Supplementary Information:

Supplementary Tables:

Supplementary Table 1: Human milk and blood antigen derived oligosaccharides studied in this work

Compound ^a	Abbreviation	Supplier	Structure ^b
Lactose	Lac	Sigma Aldrich	○ -●
2-Fucosyllactose	2'FL	lsoSep	
3-Fucosyllactose	3'FL	IsoSep	
Difucosyllactose	DFL	Dextra Laboratories	
Lacto- <i>N</i> -biose	LNB	Elicityl	•
Galacto-N-biose	GNB	Sigma Aldrich	•
Lacto-N-tetraose	LNT	Elicityl IsoSep	
Lacto- <i>N-neo</i> tetraose	LNnT	Dextra Laboratories	- ∎∕ ⁰⁻⁰
Lacto- <i>N</i> -fucopentaose I	LNFP I	Dextra Laboratories	
Lacto-N-fucopentaose II	LNFP III	Hneywell Fluka	
Lacto-N-fucopentaose III	LNFP III	Carbosynth	
Lacto-N-difucohexaose I	LNDFH I	Dextra Laboratories Carbosynth	
Lacto-N-difucohexaose II	LNDFH II	Elicityl Dextra Laboratories	
Blood group antigen H triose type 1	H triose type 1	Elicityl	
Blood group antigen A triose	A triose	Elicityl	■▲
Lewis A antigen triose	Le ^a triose	Elicityl	
Lewis B antigen tetraose	Le ^b tetraose	Carbosynth	

^aAll carbohydrates were > 95% pure unless otherwise stated.

^bGlycan structures presentation according to Symbol Nomenclature for Glycans (SNFG) (https://www.ncbi.nlm.nih.gov/glycans/snfg.html)

Ligand	<i>Κ</i> _D (μΜ)	<i>K</i> _D (μΜ) Ν₀		<i>-T</i> ∆S	ΔG
			(kcal mol ⁻¹)	(kcal mol ⁻¹)	(kcal mol ⁻¹)
LNB	2.86 ± 0.26	0.85 ± 0.02	-29.25 ± 0.86	21.69	-7.65
GNB	11.04 ± 0.06	1.25 ± 0.03	-12.93 ± 0.42	6.17	-6.75
LNT	10.30 ± 0.60	0.88 ± 0.01	-19.36 ± 0.23	12.55	-6.85
Lactose	n.b.				
2'FL	n.b.				

Supplementary Table 2: Binding and thermodynamic parameters of *Rh*LNBBP determined by ITC.

Data are from duplicates and binding parameters are means of duplicates with standard deviation. n.b.: affinity too low to be determined. N_0 is the molar binding stoichiometry.

Supplementary rable 5. Dinuing parameters of Ki	Le Druelenn	ineu by	JER
Ligand	<i>Κ</i> _D (μΜ)	R_{\max}	X ²
LNB	6.7 ± 0.7	10.4	0.10
GNB	11 ± 0.9	10.4	0.06
Le ^b tetraose	1.8 ± 0.1	25.1	0.54
Le ^a triose	3.2 ± 0.5	17.3	0.32
H triose type 1	11.3 ± 2.5	8.8	0.06
LNT	n.b.		
Blood group A antigen triose	n.b.		
2'FL	n.b.		
3'FL	n.b.		
LNnT	n.b.		
Lactose	n.b.		

Supplementary Table 3: Binding parameters of <i>Ri</i> Le ^{a/b} BP determined by SPR

The binding parameters are means of duplicates with standard deviation. n.b. indicates low affinity to ligand precluding determination of binding parameters. R_{max} and χ^2 denote the maximum binding level from the fits to a one binding site model and the statistical goodness of the fit to the same model, respectively.

Substrate	Enzyme	KM	K cat	k _{cat} /K _M	specific activity ^a
		(mM)	(s ⁻¹)	(s⁻¹ mM⁻¹)	(U mg⁻¹)
LNT	RhLnb136	1.45 ± 0.05	86 ± 1	59.3	58.5 ± 0.58
LNT	<i>Ri</i> Le ^{a/b} 136	-	-	-	0.21 ± 0.00
LNT	<i>Er</i> Lnb136	0.68 ± 0.07	160 ± 7	235.3	
LNT	<i>Er</i> Lnb136 Y145A	n.d.	n.d.	48	

Supplementary Table 4. Kinetic parameters of *Rh*Lnb136, *Ri*Le^{a/b}136 and *Er*Lnb136

^a specific activity determined towards 3.5 mM LNT. n.d.: Lack of curvature of the Michaelis Menten plot preclude determination of kinetic parameters. Data are means of triplicates with standard deviation.

Supplementary Table 5. Specific activities of *Rh*GLnbp112 *and Ri*GLnbp112

Substrate	RhGLnbp112	RiGLnbp112
	(U mg⁻¹)	(U mg⁻¹)
LNB	12.2 ± 0.5	22.6 ± 0.2
GNB	9.6 ± 0.1	16.9 ± 0.4

Data are means of triplicates with standard deviation. Specific activities determined towards 2 mM LNB or GNB.

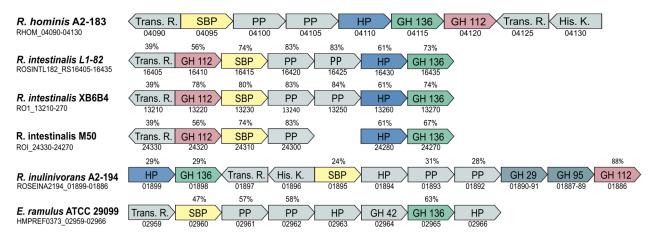
	<i>Er</i> Lnb136 Se-Met	ErLnb136 Native
PDB ID	6KQS	6KQT
Data collection ^a		
Beamline	SLS X06DA	KEK-PF BL5A
Wavelength (Å)	0.978	1.000
Space group	<i>P</i> 3 ₁ 21	<i>P</i> 3₁21
Unit cell (Å)	a = b = 132.7, c = 82.5	<i>a</i> = <i>b</i> = 132.3, <i>c</i> = 82.2
Resolution (Å)	45.75–1.40 (1.42–1.40)	50.0-2.00 (2.03-2.00)
R _{merge}	0.145 (1.909)	0.233 (1.065)
Number of observations	3,288,573 (155,651)	556,706
Unique reflections	153,888 (8,031)	56,318 (2,757)
Mean <i>Ι/σ</i> (<i>Ι</i>)	12.2 (1.7)	13.4 (3.0)
CC (1/2)	0.999 (0.728)	0.980 (0.824)
Completeness (%)	100.0 (100.0)	100.0 (100.0)
Multiplicity	20.1 (19.4)	9.9 (9.6)
Anomalous completeness (%)	100.0 (100.0)	_
Anomalous multiplicity	10.2 (9.8)	_
Refinement		
Resolution	47.20–1.40	47.04–2.00
No. of reflections	155,798	53,440
<i>R</i> factor/ <i>R</i> _{free} (%)	14.8 (17.2)	14.3 (18.1)
No. of atoms	5,920	5,787
No. of solvents	835 (water), 1 (glycerol)	706 (water), 1 (triethylene glycol), 1 (Na⁺)
RMSD from ideal values		
Bond lengths (Å)	0.016	0.011
Bond angles (°)	1.975	1.63
Ramachandran plot (%)		
Favored	95.9	95.8
Allowed	4.1	4.2
Outlier	0	0

Supplementary Table 6: Crystallographic data collection and refinement statistics.

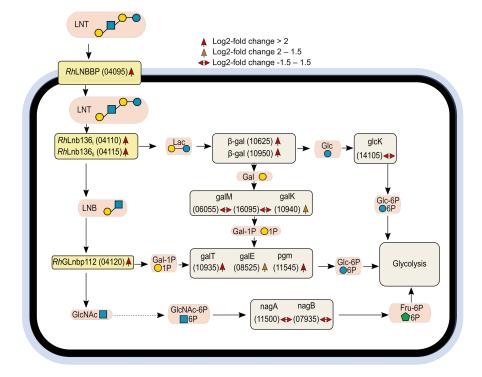
^aValues in parentheses are for the highest resolution shell.

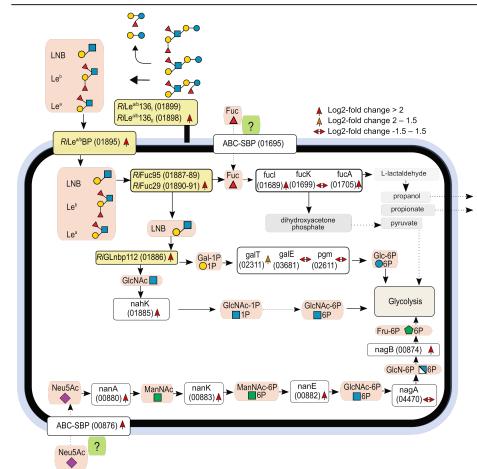
		,				
Protein	Source organism	PDB (chain)	Z score	RMSD (Å)	N align ^a	‰seq ^b
ErLnb136 (residues 7-224)						
SurA-like putative peptidyl-prolyl cis-trans isomerase	Helicobacter pylori	5EZ1 (A)	7	3.2	70	19 (6)
Hypothetical protein LIC12922	Leptospira interrogans	3NRK (A)	5.8	4.8	105	10 (5)
<i>E</i> rLnb136⊫ (residues 242-663)						
LnbX (GH136)	Bifidobacterium longum	5QQC (H)	50.3	1.4	416	44 (43)
α-L-fucosidase BT_1002 (GH141)	Bacteroides thetaiotaomicron	5MQP (F)	32	3.1	312	16 (12)

Supplementary Table 7: Summary of structural similarity Dali server search of *Er*Lnb136.


Data were obtained using Dali server. ^aNumber of aligned residues ^bSequence identity of aligned residues and the corresponding overall (global) sequence identity showed in parenthesis

Locus tag	Accession ^a	Designation	Orientation	Sequence (5'->3')
RHOM_04115	G2T0V1	RhLnb136 _{ii}	Forward	AGGAGATATACCATGGATGACAGGCTCATACAGGAC
RHOM_04115	G2T0V1	<i>Rh</i> Lnb136 _∥	Reverse	GGTGGTGGTGCTCGAGGCCCAACGGAATAATCGTATTATCC
RHOM_04110	G2T0V0	<i>Rh</i> Lnb136 ₁	Forward	AGGAGATATACCATGGATGAATCGGAAATATTGTCTGGAT
RHOM_04110	G2T0V0	<i>Rh</i> Lnb136 ₁	Reverse	GGTGGTGGTGCTCGAGGCCCGCCCGGTTTTCTGA
RHOM_04120	G2T0V2	RhGLnbp112	Forward	AGGAGATATACCATGGATGACTTTAAAAGAGGGACGTG
RHOM_04120	G2T0V2	RhGLnbp112	Reverse	GGTGGTGGTGCTCGAGGCCAATGTTATACCATTTAATCTCG
RHOM_04095 (AA36-454)	G2T0U7	<i>Rh</i> LNBBP	Forward	TTTCAGGGCGCCATGGGTGCAGCTGAAACCAGCC
RHOM_04095 (AA36-454)	G2T0U7	<i>Rh</i> LNBBP	Reverse	GACGGAGCTCGAATTCTTATTCACTAATGTTAAATTCAAC
ROSEINA2194_01898 (AA26-861)	C0FT31	<i>Ri</i> Le ^{ª/b} ∥136	Forward	TTTCAGGGCGCCATGGGTAATGCAGGGACAACCT
ROSEINA2194_01898 (AA26-861)	C0FT31	<i>Ri</i> Le ^{ª/b} ∥136	Reverse	GACGGAGCTCGAATTCTTATCTTCTGTAAAGCTCAAATTCT
ROSEINA2194_01899 (AA36-340)	C0FT32	<i>Ri</i> Le ^{ª/b} 136	Forward	CAGCCATATGCTCGAGGGAGAAAATATTAAGATTTCCAAAG
ROSEINA2194_01899 (AA36-340)	C0FT32	<i>Ri</i> Le ^{ª/b} 136	Reverse	CAGCCGGATCCTCGAGCTAATTCCATTTAATCGTATCG
ROSEINA2194_01885	C0FT18	<i>Ri</i> GLnbp112	Forward	TTTCAGGGCGCCATGGGTAATAAAGAACACGGTGGAAGAGT
ROSEINA2194_01885	C0FT18	<i>Ri</i> GLnbp112	Reverse	GACGGAGCTCGAATTCTTAAACAGCGTACCATTTAATCTCA
ROSEINA2194_01895 (AA23-470)	C0FT28	<i>Ri</i> Le ^{a/b} BP	Forward	TTTCAGGGCGCCATGGGAAATGCAAATACATCCGCAAACAC
ROSEINA2194_01895 (AA23-470)	C0FT28	<i>Ri</i> Le ^{a/b} BP	Reverse	GACGGAGCTCGAATTCTTATTGCGCAGTTTCTGAAACCTC
ROSEINA2194_01891/01890	C0FT24/C0FT23	<i>Ri</i> Fuc29	Forward	TTTCAGGGCGCCATGGGGAGGACACCCGAAGAACAGA
ROSEINA2194_01891/01890	C0FT24/C0FT23	<i>Ri</i> Fuc29	Reverse	GACGGAGCTCGAATTCTTATGATTCTTGATAAACCTCAA
ROSEINA2194_01889/01888/01887	C0FT22/C0FT21/C0FT20	<i>Ri</i> Fuc95	Forward	TTTCAGGGCGCCATGGGGGATTTAAGTAAATATGATATTTG
ROSEINA2194_01889/01888/01887	C0FT22/C0FT21/C0FT20	<i>Ri</i> Fuc95	Reverse	GACGGAGCTCGAATTCTTATCCTGTAATTTTTGCATTTC
ROSEINA2194_02198 (AA29-975)	C0FTX7	<i>Ri</i> GH98	Forward	TTTCAGGGCGCCATGGGCAAAACGGGATCAGAAT
ROSEINA2194_02198 (AA29-975)	C0FTX7	<i>Ri</i> GH98	Reverse	GACGGAGCTCGAATTCTTAAACTATATCAAAATACACAT
HMPREF0373_02965	U2PDT9	<i>Er</i> Lnb136	Forward	TTTCAGGGCGCCATGGGAAAATTGTGTGAAAATCAGCAGG
HMPREF0373_02965	U2PDT9	<i>Er</i> Lnb136	Reverse	GACGGAGCTCGAATTCTTAAATCAGATGGATTTCATTCTCC
HMPREF0373_02965	U2PDT9	<i>Er</i> Lnb136_Y145A	Forward	CGAAAACAGATCACCATGAGCCCTGGTAAACAGATCCTGG
HMPREF0373 02965	U2PDT9	<i>Er</i> Lnb136 Y145A	Reverse	CCAGGATCTGTTTACCAGGGCTCATGGTGATCTGTTTTCG


Supplementary Table 8. Primers for cloning and mutagenesis.


^a UniProtKB accession number

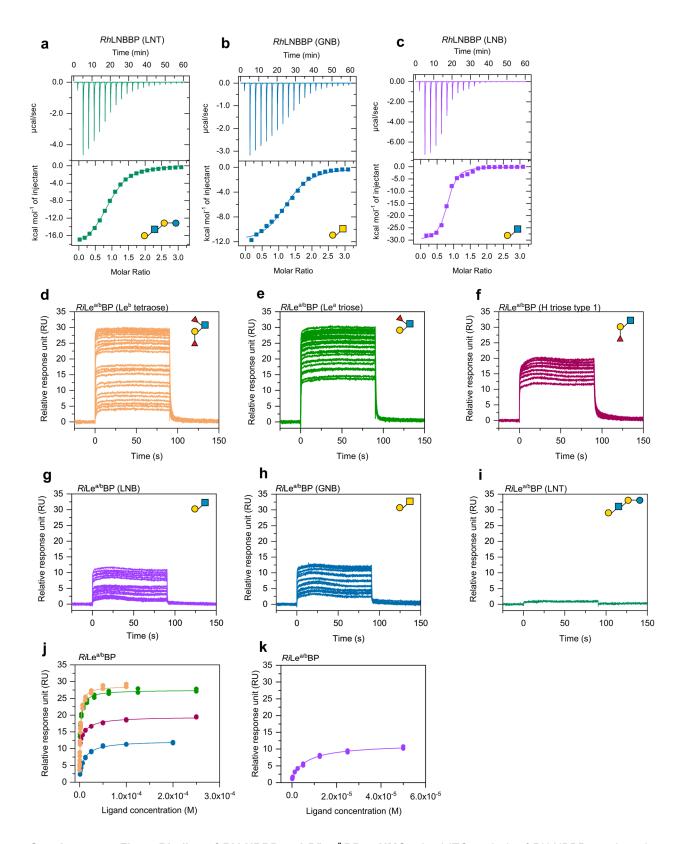
Supplementary Figures:

Supplementary Fig. 1: The conservation of the core HMO utilization loci within *Roseburia* **spp.** and *Eubacterium ramulus.* Gene locus IDs are below the genes, which are denoted according to their protein products: transcriptional regulator (Trans. R.); ABC transporter solute binding protein (SBP); ABC transporter permease protein (PP), hypothetical proteins (HP), glycoside hydrolase (GH) and histidine kinase sensory protein (His. K.). Sequence identities to the *R. hominis* A2-183 corresponding homologs are above the genes. Genes coding for GH136 family members were identified via the dbCAN database.

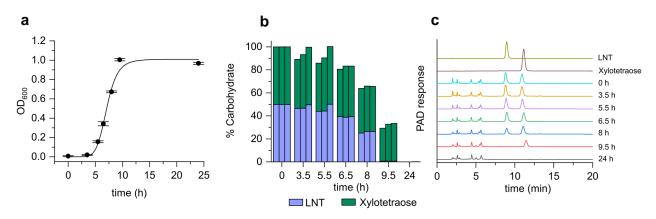
Supplementary Fig. 2: Proposed HMOs core degradation pathways of *R. hominis* and *R. inulinivorans.* (a) Proposed model for LNT utilization in *R. hominis* and (b) for fucosylated HMOs utilization in *R. inulinivorans,* based on proteomics data of cells grown on LNT (a, *R. hominis*) and HMOs from mother milk (b, *R. inulinivorans*) relative to glucose. Enzymatic steps suggested from literature and detected in proteomics data are indicated in solid arrows, steps suggested by literature but not detected in proteomics data are shown as dotted arrows. Characterized proteins in the present study are highlighted in yellow squares and Locus IDs of *R. hominis* (Rhom_xxxxx) and *R. inulinivorans* (Roseina2194_xxxxx) are abbreviated with the last numbers after the hyphen.

а

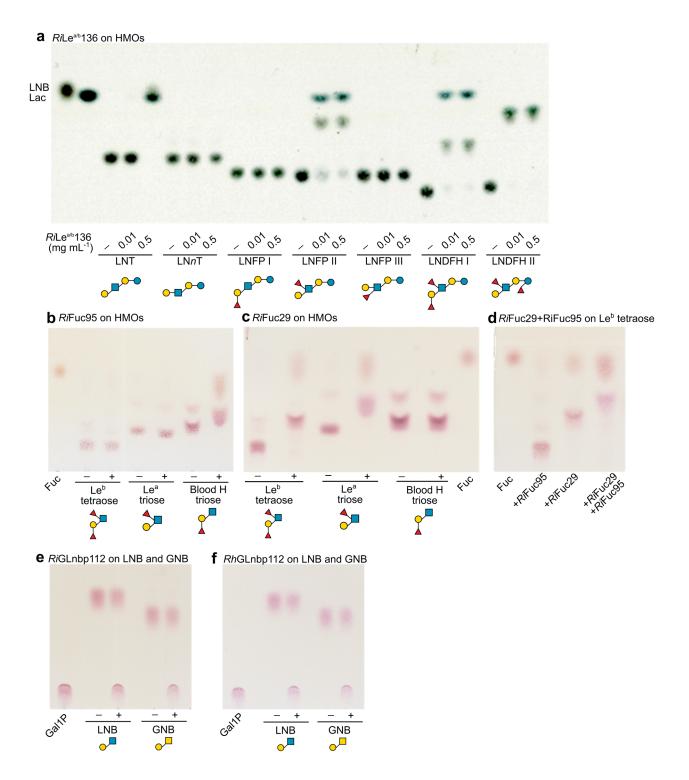
b

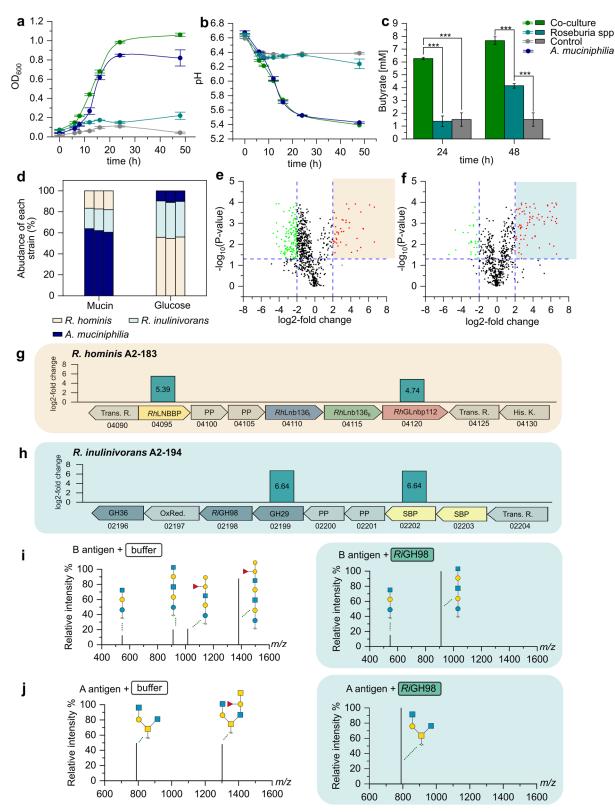

а	<i>R. inulinivorans</i> L-fucose acid utilization locus

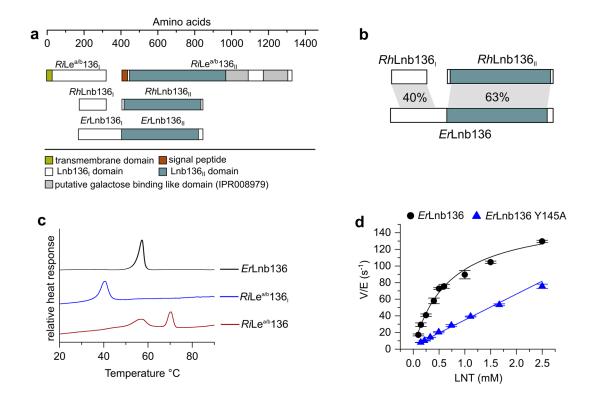
Locus ID	Log2 fold		Protein	Annotation	
	HMOs/GIc	Mucin/Glc			
01688				Transcriptional regulator	
01689	6.64	6.64	fucl	L-fucose isomearse	
01690				Hypothetical protein	
01691	2.52		ABC-PP	ABC transporter, permease protein	
01692	3.04	6.64	ABC-PP	ABC transporter, permease protein	
01693	5.18	4.72	ABC-PP	ABC transporter, permease protein	
01694			ABC-PP	ABC transporter, permease protein	
01695	5.59	6.64	ABC-SBP	ABC, solute binding protein	
01696	1.65	2.1		FucU transport protein	
01697	0.37			Hypothetical protein	
01698				Carbohydrate kinase	
01699	1.15	1.92	fucK	L-fuculokinase	
01700	1.87			Nucleotide binding domain ParA family protein	
01701	1.74	1.71		Hypothetical protein	
01702	1.46			Hypothetical protein	
01703	2.58	5.2		BMC domain protein	
01704				Ethanolamine/Propanediol utilization protein	
01705	3.82	3.64	fucA	L-fuculophasphate aldolase	
01706	2.43			Hypothetical protein	
01707	3.97	3.35		Hypothetical protein	
01708	3.15	3.68		CoA dependent aldehyd dehydrogenase	
01709	3.83	4.12		Alcohol dehydrogenase	
01710	2.77	4.24		BMC domain protein	
01711	3.21	3.12		BMC domain protein	
01712	2.49	3.01		BMC domain protein	
01713	2.73	2.67		BMC domain protein	
01714	3.39	3.64		Phosphate propanoyltransferase	
01715	4.27			Ethanolamine/Propanediol utilization protein	
01716	3.07	2.29		NADH dehydrogenase like subunit protein	
01717	2.11	2.52		BMC domain protein	
01718	2.65			Transcriptional regulator Log2- fold cr	nange
01719	3.14	2.82		Propandiol dehydratase	
01720	2.64			Pyruvate lyase -10 0	10

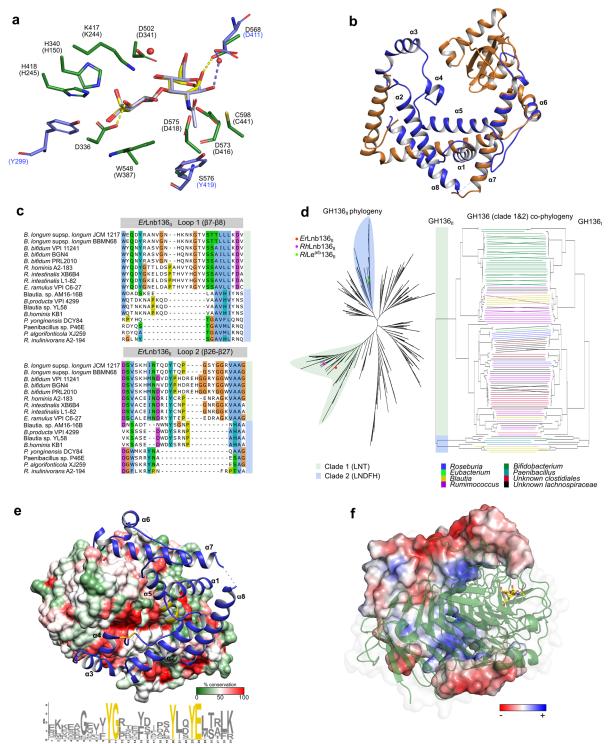

R. inulinivorans N-acetylneuraminic acid utilization locus

Locus ID	Log2 fold change		Protein	Annotation
	HMOs/Glc	Mucin/Glc		
00873				Transcriptional regulator
00874	2.11	1.32	nagB	glucosamine-6-phosphate deaminase
00875	0.28	1.65		Transcriptional regulator
00876	2.96	4.71		ABC transporter, solute binding protein
00877				Hypothetical protein
00878			ABC-PP	ABC transporter, permease protein
00879			ABC-PP	ABC transporter, permease protein
00880	2.57	5.02	nanA	N-acetylneuraminate lyase
00881	1.95	3.67	YhcH	YhcH family protein
00882	2.71	4.25	nanE	N-acetylmannosamine-6-phosphate epimerase
00883	2.89	4.65	nanK	N-acetylmannosamine kinase
00884	1.52	3.21	AE	Acetylesterase
				-10 0 10


Supplementary Fig. 3: *R. inulinivorans* upregulated L-fucose and *N*-acetylneuraminic acid utilization loci. (a) Upregulation of L-fucose utilization cluster of *R. inulinivorans*. (b) Upregulation of putative *N*-acetylneuraminic acid utilization cluster of *R. inulinivorans* cells grown on purified HMOs from mother milk and mucin, respectively, relative to glucose (Glc). (a,b) The heatmaps depict Log2-fold changes of proteins expressed by cells grown on HMOs or mucin, respectively, relative to glucose. Locus numbers Roseina2194_xxxxx are abbreviated with the last numbers after the hyphen.


Supplementary Fig. 4: Binding of *Rh***LNBBP and** *Ri***Le**^{a/b}**BP to HMOs. (a-c)** ITC analysis of *Rh*LNBBP to selected HMOs. (**d-i**) Reference and blank corrected sensograms illustrating binding of selected HMOs to *Ri*Le^{a/b}BP. (**j-k**) One binding model fitted to the binding isotherms from the sensograms in (**d-i**). ITC and SPR experiments were performed as duplicates.


Supplementary Fig. 5: Oligosaccharide uptake preference of *R. hominis* during growth on an equimolar LNT and xylotetraose mixture. (a), Growth curve of *R. hominis* on YCFA supplemented with 0.5 % (w/v) of an equal mixture of xylotetraose and LNT. (b), Time course of relative percentages of xylotetraose and LNT in culture supernatants from (a) calculated based on HPAEC-PAD analyses as exemplarily represented in (c). (c), HPAEC-PAD chromatograms showing time course analysis of culture supernatants of *R. hominis* grown on YCFA supplemented with 0.5 % (w/v) of an equal mixture of xylotetraose and LNT. Observed peaks between 0 and 6 minutes are medium components. Growth experiment (a) and HPAEC-PAD analysis (b,c) were performed in triplicates.


Supplementary Fig. 6: Substrate preference of *Ri*Le^{a/b}136 and intracellular decomposition of GH136 degradation products in *Roseburia*. (a), Substrate preference of *Ri*Le^{a/b}136 towards HMOs; reactions with 0.01 or 0.5 mg mL⁻¹ of *Ri*Le^{a/b}136, respectively. (b), Fucosidase activity of *Ri*Fuc95 on HMOs. (c), Fucosidase activity of *Ri*Fuc29 on HMOs. (d), Complete defucosylation of Le^b tetraose by orchestral action of *Ri*Fuc29 and *Ri*Fuc95. Data show hindrance of *Ri*Fuc95 by α -(1 \rightarrow 2)-linked L-fucose on Le^b tetraose. (e), Phosphorylase activity of *Ri*GLnbp112. (a-f), +: reactions with enzyme, -: controls without enzyme. Analyses were performed in duplicates.

Supplementary Fig. 7: Crossfeeding of Roseburia in A. muciniphilia co-cultures on mucin. (a-b), Growth of monocultures and co-cultures of *Roseburia* spp. and A. muciniphila on mucin. (c), Butyrate in culture supernatants of monocultures and co-cultures as in (a) at 24h and 48h. (d), Relative strain abundance during growth of co-cultures on mucin and glucose at 16 h determined based on MS/MS analyses. (e), Volcano plot depicting upregulation pattern of proteins in *R. hominis* cells or (f), in *R. inulinivorans* cells grown in mucin co-culture relative to glucose. (g), Upregulated proteins in the core HMOs locus of *R. hominis* cells as in (e). Upregulated proteins in putative blood group utilization locus of *R. inulinivorans* cells as in (f). (i-j) Degradation of Blood group antigen A and B by *Ri*GH98 analyzed by nanoLC-MS. (a-j), Growth cultures were performed in four replicates, proteomics analyses originate from biological triplicates and nanoLC-MS analyses were performed in duplicates. (c) Three asterisk (***) indicate a statistically significant difference at a level of p < 0.001

Supplementary Fig. 8: Organization, stability and functional interactions of GH136 domains. (a) domain organization of GH136 enzymes in *R. inulinivorans, R. hominis* and *E. ramulus.* (b) Amino acid sequence identities between the two GH136 domains *Rh*Lnb136₁ and *Rh*Lnb136₁₁ from *R. hominis* and *Er*Lnb136 from *E. ramulus.* (c) Differential scanning calorimetry thermograms showing the unfolding of *Er*Lnb136 and of *Ri*Le^{a/b}136₁ and *Ri*Le^{a/b}136. The unfolding of the two domains of ErLNb136 appears to overlap giving rise to a single asymmetric thermal transition consistent with the cooperative unfolding of the domains. By contrast, the unfolding of *Ri*Le^{a/b}136 features two well resolved transitions, the first is likely attributed to the unfolding of the *Ri*Le^{a/b}136₁ domain while the second is likely to be attributed to the unfolding of the remaining part of the protein including the *Ri*Le^{a/b}136₁₁ domain. (d), Hydrolysis kinetics of *Er*Lnb136 and the mutant *Er*Lnb136 Y145A on LNT. DSC analyses (c) were performed as duplicates and kinetic measurements (d) were performed as triplicates.

Supplementary Fig. 9: Evolution of GH136 enzymes. (a) Superimposition of LNB (yellow) bound in *Er*Lnb136 (green) and LNB (grey) in *Bl*LnbX from *B. longum* (light blue). Conserved residues are shown for *Er*Lnb136 and *Bl*LnbX (in parentheses). Residues Y299, Y419 and D411 of *Bl*LnbX that are variant compared to *Er*Lnb136 are shown in light blue to highlight differences in active site architecture and ligand binding. Water molecules are red spheres and hydrogen bonds are dashed lines in *Er*Lnb136 (yellow) and *Bl*LnbX (light blue). **(b)** Superimposition of *Er*Lnb136₁ (blue) and most related structural homolog 5EZ1 (chain A) from *Heliobacter pylori* (orange), highlighting the large differences in protein fold. **(c)** Partial amino acid sequence alignment of GH136₁₁ domains showing shortened loops around the active site in *R. inulinivorans* as compared to *Er*Lnb136 of *E. ramulus* **(d)** Phylogenetic tree of 985 GH136₁₁ sequences identified by BLASTP search of *Rh*Lnb136₁₁ or *Ri*Le^{a/b}136₁₁ against non-redundant database (sequences with an evalues < 10⁻¹⁰ are included). Tanglegram showing co-evolution of GH136₁ and GH136₁₁ colored by amino acid sequence conservation across 117 sequence as presented in (d) and cartoon presentation (blue) of *Er*Lnb136₁ with conserved residues (yellow) as identified from a sequence motif generated via the MEME suite from 117 GH136₁ sequences as in (d). **(f)** Electrostatic surface of *Er*Lnb136₁₁ and cartoon presentation of ErLnb136₁₁ (green).