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15 Abstract

16 Mapping of high-throughput sequencing (HTS) reads to a single arbitrary reference genome is a 

17 frequently used approach in microbial genomics. However, the choice of a reference may represent a 

18 source of errors that may affect subsequent analyses such as the detection of single nucleotide 

19 polymorphisms (SNPs) and phylogenetic inference. In this work, we evaluated the effect of reference 

20 choice on short-read sequence data from five clinically and epidemiologically relevant bacteria 

21 (Klebsiella pneumoniae, Legionella pneumophila, Neisseria gonorrhoeae, Pseudomonas aeruginosa 

22 and Serratia marcescens). Publicly available whole-genome assemblies encompassing the genomic 

23 diversity of these species were selected as reference sequences, and read alignment statistics, SNP 

24 calling, recombination rates, dN/dS ratios, and phylogenetic trees were evaluated depending on the 

25 mapping reference. The choice of different reference genomes proved to have an impact on almost all 

26 the parameters considered in the five species. In addition, these biases had potential epidemiological 

27 implications such as including/excluding isolates of particular clades and the estimation of genetic 

28 distances. These findings suggest that the single reference approach might introduce systematic errors 

29 during mapping that affect subsequent analyses, particularly for data sets with isolates from 

30 genetically diverse backgrounds. In any case, exploring the effects of different references on the final 

31 conclusions is highly recommended.

32

33 Author summary

34 Mapping consists in the alignment of reads (i.e., DNA fragments) obtained through high-throughput 

35 genome sequencing to a previously assembled reference sequence. It is a common practice in genomic 

36 studies to use a single reference for mapping, usually the ‘reference genome’ of a species —a high-

37 quality assembly. However, the selection of an optimal reference is hindered by intrinsic intra-species 

38 genetic variability, particularly in bacteria. Biases/errors due to reference choice for mapping in 

39 bacteria have been identified. These are mainly originated in alignment errors due to genetic 

40 differences between the reference genome and the read sequences. Eventually, they could lead to 

41 misidentification of variants and biased reconstruction of phylogenetic trees (which reflect ancestry 
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42 between different bacterial lineages). However, a systematic work on the effects of reference choice 

43 in different bacterial species is still missing, particularly regarding its impact on phylogenies. This 

44 work intended to fill that gap. The impact of reference choice has proved to be pervasive in the five 

45 bacterial species that we have studied and, in some cases, alterations in phylogenetic trees could lead 

46 to incorrect epidemiological inferences. Hence, the use of different reference genomes may be 

47 prescriptive to assess the potential biases of mapping.

48

49 Introduction

50 The development and increasing availability of high-throughput sequencing (HTS) technologies, 

51 along with bioinformatic tools to process large amounts of genomic data, has facilitated the in depth 

52 study of evolutionary and epidemiological dynamics of microorganisms [1–3]. Whole-genome 

53 sequencing (WGS)-based approaches are useful to infer phylogenetic relationships between large sets 

54 of clinical isolates [4–7], showing improved resolution for molecular epidemiology [8–11] compared 

55 to traditional typing methods [12–14]. Short-read mapping against a single reference sequence is a 

56 commonly used approach in bacterial genomics for genome reconstruction of sequenced isolates and 

57 variant detection [4,6,15–17]. Nevertheless, there are grounds for suspecting that this approach might 

58 introduce biases depending on the reference used for mapping. Most of these errors originate in the 

59 genetic differences between the reference and the read sequence data [18–21], and they can affect 

60 subsequent analyses [22–28]. These include the identification of variants throughout the genome 

61 (mainly single nucleotide polymorphisms [SNPs]) and phylogenetic tree construction, which are 

62 essential steps for epidemiological and evolutionary inferences.

63

64 Sequencing status, completeness, assembly quality and annotation are relevant factors in reference 

65 selection, which explain the widespread use of the NCBI-defined reference genome of a species for 

66 mapping [26,28]. However, these criteria do not necessarily account for the amount of genetic 

67 information shared between the reference and subject sequences [29], neither the intrinsic genomic 

68 variability of the different bacterial species, which is reflected in their pangenomes (i.e., the total gene 
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69 set within a species or within a particular sequence data set) [30]. It has been suggested that the 

70 impact of reference selection in clonal bacteria such as Mycobacterium tuberculosis [31] could be 

71 ameliorated by its limited variability at the intra-species level [25,28], although its effects on 

72 epidemiological inferences have been described [32]. In contrast, we expect a greater impact of 

73 reference choice in species with open pangenomes (e.g., Pseudomonas aeruginosa [33]) and/or highly 

74 recombinogenic bacteria (e.g., Neisseria gonorrhoeae [34] or Legionella pneumophila [35]). In spite 

75 of the awareness of the problem of reference selection considering the high genomic diversity of most 

76 bacterial species, systematic studies on the effect of reference choice in bacterial data sets are still 

77 missing, particularly if we are concerned with the consequences on epidemiological or evolutionary 

78 inferences. In addition, previous studies considering reference selection explicitly have been mainly 

79 focused on biases in SNP calling [23,24,28] and have not addressed other possible implications.

80

81 De novo assembly of read sequence data dispense with the need of using a reference genome. 

82 However, this requires higher sequencing coverage and longer reads in order to obtain enough read 

83 overlap at each position of the genome. Therefore, obtaining unfinished or fragmented assemblies is a 

84 major drawback, particularly when using short-reads (which still are the most frequently used in HTS-

85 based studies) [36]. Complementarily, de novo assembled isolates could be used as reference genomes 

86 if previously assembled, high-quality references are found to be suboptimal in terms of genetic 

87 relatedness to the newly sequenced isolates [12,32,37]. However, this solution still has to deal with 

88 the additional costs of long-read sequencing and mapping errors derived from using a low-quality or 

89 fragmented reference.

90

91 In this work, we have analyzed the effect of reference selection on the analysis of short-read sequence 

92 data sets from five clinically and epidemiologically relevant bacteria (Klebsiella pneumoniae, 

93 Legionella pneumophila, Neisseria gonorrhoeae, Pseudomonas aeruginosa and Serratia marcescens) 

94 with different core and pangenome sizes [38–41]. WGS data sets were mapped to different complete 

95 and publicly available reference genomes, encompassing the currently sequenced genomic diversity 

96 of each species. We have studied the effect of reference choice on mapping statistics (mapped reads, 
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97 reference genome coverage, average depth), SNP calling, phylogenetic inference (tree congruence and 

98 topology) as well as parameters of interest from an evolutionary perspective such as the inference of 

99 natural selection and recombination rates. Particular emphasis has been given to the effects of 

100 reference selection that result in misleading epidemiological inferences.

101

102 Results

103 Selection of reference genomes

104 Complete genome sequences of five pathogenic bacterial species were downloaded from GenBank. 

105 These included K. pneumoniae (270 genomes), L. pneumophila (91 genomes), N. gonorrhoeae (15 

106 genomes), P. aeruginosa (150 genomes) and S. marcescens (39 genomes). Only one strain from P. 

107 aeruginosa (KU, accession number CP014210.1) was discarded because of low assembly quality 

108 (32% of ambiguous positions). We built a ML core genome tree showing the phylogenetic 

109 relationships between the available assemblies for each species (S1 Fig). Based on this phylogenetic 

110 information and the strains commonly used in the literature, we selected 8 reference genomes for K. 

111 pneumoniae, 7 for L. pneumophila, 3 for N. gonorrhoeae, 6 for P. aeruginosa and 4 for S. marcescens 

112 (S1 Table), including the NCBI reference genome of each species. The strains 342 and AR_0080 (K. 

113 pneumoniae), and U8W and Lansing 3 (two L. pneumophila strains not included in subsp. 

114 pneumophila), and PA7 (a known ‘taxonomic outlier’ of P. aeruginosa) showed ANI values <95% in 

115 pairwise comparisons with the remaining selected references (S3 Table) and long branches separating 

116 them from the other references in their corresponding phylogenies (S1 File).

117 In silico MLST typing was performed for all the reference genomes except those of S. marcescens. 

118 The only cases of shared STs were found in strains HS09565, HS102438 and NTUH-K2044 of K. 

119 pneumoniae (ST 23), and in strains 32867 and CAV1761 of N. gonorrhoeae (ST 1901).

120

121 Mapping to different references

122 We randomly sampled 20 isolates from different whole-genome sequencing data sets of the five 

123 bacterial species. Next, filtered and trimmed paired-end reads of each isolate were mapped to each 
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124 reference genome from the same species. We computed different parameters for each mapping  (S4 

125 Table). The proportion of mapped reads and coverage of the reference genome (i.e., the percentage of 

126 reference genome covered by the aligned reads) showed variability depending on the reference used 

127 for mapping (Figs 1 and 2). Both parameters followed a roughly similar trend, as they presumably 

128 depend on the genetic distance between isolates and reference genomes. Moreover, we observed 

129 overlaps between the values obtained from mappings of the same isolates against different reference 

130 sequences in the five species. In most cases, the lowest median values were obtained in the alignments 

131 against the most genetically distant reference genomes (see ‘Selected isolates and reference 

132 genomes’). However, the largest gap between median values depending on reference choice was 

133 found in the S. marcescens data set: the alignments to the outbreak-related reference UMH9 showed a 

134 high proportion of mapped reads (96.7%) and genome coverage (97.7%), whereas the alignment 

135 against the remaining references resulted in median values lower than 89% for both parameters. This 

136 was probably due to the high proportion of mapped reads and genome coverage resulting from 

137 mappings of outbreak isolates against a very close reference genome. Differences in both parameters 

138 were found to be significant (Kruskal-Wallis, P < 0.05) depending on the reference used for mapping 

139 in all species but N. gonorrhoeae. In the case of genome coverage, most pairwise comparisons (50%-

140 100% in the four species) were found to be significant (Wilcoxon, P < 0.05), whereas the number of 

141 significant comparisons was lower for the proportion of mapped reads (Table 1). For example, in the 

142 case of K. pneumoniae, only 2 (out of 28) comparisons, involving the most genetically divergent 

143 reference genomes, showed significant differences in the proportion of mapped reads.

144

145 *** Place Fig 1. around here ***

146 *** Place Fig 2. around here ***

147

148 Table 1. Proportion of significant (P<0.05) comparisons depending on reference choice.

Proportion (%) of significant comparisons
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Species Comparisons Mapped 

readsa

Genome 

coveragea

 SNPsa ρb dN/dSa

K. pneumoniae 28 7.1 75.0 53.6 42.9 60.7

L. pneumophila 21 19.0 52.4 95.2 23.8 47.6

N. gonorrhoeae 3 0.0 0.0 66.7 0.0 66.7

P. aeruginosa 15 26.7 93.3 86.7 73.3 53.3

S. marcescens 6 50.0 100 83.3 83.3 83.3

149 a Pairwise Bonferroni-corrected Wilcoxon tests.

150 b Pairwise Kolmogorov-Smirnov tests.

151

152 The average coverage depth (i.e., mean number of reads covering each position of the reference 

153 genome) was only slightly affected by reference choice (Fig 3, S4 Table). Its effect was noticeable 

154 when reads were mapped to the most divergent reference genomes of the different species, as in the 

155 previous parameters. However, the average depth seemed to be more dependent on other factors such 

156 as the total number of reads (sequencing coverage) of the isolates rather than on the genetic distance 

157 to the reference genome. One such example is isolate NG-VH-50 (N. gonorrhoeae), which had a low 

158 total number of reads and also showed low average depth values regardless the reference selected for 

159 mapping (S5 Table). Differences in this parameter depending on the reference used for mapping were 

160 found to be non-significant in all the species, according to Kruskal-Wallis tests.

161

162 *** Place Fig 3. around here ***

163

164 SNP calling

165 SNPs were called and quality-filtered from the different mappings to each reference of the five 

166 species. The number of quality SNPs showed high variability depending on the reference used. 
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167 Overlapping ranges of the number of called SNPs were found when comparing the results of the same 

168 isolates aligned to different reference sequences (Fig 4). Thus, considering that the number of SNPs 

169 between sequences is directly related to their genetic distance, SNP-calling results reflect genetic 

170 heterogeneity among isolates selected from the same species, as individual isolates showed different 

171 genetic relatedness to the different references. 

172

173 *** Place Fig 4. around here ***

174

175 An overall inverse relationship between SNP count and the previously discussed alignment 

176 parameters (mapped reads and genome coverage) was also observed (see Figs 1, 2 and 4). This 

177 implies that, in most cases, more SNP calls were expected in alignments with a lower proportion of 

178 mapped reads and genome coverage (which is roughly indicative of a worse performance of the read 

179 mapping process).

180 A relationship between the genetic distance of isolates to the reference sequence and the total number 

181 of SNPs called was clearly observed in the alignments against the most distant reference genomes of 

182 K. pneumoniae, L. pneumoniae and P. aeruginosa. These sequences, whose distances to all the 

183 isolates were expected to be high, showed SNP counts one order of magnitude larger than to other 

184 reference sequences (S4 Table). 

185 In the case of S. marcescens, the alignments to strain UMH9 resulted in significantly fewer SNP calls 

186 when compared to mappings against the remaining reference sequences. This is explained by the 

187 presence of nearly identical isolates (outbreak isolates) to strain UMH9 (<160 SNPs detected). A 

188 similar case was found in L. pneumophila isolates 28HGV and 91HGV, which appeared to be nearly 

189 identical to the reference strain Paris, as less than 100 SNPs were detected in their respective 

190 mappings to this sequence. In all the species, most comparisons (53%-95%) between called SNPs 

191 from mappings against different references were significant (Wilcoxon, P < 0.05) (Table 1).

192

193 Phylogenetic analyses and tree comparisons

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.041004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041004
http://creativecommons.org/licenses/by/4.0/


194 We obtained a collection of MSAs including the same isolates and reference sequences, but differing 

195 only in the reference used for mapping by removing the regions absent in each mapping reference. We 

196 also obtained a ‘core’ genome MSA by removing simultaneously all the regions absent from any of 

197 the reference genomes for each species. Then, ML trees were inferred from each MSA. Due to 

198 methodology used to obtain the MSAs, the comparison between phylogenies strictly implies assessing 

199 the impact of reference selection. 

200 Firstly, we quantified the topological distances between phylogenetic trees from each species with 

201 Robinson-Foulds clusters (RF) and matching clusters (MC) metrics. Tree distances spanned a variable 

202 range of values depending on the species (Table 2, S6 Table). The normalized values of both metrics 

203 for the same tree comparisons were not equal (in most cases) but followed a similar global trend (Fig 

204 5).

205

206 *** Place Fig 5. around here *** 

207

208

209 Table 2. Descriptive statistics of topological distances per species.

Matching clusters Robinson-Foulds clusters

Species Mean Median SD Min Max Mean Median SD Min Max

K. pneumoniae 57.7 49 34.4 0 99 12.4 11 6.2 0 20

L. pneumophila 43.9 42 16.0 5 67 9.7 11 3.5 1 14

N. gonorrhoeae 40.0 44 13.5 25 51 8.7 10 3.2 5 11

P. aeruginosa 49.9 47 16.1 25 80 12.3 12 4.2 7 19

S. marcescens 31.3 29.5 7.9 21 43 6.5 6.5 2.9 3 10

210

211
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212 The comparisons involving phylogenies that include sequences mapped to the most divergent 

213 reference genomes of K. pneumoniae and P. aeruginosa showed the largest distance values. However, 

214 in most cases there was not a straightforward relationship between the genetic distance to the 

215 reference genomes and the topological distance between the corresponding trees (Fig 6). For example, 

216 K. pneumoniae trees using sequences from mappings to strains 342 and AR_0080 showed an identical 

217 topology (RF=0, MC=0), despite the ANI value between these references was <94%.

218

219 *** Place Fig 6. around here *** 

220

221 The congruence between different tree topologies was rejected in most comparisons by ELW tests 

222 (Table 3). The few cases in which congruence was not rejected could be explained by the close 

223 phylogenetic relationship between the reference genomes involved. 

224

225 Table 3. Congruent comparisons according to ELW test. All the other pairwise comparisons 

226 were not congruent.

Species Reference Congruent pair

HS09565 HS09565, NTUH-K2044

HS102438 HS102438, NTUH-K2044

NTUH-K2044 NTUH-K2044, HS09565

342 342, AR_0080

K. pneumoniae

AR_0080 AR_0080, 342

L. pneumophila Lansing 3 Lansing 3, U8W

227

228 Finally, in order to assess in detail the effects of reference selection on phylogenetic inference, trees 

229 from the same species were compared qualitatively. Changes in the phylogenetic relationships were 
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230 found when using different reference sequences in almost all cases except for two identical 

231 topologies. In some cases, the changes only affected branches in clades including closely related 

232 isolates (Fig 7A and 7B), while others implied more profound changes in the resulting topologies. 

233 Moreover, the alignments against a single reference genome seemed to underestimate the genetic 

234 distance between the consensus sequences of the isolates and the reference sequence. Branch lengths 

235 were thus shortened between the leaves involved. In some extreme cases (when mapping to 

236 genetically distant genomes 342, AR_0080 [K. pneumoniae], Lansing 3, U8W [L. pneumophila] and 

237 PA7 [P. aeruginosa]), this ‘attraction’ effect led to the clustering of reference genomes not used as 

238 references for mapping in a single clade, regardless their genetic distance to the isolates (Fig 7D). 

239 These differences were also observed when only the core genome was used to obtain the phylogenetic 

240 tree (S3 File). Additional species-specific differences are described next.

241

242 *** Place Fig 7. around here **** 

243

244 K. pneumoniae. The topologies inferred with KP1768, NTUH-K2044, HS09565 and HS102438 as 

245 reference sequences revealed the same phylogenetic relationships between clusters of isolates, 

246 although there were some differences within clusters depending on the reference used for the MSA. 

247 Isolates HGV2C-06 and HCV1-10 (not associated to any of these clusters) changed their placement in 

248 the topologies with HS11286 and AR_0143 as reference sequences (Fig 8). The tree topologies using 

249 342 and AR_0080 as reference genomes were identical and markedly different to the phylogenies 

250 derived with the other reference strains (S2 File).

251

252 ** Place Fig 8. around here *** 

253

254 L. pneumophila. The tree topologies using Lansing 3 and U8W as reference genomes were the most 

255 similar ones for this species (RF=1, MC=5) despite the large genetic distance between these 

256 sequences (ANI < 94%). Their topology was markedly different from the remaining topologies, where 

257 isolates grouped in three clades associated with reference genomes Paris, Alcoy and Philadelphia 1, 
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258 respectively (see Fig 7, S2 File). Notably, because of the epidemiological implications discussed 

259 below, isolates 28HGV and 91HGV were included in the Alcoy clade only when mapped to this 

260 reference genome (Fig 7C), whereas  in all other cases (excluding U8W and Lansing 3) the isolates 

261 grouped with the Paris strain.

262

263 N. gonorrhoeae. The most similar topologies resulted from using FA 1090 and 32867 as reference 

264 genomes, despite that 32867 and NCTC13798 had larger ANI values. Three clades of isolates could 

265 be identified in all the phylogenies. However, those isolates not included in any of these clusters 

266 changed their position in the tree when using NCTC13798 as reference sequence in comparison with 

267 the two other trees. As an exception, isolate NG-VH-50 always grouped close to the reference 

268 sequence it was mapped to (S2 File). This artifact was due to the low total number of reads obtained 

269 in sequencing this strain.

270

271 P. aeruginosa. Three clades were clearly identified in all the trees, with the exception of the one 

272 inferred using PA7 as reference sequence. In this tree, PA7 was placed in a cluster of isolates, 

273 whereas the remaining reference sequences clustered together (S2 File). The main topological 

274 differences depending on the reference were: (a) the placement of reference genome M18 and the 

275 isolate P5M1 in the tree, and (b) the phylogenetic relationships within the clade of reference genomes 

276 and P6M6, where the sequence chosen as reference for mapping occupied a basal position in the clade 

277 (Fig 9).

278

279 *** Place Fig 9. around here **** 

280

281 S. marcescens. Outbreak isolates grouped with strain UMH9 in all the trees. Branch lengths within 

282 this clade were practically null when UMH9 was used as the reference sequence, but these lengths 

283 increased when other reference sequences were used (Fig 10). As expected, the control isolate 

284 SMElx20 grouped with its closest reference (Db11) in all the cases. The phylogenetic relationships 

285 between reference genomes, isolates and clades changed depending on the reference used. The 
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286 reference genome WW4 grouped with isolate CNH62 in all the topologies except when this strain was 

287 used as reference (S2 File).

288

289 *** Place Fig 10. around here *** 

290

291 Distribution of recombination rates

292 Population recombination rates (ρ) were computed for 1000 bp sliding windows of the MSAs (S4 

293 Table) and the corresponding distributions were compared. Those regions that were not present in all 

294 the sequences of a species were removed from the alignments for these analyses.

295 Overall, the distributions of recombination rates were very similar regardless the reference genome 

296 used in each case. However, relevant differences in some peaks were found in different MSAs from 

297 the same species. For example, the MSAs built with 32867 or NCTC13798 (N. gonorrhoeae) as 

298 reference sequences showed at least two clearly observable peaks that were absent when FA 1090 was 

299 the reference (Fig 11).

300

301 *** Place Fig 11.  around here *** 

302

303 The number of significant pairwise comparisons between distributions of recombination rates 

304 (Kolmogorov-Smirnov, P < 0.05) differed widely depending on the species. While none of the 

305 comparisons between distributions of N. gonorrhoeae sequences showed significant results (although, 

306 as described previously, relevant differences were found), almost all S. marcescens estimated 

307 distributions were found to be significantly different (83.3%) (Table 1). In most cases, the 

308 significance of the comparisons between recombination rates could be explained by the phylogenetic 

309 relationships among the reference genomes. For example, the comparisons involving the most distant 

310 reference sequences of K. pneumoniae, L. pneumophila and P. aeruginosa showed significant 

311 differences, with the exception of the mutual comparisons between U8W and Lansing 3 (L. 

312 pneumophila), as well as AR_0080 and 342 (K. pneumoniae). Moreover, the significant comparisons 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.041004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041004
http://creativecommons.org/licenses/by/4.0/


313 in P. aeruginosa roughly reflected genetic distances between reference sequences, because using 

314 phylogenetically close reference sequences (M18 and PAO1 or UCBPP-PA14, Pa124 and 12939) 

315 resulted in non-significant differences between recombination rate distributions. In the case of S. 

316 marcescens, generalized significant comparisons could reflect nearly homogeneous divergence among 

317 the four reference genomes (S1 File).

318

319 Analysis of natural selection

320 Changes in the ratio ω (= dN/dS) due to reference choice could affect inferences on how natural 

321 selection has acted throughout the genome. This parameter was estimated in pairwise comparisons 

322 between concatenated CDS extracted from consensus sequences obtained from the mappings (S4 

323 Table).

324 In all cases, the dN/dS values computed for each gene were <1. Differences in dN/dS depending on the 

325 reference used (Fig 12) were significant (Kruskal-Wallis, P < 0.05) for all the species. The proportion 

326 of significant pairwise comparisons (Wilcoxon, P < 0.05) depended on the species, ranging from 

327 47.7% (L. pneumophila) to 83.3% (S. marcescens) (Table 1). In contrast with the results obtained in 

328 the parameters discussed previously, some of the comparisons involving the most genetically distant 

329 reference genomes (e.g., 342 strain of K. pneumoniae) as mapping references were not significant. 

330 Therefore, in this case it is difficult to explain the variability of ω based on the genetic distances 

331 between reference sequences for most species. N. gonorrhoeae could be treated as an exception, 

332 because the comparisons involving the reference strain FA 1090 (the most genetically distinct one) 

333 were the only significant ones. These differences were also observed when only the core genome was 

334 used to compute ω.

335

336 *** Place Fig 12. around here ***

337

338 Discussion

339 The impact of using different reference sequences for mapping NGS data sets has been studied 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.041004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041004
http://creativecommons.org/licenses/by/4.0/


340 previously in clinically relevant bacteria such as Escherichia coli [22], Salmonella enterica [26], 

341 Listeria monocytogenes [23,24,28,42] or Mycobacterium tuberculosis [25,28], as well as in 

342 eukaryotes [21,43,44], including Homo sapiens [45]. However, a systematic analysis of the 

343 evolutionary and epidemiological implications of reference choice, encompassing different bacterial 

344 species and diverse reference genomes is still missing. This work has been aimed at filling this gap. 

345 Indeed, in some cases, reference selection analysis is incidental, spanning a restricted number of 

346 reference sequences [46]. Among the species included in this work, the influence of reference 

347 diversity on SNP calling has been previously assessed in K. pneumoniae and N. gonorrhoeae [28], 

348 whereas L. pneumophila, P. aeruginosa (both showing high genomic variability [33,35]) and S. 

349 marcescens have not been studied under this perspective.

350

351 Statistics on raw mapping data such as the proportion of mapped reads and the coverage of the 

352 reference genome can provide preliminary information on the effect of reference choice and its effects 

353 on subsequent analyses, because these parameters reflect the performance of read alignment. As 

354 suggested previously, the genetic distance between short-read data and the reference genome is 

355 directly related to incorrect read alignment and unmapped reads due to mismatches between the 

356 sequence of the reads and the homologous positions in the reference [19,20,22]. This is also 

357 confirmed by our results on read alignment statistics. The percentage of the reference genome covered 

358 by mapped reads may be affected not only by genetic differences in homologous regions, but also by 

359 the presence of strain-specific genomic regions [21], because genes absent in the reference genome 

360 are expected to be lost during the mapping and in the subsequent multiple alignment. Moreover, as 

361 proposed by Lee and Behr [25], there might exist a coverage threshold beyond which subsequent 

362 phylogenetic analyses would be strongly affected, thus reducing the accuracy of evolutionary and 

363 epidemiological inferences derived from such inaccurate mappings.

364 The effect of sequencing coverage of the isolates on mapping seems to be generally independent of 

365 reference choice, as shown by the values of average coverage depth obtained in this study. Similarly 

366 to Pightling et al. [23], we have not observed any relationship between sequencing coverage and other 

367 variables during HTS data processing. However, as shown by one N. gonorrhoeae isolate (NG-VH-
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368 50), the reference mapping approach could strongly underestimate the genetic distance between the 

369 assembly of the genome of a particular isolate and that of the reference genome below a certain 

370 threshold of total reads, thus affecting subsequent phylogenetic inferences.

371

372 Benchmarking of SNP calling performance for HTS data seems to be more common compared to 

373 other steps of genomic analyses [27,47–54]. Although most of these works are focused on assessing 

374 the effect of the selected pipeline (and its underlying algorithm), the use of different reference 

375 sequences has also been identified as a potential source of biases that could interact with other 

376 variables of the pipeline such as selection of the variant caller and read alignment software [23,24,28]. 

377 The number of SNPs is often used as a criterion for defining clusters of epidemiologically related 

378 isolates [55]. Our results confirm the existence of a systematic and significant influence of reference 

379 choice on the number of identified SNPs in all the species analyzed. They also reflect the correlation 

380 between genetic distance of isolates to the reference genome and the number of called variants which, 

381 as highlighted in previous studies, could be associated with the increase of false positives when the 

382 precision of SNP calling decreases [23,28,42]. Overlapping ranges in the number of SNPs called 

383 depending on the reference sequence used for mapping reflects the genomic heterogeneity within the 

384 sets of isolates selected from each species.

385

386 Recovering phylogenetic relationships between organisms or strains within a species represents an 

387 essential procedure in evolutionary and epidemiological studies. Biases in how and how many SNPs 

388 are called as well as in the gene content of the final assemblies due to reference choice could affect 

389 phylogenetic inferences [47]. The overall negative results obtained in congruence tests also reflect the 

390 existence of a systematic effect of reference choice on tree topologies: the only statistically 

391 concordant comparisons (6 out of 73) between topologies of the same species were found when 

392 references chosen for mapping were (a) closely related sequences (K. pneumoniae ST 23 strains), or 

393 (b) extremely distant sequences, showing ANI values close to the boundaries for species delimitation. 

394 The topologies resulting from using phylogenetically unrelated, extremely divergent genomes were 

395 mutually similar while, in contrast, generally showed high topological distance values when compared 
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396 to trees built using non-extreme references. This kind of loss in tree resolution has already been 

397 observed (although limited to clonal bacteria [25]). In our case, it may be originated from a reduced 

398 proportion of shared gene content between isolates and extremely divergent sequences, along with the 

399 existence of barriers to recombination between populations, as the ability for recombination and its 

400 frequency is expected to decrease with genetic distance [56]. However, these differences were also 

401 observed when considering only the core genome. This suggests that the effect of the reference on 

402 phylogenetic inference is not only due to the presence/absence of genes in the accessory genome. It 

403 might be due also to differences in core genome sequences arising from biased/erroneous 

404 identification of variants.

405

406 The effect of reference choice on phylogenetic inferences is pervasive in these five species. However, 

407 despite the differences between topologies and even lack of congruence, these changes might not be 

408 necessarily associated with altered epidemiological inferences. A similar situation was studied by 

409 Usongo et al. [26] on a S. enterica epidemiological data set, in which two different topologies 

410 (RF=24) were resolutive enough to distinguish different outbreak clusters. However, we have 

411 observed that the use of different reference sequences affects phylogenetic relationships between 

412 clades and even to the association of specific isolates to transmission clusters, thus potentially 

413 affecting epidemiological inferences. This has been observed even when using phylogenetically 

414 related strains from the same non-clonal species as a reference, in contrast with previous studies in 

415 clonal bacteria [25] where differences in phylogenetic inference appeared when using reference 

416 genomes from close but different species. This is most obvious in the L. pneumophila data set, in 

417 which two isolates changed their positions and were placed in the same cluster of the reference 

418 sequence used for mapping, while the overall topology remained practically unchanged.

419

420 Differences between trees were quantified by topological distance metrics, reflecting, in most cases, 

421 lack of correlation between tree distances and genetic distances of the corresponding reference 

422 genomes. As suggested previously [22,27], when working with a genetically diverse set of isolates, it 

423 is impossible to select a single reference close to all of them, and single-reference mapping biases are 
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424 expected to increase with genomic divergence. Therefore, these differences in tree topologies could be 

425 partially explained by the use of genetically heterogeneous data sets. Moreover, its impact on tree 

426 reconstruction may be alleviated by using multiple references or a reference pangenome instead 

427 [22,57–60]. If data sets of isolates were homogenous (i.e., the isolates are equally close to the same 

428 reference) as the one employed by Lee and Behr [25], we would expect that read alignment 

429 performance and tree resolution would decrease as we select progressively distant reference genomes 

430 [23,24,28]. 

431 However, we could not ignore that the presence of recombination (particularly in highly 

432 recombinogenic species such as K. pneumoniae and L. pneumophila) could reduce accuracy in 

433 phylogenetic reconstruction [22], thus explaining to some extent the topological incongruence or the 

434 differences in branch lengths [61].

435 Selecting one reference or another for mapping can also affect the estimates of phylogenetic distance 

436 between isolates [22,26], which is reflected in the branch lengths of the trees. This is clearly 

437 illustrated by the phylogenetic analysis of the S. marcescens data set, which reveals that tree branches 

438 connecting outbreak isolates increased their lengths when consensus sequences were calculated from 

439 alignments using reference genomes that were phylogenetically unrelated to the isolates (different 

440 from strain UMH9). Similar findings were observed for Listeria monocytogenes sequences by 

441 Pightling et al. [23].

442

443 The development and increasing availability of high-throughput, whole-genome sequencing 

444 technologies have allowed assessing evolutionary rates and dynamics at the genome level which, in 

445 turn, contribute to a better understanding of emerging diseases and transmission patterns [62]. 

446 Therefore, the study of natural selection and recombination, frequent processes in bacteria [63], is 

447 relevant not only from an evolutionary point of view but also in its application to molecular 

448 epidemiology [64]. The impact of reference selection on the inference of evolutionary parameters 

449 such as substitution and recombination rates at the genome level has not been explored thoroughly 

450 previously. In this work, variations in dN/dS and ρ have been detected in all the species depending on 

451 the reference sequence used for mapping. This might have an effect in subsequent inferences on the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 14, 2020. ; https://doi.org/10.1101/2020.04.14.041004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.14.041004
http://creativecommons.org/licenses/by/4.0/


452 action of natural selection and the detection of recombination events. Significant differences in ρ 

453 seemed to be more strongly correlated with the genetic distance between the genomes used as 

454 reference for mapping than dN/dS.

455

456 Short-read mapping of HTS data against a reference genome is a common approach in bacterial 

457 genomics. Our results show that the impact of selecting a single reference is pervasive in the genomic 

458 analyses of five different bacterial species, and likely in many others. All the parameters evaluated 

459 were affected by the usage of different reference sequences for mapping and, notably, alterations in 

460 phylogenetic trees modified in some cases the epidemiological inferences. Furthermore, working with 

461 heterogeneous sets of isolates seems to be a particularly challenging scenario for the selection of a 

462 single reference genome. Mapping simultaneously to multiple references or against a reference 

463 pangenome may reduce the effect of reference choice. In any case, exploring the effects of different 

464 references on the final conclusions is highly recommended.

465

466 Methods

467 The workflow used in this study is summarized in Fig 13.

468

469 *** Place Fig 13. around here *** 

470

471 For each species, we selected different (3-8) publicly available closed whole-genome sequences as 

472 references and 20 sets of short-reads from whole-genome sequencing projects. Reads were mapped to 

473 each selected reference genome per species and consensus sequences were obtained from quality 

474 SNPs of each mapping. Consensus sequences from the mappings to the same reference genome were 

475 added to the MSA of all references of each species. For the analysis of each MSA, (a) we considered 

476 only those genome regions present in the reference used for mapping and (b) we obtained a ‘core’ 

477 MSA by removing all the regions absent from any of the reference sequences. Finally, we studied the 

478 impact of reference choice on the ML trees inferred from each MSA, recombination rates calculated 
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479 on ‘core’ MSAs and dN/dS ratios calculated considering only coding sequences.

480

481 Selection of reference genomes

482 Closed whole-genome sequences of K. pneumoniae, L. pneumophila, N. gonorrhoeae, P. aeruginosa 

483 and S. marcescens available in June, 2018 were downloaded from NCBI GenBank [65] in fasta 

484 format. Plasmids were removed with seqtk v1.0 (https://github.com/lh3/seqtk) (subseq command). 

485 Genome sequences were annotated using Prokka v1.12 [66] (with default settings) and the set of intra-

486 species co-orthologous genes was inferred using Proteinortho v5.11 [67] (option -p=blastn+). Coding 

487 sequences (CDS) of orthologous genes in each species were aligned with MAFFT v7.402 [68] (with 

488 default settings) and concatenated to obtain a CDS-coding core genome multiple sequence alignment 

489 (MSA) for each species.

490 A maximum-likelihood (ML) tree was inferred from each MSA with IQ-TREE v1.6.6 [69] using the 

491 GTR substitution model and 1000 fast bootstrap replicates [70]. After consideration of the core 

492 genome phylogenies (distance between strains and clusters) and the usage of different references in 

493 the literature, we selected a set of genomes to be employed as reference genomes for each species. 

494 The number of reference sequences selected was roughly proportional (≈10%) to the initial number of 

495 publicly available sequences from each species. In brief, we included (a) the NCBI reference genome 

496 of the species, (b) relevant or commonly used references for mapping, and (c) representative 

497 sequences of different lineages. Detailed information about the selected reference genomes is 

498 provided in S1 Table.

499 The selected reference genomes of each species were aligned with progressiveMauve v2.4 [71] and 

500 gaps were added to regions where homologous sequences were absent in any genome in the alignment 

501 (see ‘Code availability’). The XMFA output alignment was converted into fasta format with 

502 xmfa2fasta.pl (https://github.com/kjolley/seq_scripts/blob/master/xmfa2fasta.pl).

503 To evaluate the genetic divergence between the selected reference sequences, we used three different 

504 procedures: (a) we built ML trees with IQ-TREE, as above, (b) we computed Average Nucleotide 

505 Identities [72] (ANIs) using FastANI v1.1 [73], and (c) we performed an in silico multi-locus 
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506 sequence typing (MLST) using mlst v1.15.1 (https://github.com/tseemann/mlst) for K. pneumoniae, 

507 N. gonorrhoeae and P. aeruginosa; and using BLAST+ [74] and the EWGLI [75] database for L. 

508 pneumophila. This procedure was not used with S. marcescens.

509

510 Selection of isolates for analysis

511 20 sets of short-reads from whole genome sequencing projects of the five species (S2 Table) were 

512 randomly selected (with the R [76] function sample_n) among those obtained in our laboratory and/or 

513 deposited at the SRA as detailed next. Sequences in our laboratory were obtained with Illumina 

514 MiSeq 300x2 paired-ends (P. aeruginosa) or NextSeq 150x2 paired-ends (the remaining species). The 

515 K. pneumoniae data set included isolates of 9 different STs obtained in a surveillance study of ESBL-

516 producing strains in the Comunitat Valenciana (Spain). The L. pneumophila data set comprised 

517 isolates obtained from environmental surveillance at 2 hospitals of the Comunitat Valenciana. The N. 

518 gonorrhoeae data set includes isolates obtained in a surveillance study in different regions of Spain 

519 (Comunitat Valenciana, Madrid and Barcelona). The P. aeruginosa data set included isolates from 2 

520 outbreaks detected in the Comunitat Valenciana. Finally, the S. marcescens data set included 9 almost 

521 identical outbreak isolates genetically close to strain UMH9, one isolate close to the reference of the 

522 species, Db11, and 10 unrelated isolates downloaded from the SRA repository. 

523

524 Quality control analysis and sequence read processing

525 The quality of the reads (before and after trimming and filtering) was assessed using FastQC v0.11.8 

526 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and quality reports were merged with 

527 MultiQC v1.7 [77]. Illumina, Truseq and Nextera adapters were removed with cutadapt v1.18 [78]. 

528 Reads were trimmed and filtered using Prinseq-lite v0.20.4 [79]. 3’-end read positions with quality 

529 <20 were trimmed and reads with overall quality <20, >10% ambiguity content and total length <50 

530 bp were removed.

531

532 Mapping, variant calling and consensus sequences
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533 Reads passing the above filters were mapped to each selected reference of each species using BWA 

534 MEM v0.7.17 [80] (with default settings). SAM files were converted to binary format (BAM), sorted 

535 and indexed with samtools v1.6 [81] (commands sort and index). Mapping statistics were obtained 

536 using samtools (commands flagstats and depth).

537 SNPs were identified in each alignment with samtools and bcftools v1.6 [82] (commands mpileup and 

538 call, respectively). Indels were excluded from the analysis (option --skip-variants indels). Remaining 

539 SNPs after filtering (quality >40, mapping quality [MQ] >30, depth >10 and under twice the average 

540 depth and distance of >10 pb to any indel) were counted with bcftools (command stats).

541 Consensus sequences were obtained from quality-filtered SNPs and the appropriate reference 

542 sequence using bcftools (command consensus) for every possible combination of isolates and 

543 reference genomes from the same species.

544

545 Multiple sequence alignment of reference genomes and consensus sequences

546 The MSAs of the reference sequences from each species were used as ‘backbones’ on which the 

547 consensus sequences from the mappings to the same reference genome were added using a custom 

548 Python script (see ‘Code availability’). XMFA-formatted MSAs were converted to fasta format as 

549 described previously. Finally, for the analysis of each MSA we considered only those genome regions 

550 present in the reference genome, using a custom Python script (see ‘Code availability’) to mask the 

551 absent regions from the global MSA. This procedure (see Fig 13) allowed us to obtain a collection of 

552 MSAs (one per each reference sequence) including the same isolates and reference genomes (per 

553 species), differing only in the reference sequence used for mapping. In addition, we also obtained a 

554 ‘core’ genome MSA by removing all the regions absent from any of the reference sequences.

555

556 Analysis of natural selection

557 We explored the effect of reference choice on the inference of natural selection at the whole genome 

558 level by computing pairwise dN/dS ratios with the PAML package 4.9i [83] between concatenated 

559 CDSs of consensus sequences that were built using the same reference. CDSs were extracted using 
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560 coordinates of the corresponding reference obtained with Prokka (see ‘Selection of reference 

561 genomes’). A custom Python script (see ‘Code availability’) and the emboss package v6.6.0 [84] were 

562 used. We also computed pairwise dN/dS values between consensus sequences considering only the 

563 core genome CDSs (i.e., shared by all the selected references from each species).

564

565 Distribution of recombination rates

566 Population recombination rates (ρ = 4Ner; where Ne is the effective population size and r is the 

567 recombination rate per base pair and generation) were estimated using LDJump [85] (with a window 

568 of 1000 pb) from the ‘core’ genome MSAs. The distributions of recombination rates along MSAs 

569 were compared for the different reference genomes of each species and were represented graphically 

570 with the R package ggplot2 [86].

571

572 Comparisons of phylogenetic trees

573 ML trees were inferred from each MSA with IQ-TREE as described above, and visualized with iTOL 

574 v4 [87].

575

576 Congruence tests. We used expected likelihood weight (ELW) tests [88], as implemented in IQ-

577 TREE, to assess the congruence between phylogenies that differed only in the genome chosen as 

578 mapping reference. The ELW test computes weights for each topology based on its likelihood given a 

579 MSA, with the total sum of weights being equal to 1 and higher weights assumed to be those best 

580 supported by the data. Decreasing weights are progressively collected to build a confidence set until 

581 their cumulative sum is equal to or higher than 0.95. At this point, the trees included in the confidence 

582 set are accepted as congruent.

583

584 Topological distances. Pairwise distances between tree topologies obtained with the different 

585 mapping references were assessed using TreeCmp v2.0 [89]. Robinson-Foulds [90] clusters (RF) and 

586 matching clusters [89] (MC) metrics were calculated for each comparison. The RF distance reflects 
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587 the number of bipartitions differing between topologies, whereas the MC distance computes the 

588 minimal number of moves needed to convert a topology into another. Therefore, two identical 

589 topologies will receive a value equal to 0 with both metrics. Conversely, distance values will increase 

590 as the compared trees become more different.

591

592 Qualitative comparison of trees. Finally, a qualitative assessment of trees was performed in order to 

593 identify specific changes in the phylogenetic relationships between isolates due to the choice of 

594 different reference genomes. Particularly, we focused on clustering of isolates and alterations that 

595 could affect epidemiological inferences (e.g., including/excluding one particular sample in an 

596 outbreak).

597

598 Statistical analyses

599 To study the effect of using different reference genomes on mapping statistics (proportion of mapped 

600 reads, genome coverage, average depth), number of called SNPs, and dN/dS values, non-parametric 

601 Kruskal-Wallis [91] tests were performed with R 3.5 (function kruskal.test). If a Kruskal-Wallis test 

602 showed significant differences between groups (reference sequence), we performed pairwise 

603 Wilcoxon [92] tests with Bonferroni-corrected p-value for multiple comparisons (with the R function 

604 pairwise.wilcox.test) in order to identify significant differences between specific reference sequences.

605 Pairwise Kolmogorov-Smirnov [93] tests (R function pairwise_ks_test 

606 [https://github.com/netlify/NetlifyDS]), which compare observed distributions of data, were 

607 performed in order to identify significant differences in the distributions of recombination rates 

608 depending on the mapping reference.

609

610 Code availability

611 Custom scripts used in this work are available in https://github.com/cvmullor/reference.

612

613 Supporting information
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614 S1 Fig. Core genome trees of the complete whole-genome sequences downloaded from 

615 GenBank. The circles at the tips denote the sequence type (ST) of the different strains in the trees of 

616 the species with an MLST scheme available for in-silico typing. The black triangles denote the 

617 branches with bootstrap support values <70. (A) K. pneumoniae, (B) L. pneumophila and (C) P. 

618 aeruginosa trees were rooted on their corresponding longest branches. As all the branches connecting 

619 the different clades of (D) S. marcescens and (E) N. gonorrhoeae trees were approximately the equal 

620 length, they were rooted arbitrarily for a better visualization.

621 S1 Table. Strains selected as references for mapping.

622 S2 Table. Isolates (short-read sequence data) selected for mapping.

623 S3 Table. ANI (%) calculated between the selected reference genomes.

624 S4 Table. Summary statistics per reference and species. Median, minimum and maximum values 

625 are shown.

626 S5 Table. Mapping and SNP statistics per reference and species.

627 S6 Table. RF and MC distances.

628 S1 File. Phylogenetic trees of the reference genomes selected for each species.

629 S2 File. Phylogenetic trees per reference and species. Strain selected as reference for mapping in 

630 each tree is indicated in the corresponding newick file name.

631 S3 File. ‘Core’ genome phylogenetic trees per reference and species. Strain selected as reference 

632 for mapping in each tree is indicated in the corresponding newick file name.
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887 LEGENDS TO FIGURES

888 Fig 1. Distribution of proportion of mapped reads depending on reference choice.

889 Fig 2. Distribution of coverage of the reference genome depending on reference choice.

890 Fig 3. Distribution of the average depth depending on reference choice.

891 Fig 4. Distribution of the number of SNPs depending on reference choice.

892 Fig 5. Comparison of Robinson-Foulds (RF) and Matching Clusters (MC) normalized distances 

893 calculated between trees from the same species.

894 Fig 6. Comparison of RF distances against ANI calculated between the reference genomes 

895 selected for each species.

896 Fig 7. Impact of reference choice on phylogenetic trees of L. pneumophila. ML trees included the 

897 selected reference sequences of L. pneumophila and the consensus sequences obtained from mappings 

898 against strains (A) Philadelphia 1, (B) Paris, (C) Alcoy and (D) Lansing 3. Clusters of isolates related 

899 with references Paris (red) and Alcoy (blue) are coloured in the first three phylogenies. Isolates 

900 28HGV and 91HGV (highlighted in yellow) were placed in different clades in the trees when using 

901 references Paris and Alcoy. Clade of references resulting from using Lansing 3 as reference genome is 

902 coloured in red.

903 Fig 8. Impact of reference choice on phylogenetic trees of K. pneumoniae. ML trees included the 

904 selected reference sequences from K. pneumoniae and the consensus sequences obtained from 

905 mappings against strains (A) HS11286 and (B) NTUH-K2044. Isolates HGV2C-06 and HCV1-10 

906 (yellow) changed their placement depending on reference choice.

907 Fig 9. Impact of reference choice on phylogenetic trees of P. aeruginosa.

908 ML trees included the selected reference sequences of P. aeruginosa and the consensus sequences 

909 obtained from mappings against strains (A) M18 and (B) 12939. Reference M18 and isolate P5M1 

910 (yellow) alter their phylogenetic relationships depending on reference choice.

911 Fig 10. Impact of reference choice on phylogenetic trees of S.marcescens.

912 ML trees included the selected reference sequences from S. marcescens and the consensus sequences 

913 calculated from alignments against strains (A) UMH9 and (B) WW4. Outbreak clade is shown in red.

914 Fig 11.  Recombination rate distribution depending on reference choice between ‘core’ MSAs 
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915 including sequences from N. gonorrhoeae.

916 Fig 12. Distribution of dN/dS depending on reference choice.

917 Fig 13. Overview of the workflow used. 

918
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