reduces
to (1− θπi)(1− επj ) = (1− θπj )(1− επi), which can be violated in many ways, e.g., when θπi = 1 and
while the rest of parameters are less than one.

• Ci 6= Cj : Above we showed that if G ∼ G′ then Pi = Pj , therefore the product of the first two
terms are equal in both graphs. So, here we only need to show that if Ci 6= Cj the third terms
(
∏
k∈Ci∪Cj P(xπk

|x(Pk))) can be different in both graphs. In this case, condition (2) reduces to the

following necessary condition for G ∼ G′:∏
k∈Ci∩Cj

P(xπk
|x(Pk))

∏
l∈Ci−Cj

P(xπl
|x(Pl))

∏
k∈Cj−Ci

P(xπk
|x(Pk))

=∏
k∈Ci∩Cj

P(xπk
|x(P ′k))

∏
l∈Ci−Cj

P(xπl
|x(P ′l))

∏
k∈Cj−Ci

P(xπk
|x(P ′k)) (3)

For the shared children of i and j (k ∈ Ci ∩ Cj) P(xπk
|x(Pk)) = P(xπk

|x(P ′k)) because P ′k = Pk, which
leaves us with the latter two products in (3). Consider xπi = 1, xπj = 0, ∀k ∈ Cj − Ci : x(Pk) =
0, xπk

= 0, and ∀l ∈ Ci − Cj : x(Pl) = 0, xπl
= 0. The rest of random variables can have arbitrary

values. Then, the above condition for basic DBN and measurement error models gets instantiated as:∏
l∈Ci−Cj

(1− θπl
) =

∏
k∈Cj−Ci

(1− θπk
),

and for spontaneous activation model as:∏
l∈Ci−Cj

(1− θπl
)

∏
k∈Cj−Ci

(1− επk
) =

∏
k∈Cj−Ci

(1− θπk
)

∏
l∈Ci−Cj

(1− επl
).

Clearly, one can devise parameters (θs and εs) that violate above conditions. For example, with single
θπl

= 1 and the rest of parameters in (0, 1), the LHS will be zero and the RHS non-zero, which violates
both conditions. This example shows that if Ci 6= Cj then ∃x,θ s.t. P(x;G,θ) 6= P(x;G′,θ), which
completes the proof.

�
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C.3 Canonical Forms

Here, we define the canonical form of a given graph as a graph resulted from removing all redundant edges
and uniquely labeling similar vertices.

Definition 5. Let G be a DAG and let (O,π) be the decomposition of G into an upper triangular matrix
and a permutation. The canonical form of G is the graph that is equivalent to G with no redundant edges
along with a permutation π such that each set of similar nodes is ordered from least index to greatest index.

The canonical form of G is in fact a canonical form– it defines a unique DAG, which helps us recovering a
unique graph from all members of an equivalent class. In practice, this property will helps a lot in visualizing
the output and understanding the recovered BN structure.

Theorem 6. G ∼ G′ if and only if G and G′ have the same canonical form.

Proof. The proof is the direct application of previous propositions (Propositions 1, 2, and 3) for redundant
edges and similar vertices. �
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