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Abstract (219 words) 27 

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is 28 

an analytical method that detects macromolecules that can be used as biomarkers for 29 

taxonomic identification in arthropods. The conventional MALDI approach uses fresh 30 

laboratory-reared arthropod specimens to build a reference mass spectra library with high-31 

quality standards required to achieve reliable identification. However, this may not be possible 32 

to accomplish in some arthropod groups that are difficult to rear under laboratory conditions, or 33 

for which only alcohol preserved samples are available. Here, we generated MALDI mass 34 

spectra of highly abundant proteins from the legs of 18 Neotropical species of adult field-35 

collected hard ticks, several of which had not been analyzed by mass spectrometry before. We 36 

then used their mass spectra as fingerprints to identify each tick species by applying machine 37 

learning and pattern recognition algorithms that combined unsupervised and supervised 38 

clustering approaches. Both principal component analysis (PCA) and linear discriminant 39 

analysis (LDA) classification algorithms were able to identify spectra from different tick species, 40 

with LDA achieving the best performance when applied to field-collected specimens that did 41 

have an existing entry in a reference library of arthropod protein spectra. These findings 42 

contribute to the growing literature that ascertains mass spectrometry as a rapid and effective 43 

method for taxonomic identification of disease vectors, which is the first step to predict and 44 

manage arthropod-borne pathogens. 45 

 46 

  47 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.13.040089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.13.040089
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 
 

Author Summary (153 words) 48 

Hard ticks (Ixodidae) are external parasites that feed on the blood of almost every 49 

species of terrestrial vertebrate on earth, including humans. Due to a complete dependency on 50 

blood, both sexes and even immature stages, are capable of transmitting disease agents to 51 

their hosts, causing distress and sometimes death. Despite the public health significance of 52 

ixodid ticks, accurate species identification remains problematic. Vector species identification 53 

is core to developing effective vector control schemes. Herein, we provide the first report of 54 

MALDI identification of several species of field-collected Neotropical tick specimens preserved 55 

in ethanol for up to four years. Our methodology shows that identification does not depend on 56 

a commercial reference library of lab-reared samples, but with the help of machine learning it 57 

can rely on a self-curated reference library. In addition, our approach offers greater accuracy 58 

and lower cost per sample than conventional and modern identification approaches such as 59 

morphology and molecular barcoding.  60 

 61 
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Text Word Count: 3,950 63 

Introduction  64 

Hard ticks (Ixodidae) are hematophagous ectoparasites that feed on almost every 65 

species of terrestrial vertebrate on earth, including Homo sapiens sapiens [1, 2]. Due to a 66 

complete dependency on blood as a food source, both sexes of adults and immature ticks are 67 

capable of transmitting disease pathogens to their hosts, causing significant morbidity and 68 

sometimes even death [3, 4]. Research on hard ticks has increased recently in the Neotropics, 69 

where a growing number of outbreaks of tick-borne related illnesses have been documented 70 

[5-8]. Despite these efforts, comprehensive studies about the ecology, behavior and control of 71 

hard ticks relevant to public health remain elusive in Central America due to the shortcomings 72 

of traditional taxonomic methods to species identification. Taxonomic identification of 73 

Neotropical Ixodidae has traditionally relied on adult morphological characters [9]; however, 74 

morphological keys for immature stages (i.e., larvae and nymphs) are lacking and experts are 75 

often unable to reliably identify immature ticks to species [9, 10]. Moreover, morphological 76 

identification of ticks is unrealistic in epidemiological settings because assessing the role of 77 

ticks as disease vectors usually involves identifying hundreds of individuals for pathogen 78 

screening, an extremely time-consuming effort, which may be further impeded by the lack of 79 

qualified taxonomic specialists [11]. 80 

Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is 81 

an analytical technique that allows for sensitive and accurate detection of complex molecules 82 

such as proteins, peptides, lipids and nucleic acids [12-14]. The conventional MALDI approach 83 

has been used successfully to generate markers for proteomic identification of microorganisms 84 

such as pathogenic bacteria and fungi, which can be cultured in the laboratory and form 85 

discrete colonies with very consistent mass spectra that facilitates the development of 86 
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reference libraries for identification of unknown samples [15, 16]. In fact, a commercial 87 

program offered by the manufacturers of the MALDI technology is capable of determining 88 

statistical similarities between the spectra of unknown samples and a well-curated, proprietary 89 

reference library of bacteria and fungi to identify the species of the unknown specimen. This is 90 

analogous to the process of matching fingerprints, and offers a simplified comparison score 91 

that ranges from 0.0 to 3.0. Scores above or equal to 2.3 represent a confident match at the 92 

genus rank, and high probability at the species level, while values below 1.7 are considered as 93 

non-reliable identifications [15-17]. 94 

Although more challenging than identifying bacteria and fungi due to the size and 95 

heterogenicity of the specimen, MALDI has also been used to discriminate among species of 96 

invertebrates, including mosquitoes (Culicidae - Anopheles) , fleas (Pulicidae - 97 

Ctenocephalide), biting midges (Ceratopogonidae – Culicoides), sandflies (Psychodidae – 98 

Phlebotomus, Lutzomyia) and ticks (Ixodidae – Rhipicephalus) [18-26]. A key finding from 99 

these studies is that protein spectra obtained from body sections or whole specimens were 100 

similar among individuals of the same morphological species but differed noticeably across 101 

different species. Therefore, MALDI protein spectra can be used as a tool to delimit species 102 

boundaries in arthropods that are vectors of pathogens. Nevertheless, fresh laboratory-reared 103 

specimens are routinely needed to build a reference library that meets the high-quality 104 

standards required for classification. This represents an important limitation for some arthropod 105 

groups, or assemblages, that are difficult to rear under laboratory conditions. In addition, 106 

epidemiological studies often rely on field-collected specimens preserved in ethanol for long-107 

term storage in reference collections. To overcome these limitations, previous studies have 108 

opted for adjusting the comparison scores minimum-threshold limit for identification, lowering 109 

the manufacturer´s recommended scores from 2.3 to 1.8 [21, 27] or even 1.3 [22, 28]. Hence, 110 
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mass fingerprinting for the identification of field-collected specimens that do not exist in a 111 

reference spectra library (or for those from which reference spectra cannot be generated under 112 

ideal conditions) requires an alternative, objective approach [11]. Moreover, most existing 113 

applications of MALDI to identify arthropod disease vectors have focused on relatively species-114 

poor vector assemblages from Europe. This technique has been tested less-frequently in the 115 

new world tropics [19, 20, 22, 24, 27-36], where vector species richness is the greatest on 116 

Earth. 117 

Here, we used MALDI as a scheme to identify Neotropical specimens of adult hard ticks 118 

derived from ethanol-preserved field collections. Specifically, we used machine learning and 119 

pattern recognition algorithms to classify protein spectra from the legs of field-collected 120 

specimens in order to identify a group of unknown samples with a self-curated reference 121 

library. MALDI is a promising tool for cataloging and quickly identifying large arthropod groups 122 

such as ticks [11]. Our results should contribute to the growing body of literature trying to 123 

address questions about feasibility, reliability and universality of the methodology for different 124 

environments and species that have not been evaluated before. Properly identifying disease 125 

vectors such as Ixodidae in highly diverse Neotropical countries, such as Panama, is a critical 126 

first step to predict and manage tick-borne zoonotic pathogens such as Rickettsia and 127 

arboviruses (e.g., arthropod-borne viruses). 128 

 129 
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Methods 131 

Sample preparation  132 

Ticks stored in ethanol for up to 5 years, and previously identified based on 133 

morphological characters, were taken from long-term storage in a -20 °C freezer (S1 Table). A 134 

total of 103 specimens from the following species were included in this study: Amblyomma 135 

mixtum (cajennense), Amblyomma calcaratum, Amblyomma dissimile, Amblyomma geayi, 136 

Amblyomma nodosum, Amblyomma oblongoguttatum, Amblyomma ovale, Amblyomma 137 

pecarium, Amblyomma sabanerae, Amblyomma varium, Amblyomma naponense, 138 

Amblyomma tapirellum, Ixodes affinis, Ixodes boliviensis, Dermacentor nitens, Haemaphysalis 139 

juxtackochi, Rhipicephalus microplus and Rhipicephalus sanguineus. Samples were prepared 140 

following previously published protocols with minor modifications [21, 22]. Briefly, we removed 141 

either the left or the right anterior leg from each tick using a scalpel. The leg was then put in 142 

tube with 300 µL ultrapure water followed by the addition of 900 µL of 100% ethanol. These 143 

tubes were vortexed for 15 s and centrifuged at 13,000 RPM for 2 min. After centrifugation, the 144 

supernatant was poured off from the sample tube, which was left to dry for 15 min. 145 

Subsequently, the legs were resuspended in 60 µL 70% formic acid and 60 µL 100% 146 

acetonitrile and homogenized in the microtube using a manual pestle. The samples were 147 

placed in a Branson 1510 ultra-sonicator (Bransonic, Danbury, CT, USA) for 60 minutes in ice 148 

water, and then vortexed for 15 s and centrifuged again at 13,000 RPM for 2 min. 1 µL of 149 

supernatant was pipetted onto a polished steel MALDI plate and covered with 1 µL of HCCA 150 

matrix. After letting the plate dry, it was inserted into the MALDI mass spectrometer to record 151 

the protein spectra from tick legs.  152 

 153 
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MALDI mass spectrometry parameters  155 

We used an UltrafleXtreme III spectrometer (Bruker Daltonics, Bremen, Germany) to 156 

generate the protein mass spectra of each specimen. The equipment has a MALDI source, a 157 

time-of-flight (TOF) mass analyzer, and a 2KHhz Smartbeam™-II neodymium-doped yttrium 158 

aluminum garnet (Nd:YAG) solid-state laser (λ=355 nm) that we used in positive polarization 159 

mode. All spectra were automatically acquired in the range of 2,000 to 20,000 m/z in linear 160 

mode for the detection of the most abundant protein ions. Each spectrum represented the 161 

accumulation of 5,100 shots with 300 shots taken at a time, and the acquisition was done in 162 

random-walk mode with a laser power in the range of 50% to 100% (global laser attenuation at 163 

30%). The software FlexAnalysisTM (Bruker) was used to analyze the mass spectra initially 164 

and to evaluate number of ion peaks and their intensity. Visual comparisons of the mass 165 

spectra from different tick species gave initial indications of dominant ion peaks that would 166 

suggest possible classification into discrete groups. Mass spectra that did not include at least 167 

one ion peak with an intensity of 1000 a.u. or more, were considered low quality and filtered 168 

out. All samples were placed and measured on three individual target wells with three technical 169 

replicates of the mass spectra collected per well. 170 

 171 

Data analysis, clustering algorithms and statistics  172 

The methodology has been described in detail previously by our group for the 173 

identification of adult mosquito legs [26], based on similar data analysis for face recognition 174 

[37, 38] and spectral classification using mass spectrometry [39, 40]. In brief, 239 mass 175 

spectra generated across 103 samples for all 18 species of morphologically-identified 176 

Neotropical hard ticks were classified using Principal Component Analysis (PCA) and Linear 177 

Discriminant Analysis (LDA), which are linear transformation techniques from the field of 178 
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Machine Learning that are commonly used for dimensionality reduction and classification. 179 

Dimensionality reduction can help decrease computational costs for classification, as well as 180 

avoid overfitting by minimizing the error in parameter estimation. 181 

PCA is an “unsupervised” algorithm that generates vectors that correspond to the 182 

direction of maximal variance in the sample space. On the other hand, LDA is a “supervised” 183 

algorithm that considers class information to provide a basis that best discriminates the 184 

classes (i.e., tick species) [37]. For both PCA and LDA analyses, we calculated the Euclidean 185 

distance between the vector describing the test sample and the average vector describing 186 

each class to identify a test sample. The class with the minimum distance with respect to the 187 

test sample was assigned as the identified species for that test sample. The LDA was applied 188 

over the data set expressed in terms of the coefficients (i.e., principal components) obtained by 189 

the PCA. Thus, PCA reduced the dimensionality of the data, and the LDA provided the 190 

supervised classification.  191 

The performance of the clustering algorithms was tested using Monte Carlo simulations 192 

over 1000 iterations per species to optimize training and cross-validation prediction success 193 

rates (Table 2). For each iteration, the data elements in each class were split randomly in 194 

approximately, but not less than, 20% of the elements for testing and the rest of the elements 195 

for training, for each species. For this analysis, we used the first 150 principal components 196 

from the PCA stage that explained 99.9% of the total variance, which after being projected for 197 

the LDA algorithm, also generated a 150-components data set. The number of components 198 

was chosen after a performance analysis, again using a Monte Carlo approach, that provided 199 

the best identification rates. Global and class positive identification rates were calculated to 200 

establish the classification capacity of the algorithm (Table 2). The positive identification rate 201 
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corresponds to the percent ratio between positive identifications performed by the algorithm 202 

and the real positive cases in the data.  203 

For visualization purposes in the plots, species that were morphologically identified 204 

within the Rhipicephalus and Ixodes genera were separately compared against Dermacentor 205 

and Haemaphysallis for which there was only one species in each. All species that were 206 

morphologically identified within the Amblyomma genus were separately compared between 207 

themselves or against the Ixodes genera.  208 

 209 

Results  210 

Optical micrographs from 18 species of Neotropical hard ticks showed very clear 211 

differences among species in terms of adult morphological features (Fig 1, S1 Fig), which was 212 

well aligned with the expected unique mass spectra generated from each sample and taxon 213 

(Fig 2). The global automatic acquisition rate was 77% for all species (Table 1), confirming 214 

that, overall, the mass spectra of field-collected and ethanol preserved specimens allowed 215 

automatic acquisition of spectra. In fact, automatic acquisition of spectra results in faster and 216 

more objective data acquisition than performing spectra collection manually. The percentage of 217 

automatic spectra acquisition with the MALDI ranged from 50 % for A. mixtum (cajennense), I. 218 

boliviensis and R. sanguineus to 100% for several of the species, including A. calcaratum, A. 219 

geayi, A. sabanerae, I. affinis, and R. microplus (Table 1). The time stored in ethanol or the 220 

location of sample origin did not seem to explain the variable percentages of automatic spectra 221 

collection (S1 Table). Spectra from freshly collected specimens stored dry at -20 °C, used to 222 

establish the methodology, exhibited the best signals, with better-defined spectral peaks and 223 

higher signal-to-noise ratio.  224 
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In addition, the specimens within each species showed consistently similar protein 225 

profiles, regardless of their taxonomic genera, sex, collection date and/or sampling location 226 

(Fig 2, Table S1). Mean protein spectra for tick species differed visually among taxa and the 227 

differences appeared to be related to their degree of phylogenetic relatedness (Fig 2). For 228 

example, species within the genera Ixodes, Rhipicephalus, and Amblyomma were more similar 229 

among themselves in terms of the ions peak number and mass over charge (m/z) position in 230 

their mass spectra than species from different genera. Nonetheless, some closely related 231 

species within the Amblyomma genus such as A. mixtum (cajennense), A. varium, and A. 232 

tapirellum also showed fairly distinct protein spectra (Fig 2), which motivated the application of 233 

clustering algorithms for their classification. 234 

 235 

Figure 1. Optical micrographs of Neotropical hard ticks. The image shows the dorsal and ventral sides for 6 of 236 

the 18 species of hard ticks in the genus Amblyomma, Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus. 237 

The images for the full assemblage of 18 species can be found in S1 Fig. 238 

 239 

  240 
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Table 1. Description of samples subjected to analysis with the MALDI mass 241 

spectrometry procedure. 242 

Species Name # of 
samples 

Locality 
code 

# of 
expected 
spectra 

# of 
obtained 
spectra 

MALDI 
automatic 

spectra 
acquisition 

rate (%) 
Amblyomma mixtum 
(cajennense) 4 a 12 6 50% 

Amblyomma calcaratum 5 a, b 15 15 100% 
Amblyomma dissimile 4 c 12 9 75% 
Amblyomma geayi 4 d 12 12 100% 
Amblyomma nodosum 4 a 12 10 83% 
Amblyomma oblongoguttatum 4 a, e 12 8 67% 
Amblyomma ovale 4 e 12 11 92% 
Amblyomma pecarium 4 e 12 11 92% 
Amblyomma sabanerae 3 f 9 9 100% 
Amblyomma varium 4 g 12 9 75% 
Amblyomma naponense 5 f 15 9 60% 
Amblyomma tapirellum * 26 e, g 78 56 72% 
Ixodes affinis 4 e 12 12 100% 
Ixodes boliviensis 4 e 12 6 50% 
Dermacentor nitens 4 c 12 9 75% 
Haemaphysalis juxtackochi 6 a, e 18 11 61% 
Rhipicephalus microplus 10 c, d 30 30 100% 
Rhipicephalus sanguineus 4 a 12 6 50% 

Total 103 a-g 309 239 77% 
 243 

(a) = Panama: Chorrera, Las Pavas; (b) = Panama: Colon, Madden Road; (c) = Panama: Colon, Achiote; (d) 244 

= Panama: Panama, Capira; (e) Panama: Colon, Barro Colorado Island; (f) Panama: Colon, Sierra Llorona 245 

Lodge; (g) Panama: Colon, Gamboa. (*) Indicates some specific samples that upon collection were stored 246 

fresh in Silica Gel (For more metadata information about these samples see also S1 Table).  247 

 248 
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Figure 2. Baseline-corrected and smoothed spectra for 18 species of ticks in the genus Amblyomma, Dermacentor, 249 

Haemaphysalis, Ixodes and Rhipicephalus. Major ion peaks and their molecular weights are annotated in the range 250 

of 2,000 to 20,000 m/z for all species. 251 

 252 

Distinct mass spectra profiles between morphologically identified ixodid species could 253 

be classified by an unsupervised PCA algorithm to identify specimens. The quantitative 254 

performance of the PCA algorithm was assessed per species (Table 2), and visually confirmed 255 

with the graphic clustering presented in 3D plots (Fig 3). The PCA global positive identification 256 

rate was 91.2%, with 14 out of 18 species having higher than 90 % positive identification rate. 257 

The PCA graphs showed that most species separated in well-defined clusters, and the 258 

distance among clusters seemed to be related to the degree of phylogenetic relatedness as 259 

evidenced by the clear separation from the specimens of Dermacentor and Rhipicephalus with 260 

those from Haemaphysallis and Ixodes (Fig 3A, B), or just between the specimens of 261 

Amblyomma (Fig 3C). When comparing species within the genus Amblyomma against those 262 

from Ixodes, again the spectra from specimens of each species clustered together with limited 263 

overlap between groups and those from different genera were clearly separated (Fig 3D). 264 

 265 

Figure 3. Principal component analysis (PCA) of individual species plotted against first, second and third principal 266 

components (PC). All species were classified using a Monte Carlo simulation with 1000 iterations, in which 80% 267 

of the samples were used as training set (�) and the remaining 20% as test set (• for positive identifications and + 268 

for negative ones). The cluster centroid of each species is also presented in the graph (à). The plots show (A) the 269 

training and test sets for the species belonging to the Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus 270 

genera, and (B) only the test sets for better visualization; as well as the training set and test set of (C) 271 

Amblyomma species alone or (D) Amblyomma in combination with Ixodes genera. The unsupervised PCA 272 

algorithm had a global positive identification rate of 91.2%. These 3D plots represent only one of the 1000 Monte 273 

Carlo iterations performed with the algorithm. 274 
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 275 

In addition, the LDA clustering analysis showed a global positive identification rate of 276 

94.2% (Fig 4; Table 2), with 14 out of 18 species having higher than 97.8 % positive 277 

identification rate. The range of positive identification rates went from 100% (best score 278 

possible) for A. mixtum (cajennense), A. nodosum, A. oblongoguttatum, A. ovale, A. varium, A. 279 

naponense and R. sanguineus to 45.6% for D. nitens. The 3D representation plots of the LDA 280 

clustering displayed that the separation between species was more pronounced than with PCA 281 

when comparing species from different genera, confirming the improved quantitative results of 282 

the performance of the LDA algorithm (Table 2). 283 

 284 

Figure 4. Linear Discriminant Analysis (LDA) applied to spectra from tick species of the genera Amblyomma, 285 

Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus. The plots show (A) the training and test sets for species 286 

in the Dermacentor, Haemaphysalis, Ixodes and Rhipicephalus genera projected over the first three components 287 

of the LDA, as well as (B) only the test set for better visualization; and also the training and test sets for (C) the 288 

Amblyomma genus alone, as well as (D) the Amblyomma genus compared to the Ixodes genus. These 3D plots 289 

represent only one of the 1000 Monte Carlo iterations performed with the algorithm. The supervised LDA 290 

algorithm had a 94.2% global positive identification rate.  291 
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Table 2. Performance of PCA and LDA clustering algorithms. 292 

Species Name 

PCA Positive 

Identification 

Rate (%) 

LDA Positive 

Identification 

Rate (%) 

Spectra 

per Class 

# Training 

Elements 

# Test 

Elements 

Amblyomma mixtum 

(cajennense) 100.0% 100.0% 6 4000 2000 

Amblyomma calcaratum 100.0% 99.6% 15 12000 3000 

Amblyomma dissimile 67.6% 67.6% 9 7000 2000 

Amblyomma geayi 99.1% 99.6% 12 9000 3000 

Amblyomma nodosum 100.0% 100.0% 10 8000 2000 

Amblyomma oblongoguttatum 100.0% 100.0% 8 6000 2000 

Amblyomma ovale 100.0% 100.0% 11 8000 3000 

Amblyomma pecarium 99.8% 99.0% 11 8000 3000 

Amblyomma sabanerae 69.3% 85.9% 9 7000 2000 

Amblyomma varium 99.8% 100.0% 9 7000 2000 

Amblyomma naponense 100.0% 100.0% 9 7000 2000 

Amblyomma tapirellum 97.8% 97.8% 56 44000 12000 

Dermacentor nitens 21.7% 45.6% 12 9000 3000 

Haemaphysalis juxtackochi 90.9% 97.8% 6 4000 2000 

Ixodes affinis 84.0% 89.5% 9 7000 2000 

Ixodes boliviensis 96.8% 98.8% 11 8000 3000 

Rhipicephalus microplus 93.1% 98.7% 30 24000 6000 

Rhipicephalus sanguineus 100.0% 100.0% 6 4000 2000 

Global 91.2% 94.2% 239 183000 56000 

 293 

  294 
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Discussion 295 

Our results show that MALDI mass spectra of highly abundant proteins in arthropod 296 

legs served as fingerprints to identify samples of 18 species of Neotropical hard ticks using 297 

machine learning and pattern recognition algorithms to create a self-curated reference library. 298 

We compared smoothed and baseline-corrected spectra generated from unknown field-299 

collected tick samples against the mean spectra from a subset of the same field samples that 300 

had already been identified through traditional means. To systematize this process, we used 301 

PCA and LDA algorithms to classify mass spectra without prior establishment of a high-quality 302 

reference library, which typically requires laboratory-reared specimens that may not be 303 

possible to obtain for all species. Global positive identification rates of up to 94.2% were 304 

achieved with this methodology, offering a rapid, reliable and objective approach to identify 305 

hard tick species, which will likely improve as more specimens are evaluated and included in 306 

our database. 307 

These outcomes agree with our previous work [26] in which we used a similar approach 308 

to classify field-collected samples of 11 morphologically-identified species of Anopheles 309 

mosquitoes. In that study, Neotropical Anopheles samples were stored dry in silica gel at -20 310 

°C, which seemed to avoid sample degradation and maintain spectral quality. This contrasts 311 

with the present study, where most of our specimens were stored in ethanol at -20 °C for 312 

several years. Thus, our findings confirm that our novel analytical approach using MALDI and 313 

PCA/LDA clustering algorithms is robust for species classification regardless of the arthropod 314 

assemblage, sample storing conditions, and the lack of a high-quality reference library. Our 315 

results herein also show that both classification algorithms, PCA and LDA, were capable of 316 

clustering and recognizing spectra from up to 18 different tick species, including roughly 50 % 317 

of Ixodid taxa (e.g., both ecologically dominant and rare taxa) reported for Panama [26, 41]. 318 
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LDA outcomes were more discriminant and robust than PCA overall, but PCA also classified 319 

species from different genera with over 91 % accuracy and consistency. LDA was able to 320 

cluster each of the 18 species of ticks with validation and cross-validation scores above 94 %, 321 

both between and within genera. As expected, the clustering algorithm was most accurate for 322 

distinctly related phylogenetic species (i.e., Ixodes, Rhipicephalus and Haemaphysalis 323 

genera), with higher than 97 % success rate in most of these cases, than for closely related 324 

species (i.e., Amblyomma genus). 325 

Although the number of samples analyzed for some ixodid species was relatively low, 326 

several of these taxa are considered cryptic species complexes [42] and have been implicated 327 

as vectors of human pathogens in Panama as well as more broadly, including A. mixtum 328 

(cajennense) and D. nitens, the likely vectors of Rickettsia rickettsii, known to cause Rocky 329 

Mountain spotted fever [43]. We also included samples of A. tapirellum, A. oblongoguttatum 330 

and H. juxtakochi, three species from which human pathogens have been previously isolated 331 

[44], such as: Coxiella, whose members cause Q fever; Ehrlichia, which causes ehrlichiosis 332 

infection; and Rickettsia, which causes a variety of bacterial infections in humans and other 333 

animals. These results are important because our species identification platform can serve as 334 

an additional tool for Health Ministries in Panama and other countries, to monitor, predict and 335 

manage tick-borne zoonotic pathogens. 336 

Morphological taxonomic identification of ixodid ticks can be enhanced by molecular 337 

techniques such as the DNA barcoding [8, 45], but this procedure is laborious, expensive and 338 

needs a well-trained lab-technician. Studies show that typical DNA barcoding costs can range 339 

from $2 to $5 per sample, with difficult-to-extract samples increasing the cost two-fold or more 340 

[46, 47]; while costs associated to MALDI species identification have been calculated to be 341 

less than $0.50 per sample [48-50]. Furthermore, a comprehensive repository of DNA 342 
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sequences (e.g., DNA barcodes) is needed in order to test species limits, yet only a handful of 343 

Neotropical tick species are represented in Genbank [51] or BOLD [52] repositories, which 344 

could limit identification to the most common taxa only. In addition, DNA barcoding 345 

occasionally fails to delimit species boundaries due to ambiguous evolutionary relationships 346 

among closely related tick species [45].  347 

The long-term goal of our analytical approach with MALDI is to offer an open-source, 348 

web-based platform where users can upload the protein mass spectra of their known and 349 

unknown specimens to increase the number of species covered and to improve the power of 350 

our clustering algorithms. This crowd-sourced approach could be more cost effective, given 351 

that it is not necessary to generate a reference library of well-curated samples. Instead, field 352 

samples can be taxonomically assigned as they arrive to the laboratory using a correctly 353 

matched protein fingerprint, while unidentified samples can be identified with traditional 354 

methods and added as new entries into the growing self-curated reference database.  355 

In conclusion, the present study used MALDI mass spectrometry as a tool to rapidly 356 

identify Neotropical specimens of adult hard ticks that had been preserved in ethanol for 357 

several years. Our algorithms were capable of identifying specimens from the 18 tick species 358 

evaluated, based on their protein spectra “fingerprint” with up to 94% cross-validation 359 

capability. This is the first report of the protein mass spectra from the leg for most of these 360 

Neotropical tick species. Large arthropod groups such as ticks are difficult to identify with 361 

currently available strategies from commercial vendors, forcing the user to lower the “quality” 362 

bar of a positive match to enhance the percentage of correct identification. Our MALDI/self-363 

curated library approach, although still serving as an auxiliary technique to traditional 364 

identification methods (and not necessarily replacing them), would reduce considerably the 365 

number of samples that would require morphological identification or DNA barcoding. This will 366 
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reduce the time and cost needed to integrate these techniques in routine surveillance 367 

programs in Neotropical regions where tick diversity remains relatively uncharacterized.  368 
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S1 Figure. Optical micrographs of Neotropical hard ticks. The image shows the dorsal and 552 

ventral sides for all 18 species of hard ticks in the genus Amblyomma, Dermacentor, 553 

Haemaphysalis, Ixodes, and Rhipicephalus used to generate protein spectra with our MALDI 554 

mass spectrometry approach. 555 
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S1 Table. Metadata of specimens and species of hard tick (e.g., Ixodidae) collected in 557 
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