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Abstract  

Coffee and tea are extensively consumed beverages worldwide. Observational studies have shown 

contradictory findings for the association between consumption of these beverages and different health 

outcomes. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle 

factors on disease onset. We conducted epigenome-wide association studies (EWAS) on coffee and tea 

consumptions in 15,789 participants of European and African-American ancestries from 15 cohorts. 

EWAS meta-analysis revealed 11 CpG sites significantly associated with coffee consumption (P-value 

<1.1×10-7), nine of them annotated to the genes AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and 

PHGDH, and two CpGs suggestively associated with tea consumption (P-value<5.0×10-6). Among 

these, cg14476101 was significantly associated with expression of its annotated gene PHGDH and risk 

of fatty liver disease. Knockdown of PHGDH expression in liver cells showed a correlation with 

expression levels of lipid-associated genes, suggesting a role of PHGDH in hepatic-lipid metabolism. 

Collectively, this study indicates that coffee consumption is associated with differential DNA 

methylation levels at multiple CpGs, and that coffee-associated epigenetic variations may explain the 

mechanism of action of coffee consumption in conferring disease risk. 

Key words: EWAS, Coffee consumption, Tea consumption, PHGDH, Fatty liver disease. 
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Introduction 

Excluding water, coffee and tea are the most commonly consumed beverages around the world and 

preference for one or the other varies between individuals as well as in populations1. Both coffee and 

tea are sources of complex compounds with different chemical classes, the most commonly known is 

caffeine2. Caffeine belongs to the methylxanthines family, which consists of frequently ingested 

pharmacologically active substances, for example, through the stimulation of the central nervous 

system3. Although caffeine is present in both coffee and tea, its concentration in tea is much lower4. 

Moreover, both beverages differ on the bioavailability of polyphenols and other chemical compounds5. 

The biochemistry of coffee and tea has been extensively documented, indicating that different 

roasting, temperatures, or brewing of the two can impact the abundancy and bioavailability of their 

complex compounds6,7. There has been an ongoing debate as to whether habitual consumption of 

coffee8 and tea9 is beneficial or harmful to health. The conclusion varies among outcomes; lowering 

the risk for type 2 diabetes and cardiovascular diseases10,11, and increasing serum levels of low-density 

lipoprotein (LDL) and total cholesterol12. Given the presence of different compounds in these two 

beverages with diverse effects on disease risk, observational studies have given rise to contradictory 

findings, especially regarding coffee consumption8. Previous studies, however, have shown a 

consistent association of coffee consumption with lower risk of overall mortality13 and liver diseases 

14,15. Yet, the biological mechanisms underlying associations of coffee and tea consumptions with 

disease risk remain to be investigated.  

Epigenetics represents modifications to DNA that do not change the underlying DNA sequence, but 

instead, influence gene expression16. The most extensively studied epigenetic mechanism is DNA 

methylation, where a methyl group (-CH3) is added or removed to the cytosine nucleotide that is 

followed by a guanine nucleotide in the DNA sequence, known as Cytosine-Phosphate Guanine 

(CpG)16, resulting in altered gene expression. DNA methylation levels differ by age, sex and lifestyle 

factors, including dietary exposures17-19. Here, we postulate that alteration of DNA methylation via 

coffee or tea consumptions is an underlying mechanism linking the intake of these beverages to health 

outcomes. Previous epigenome-wide association studies (EWAS) have reported suggestive association 
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of a few CpGs with tea or coffee consumptions20,21; however, these studies were limited by modest 

sample sizes. In the present study, we conducted large-scale EWAS meta-analyses on coffee and tea 

consumptions in 15,789 participants of European and African-American ancestries from 15 cohort 

studies. The associated CpG were analyzed to evaluate their correlations with genetic variation and 

gene expression. Additionally, we explored the potential causal effect of coffee consumption on the 

identified CpGs and different health outcomes and performed experimental studies for a candidate 

gene to investigate its link to liver diseases.  

Methods 

Study population 

Figure 1 depicts an overview of the study flow. This study was conducted within the framework of the 

Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE consortium)22 and 

additional participating cohorts, resulting in a total sample size of 15,789 participants. Clinical 

characteristics of the participants included in our study are presented in Table 1. The discovery phase 

included 9,612 participants of European ancestry (EA) from the following cohorts (listed in 

alphabetical order): Airwave23, Avon Longitudinal Study of Parents and Children (ALSPAC)24, two 

independent datasets from the ESTHER Study (ESTHER_a and ESTHER_b)25, Framingham Heart 

Study (FHS)26, Cooperative Health Research in the Augsburg Region Study (KORA)27, two cohorts of 

the Rotterdam Study (RS-II and RS-III)28 and TwinsUK29. We sought replication of the associated 

CpG sites from the discovery phase, in an independent population consisting of 6,177 participants of 

European and African American (AA) ancestries (18.3%). The replication phase included two 

ethnically different sub cohorts of Atherosclerosis Risk in Communities Study (ARIC_EA and 

ARIC_AA)30, two ethnically different sub cohorts from the Cardiovascular Health Study (CHS_EA 

and CHS_AA)31, and two independent studies from the European Prospective Investigation into 

Cancer and Nutrition (EPIC_Italy and EPIC_IARC)32. All participants provided written informed 

consent, and all contributing cohorts confirmed compliance with their local research ethics committees 
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or Institutional Review Boards. Detailed information of the participating cohorts are provided in 

Supplementary Information. 

Assessment of coffee and tea consumption 

Data on coffee and tea intake was collected either by interview or food frequency questionnaires 

(FFQs). As some FFQs collected beverage intake over different periods of time (monthly, weekly or 

daily), data was harmonized among the cohorts to cups per day by taking the average intake of 

coffee/tea over the period of time specified by the FFQ utilized by each cohort. For instance, if the 

consumption was collected over the period of one month, daily consumption was estimated from the 

available data and multiplied with the frequency of consumption. Furthermore, if the beverage intake 

data was collected categorically, the median value was taken from the available data (e.g. 2.5 cups/day 

was used for the 2-3 cups/day category). If applicable, we excluded herbal tea and others, as green and 

black tea are derived from the different processing and harvesting of leaves from the same plant -

Camellia sinensis9. Herbal tea does not contain any caffeine and green tea contains approximately half 

the caffeine compared to black tea (3.1 mg/fluid ounce, 5.9 mg/fluid ounce)33. In a subset of cohorts 

(RS-III-2, ALSPAC, EPIC_IARC, CHS_EA and CHS_AA), coffee and tea consumption data were 

collected a few years prior to the collection of whole blood, from which DNA methylation data was 

measured. Due to evidence from a previous research showing that coffee and tea consumptions tend to 

be stable over longer periods of time34, we used these data for our analysis. 

DNA methylation profiling 

All participating cohorts measured DNA methylation in peripheral blood using the Infinium Human 

Methylation 450K Bead-Chip (Ilumina, San Diego, CA, USA) except Airwave cohort, where the 

Infinium Methylation EPIC (850K) Bead-Chip was used35. DNA methylation status was calculated 

with the β-value, signal from the methylated probe divided by the overall signal intensity. The 

methylation percentage of CpG sites was reported as a continuous β-value range between 0 (no 

methylation) and 1 (full methylation). Additional details are outlined in Supplementary Information. 

Cohort specific methods of normalization are shown in Table S1. 
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EWAS of coffee and tea consumption 

DNA methylation was considered as the dependent variable with coffee or tea consumption each as 

predictors of interest. Conventionally, each participating cohort performed an EWAS as a set of mixed 

effects linear-regression models, one CpG site at a time. In total, two linear mixed effects regression 

models were computed for each of the two exposures of interest. In the basic model (Model 1): we 

included age, sex, smoking status (never, former, and current), white blood cells (either measured or 

imputed based on the Houseman algorithm36 as fixed effects and technical covariates as random 

effects to control for batch effects. In the second model (Model 2), we additionally adjusted for body 

mass index (BMI, kg/m2) and alcohol consumption (g/day). The findings from Model 2 were 

considered as the primary results, as it is the most conservative model. All potential confounders were 

collected at the same time point of blood sampling for DNA methylation. Genetic principal 

components were included as covariates to account for population stratification if required. A detailed 

description of the covariates included in the models by each cohort is provided in Supplementary 

Information.  

EWAS meta-analysis  

Since data originated from multiple sources, we performed quality control (QC) centrally. Each 

participating cohort submitted the EWAS summary statistics for the QC followed by meta-analysis. 

For this step, we used a specific package developed for QC within EWAS, namely "QCEWAS"37. We 

computed the genomic inflation factor (lambda) and checked quantile-quantile (QQ) plots for Model 2 

for both coffee and tea consumption EWASs. Additionally, we computed effect-size distribution plots 

to assess the effect-size scale of each participating cohort. Results across independent cohorts were 

combined in both discovery and replication phase by using inverse variance fixed effects meta-

analysis implemented in METAL v.2011-03-2538. Moreover, we assessed heterogeneity of effect 

estimates among cohorts using Cochran's Q-test for heterogeneity implemented in METAL38. If there 

was nominal evidence for heterogeneity (P < 0.05), we performed random-effects inverse-variance 

meta-analysis using the method implemented in GWAMA39. 
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The discovery EWAS meta-analysis was conducted in 9,612 EA participants and differentially 

methylated CpGs at the suggestive threshold of P < 5.0×10-6 were interrogated. The CpGs that passed 

this threshold were tested for replication in the independent panel comprising 6,177 participants of 

European and African American ancestries, using the same models as implemented in the discovery 

phase and with a Bonferroni corrected p-value threshold, defined as 0.05 divided by the number of 

associated CpGs in the discovery phase. The significantly associated CpGs were retrieved from the 

combined meta-analysis with the whole samples at the epigenome-wide significance threshold (P < 

1.0×10-7). If the CpG was missing from more than 4 participating cohorts, it was removed. Forest plots 

of the study-specific effect estimates were computed for significantly associated CpG sites. 

Due to potential discrepancy in DNA methylation patterns between different ethnicities, we conducted 

meta-analysis EWASs separately in EA (n=12,868) and AA (n=2,921) participants. We first examined 

whether the significantly associated methylation sites in EA participants pass the Bonferroni-corrected 

p-value threshold in AA participants. Next, we tested whether the significant methylation sites in AA 

participants replicated in the meta-analysis of the EA participants. 

Furthermore, we examined the potential impact of time varying exposure in cohorts that had different 

time points for methylation and coffee/tea consumption data collection. For this analysis, we excluded 

four cohorts (RS-III-2, ALSPAC, CHS_EA and CHS_AA) with different time points of data 

collection from the overall sample and meta-analyzed the remaining cohorts. 

Integration of EWAS results with genetic variation and gene expression  

DNA methylation may have an impact on the transcription of genes, hence we used genetic variants 

and gene expression data from five Dutch biobanks (BIOS-BBMRI database) in a total of 3,841 whole 

blood samples (http://www.genenetwork.nl/biosqtlbrowser/), and explored whether DNA methylation 

levels of the significant CpGs affect expression levels of their annotated/nearby genes (cis-expression 

quantitative trait methylation (eQTM)). The BIOS-BBMRI database was also used to seek genetic 

variants influencing methylation levels of nearby or far-away genes (cis- and trans-methylation 

quantitative trait loci (meQTL)).  
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Functional and regulatory annotation of CpG sites  

We conducted hypergeometric tests with Bonferroni correction to compare the genomic characteristics 

of the replicated CpGs with the whole set of CpGs that we analyzed, using the Infinium Human 

Methylation 450 Bead-Chip annotation files. Further, we queried cis-meQTLs in the platform of 

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS)40. Using 

this platform, we examined the overlap between cis-meQTLs with signals in the NHGRI-EBI Catalog 

of published GWAS41. As epigenetic signatures are tissue dependent, and our analysis was limited in 

blood samples, we used the GTEx expression database - which provides an insight into differential 

expression of relevant genes across different human tissues. For this analysis, we used genes annotated 

by Illumina 450K (or the nearest gene) to the significantly associated CpGs. Moreover, we searched 

PubMed using the ‘CpG id’ as the keyword to search any potential links between significant CpGs and 

different health outcomes. Pathway analysis for the annotated genes was also performed using the IPA 

software (https://www.qiagenbioinformatics.com/products/ ingenuity-pathway-analysis/).  

Mendelian Randomization (MR) study  

We implemented a two-sample Mendelian randomization (MR) approach to evaluate the potential 

causal effect of coffee consumption on the identified CpGs, investigating whether the DNA 

methylation changes are a consequence of coffee consumption (Figure S1). To this end, we used 50 

independent SNPs reported in previous GWASs on coffee consumption as instrumental variables (IVs) 

(Table S2)42,43.  

In addition, we assessed the potential causal association of coffee-related CpGs with a number of 

cardiovascular and metabolic traits, including coronary heart disease (CHD), type 2 diabetes (T2D), 

BMI, waist-hip ratio (WHR), lipid traits (HDL-C, LDL-C, total cholesterol, triglycerides), and fatty 

liver disease. For each CpG, we calculated instrumental variables for DNA methylation levels based 

on methylation quantitative trait loci (cis-meQTL) obtained from FHS cohort (N~4,170)44. Two 

methods were used to explore causality. First, a weighted genetic risk score (GRS) was constructed for 

coffee consumption. The other MR approaches implemented were inverse variance weighting (IVW), 

and sensitivity MR analyses: weighted median and MR-Egger. We used MR-PRESSO (Mendelian 
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Randomization pleiotropy residual sum and outlier) to identify horizontal pleiotropic outliers in multi-

instrument summary-level MR testing (https://github.com/rondolab/MR-PRESSO)45. All MR methods 

for multiple genetic instruments were conducted using the statistical “MendelianRandomization” R-

package46. Additional information of the MR methods implemented in this study is outlined in 

Supplementary Information. 

Association of coffee consumption, DNA methylation and liver function 

Due to the well-documented association between coffee consumption and liver function14,47, we also 

ran a three-way association to assess the correlation of a coffee-associated CpG with liver enzymes 

and fatty liver disease in the Rotterdam Study (Figure S2). We first tested the cross-sectional 

associations between coffee consumption and liver enzymes in the Rotterdam Study (n=5,192). Serum 

GGT, ALT and AST levels were determined using Merck Diagnostica kit on an Elan Autoanalyzer 

(Merck, Darmstadt, Germany). The liver enzymes were log transformed to obtain normal distribution. 

Linear regression models were implemented where each liver enzyme was an outcome, and main 

exposure was coffee consumption (cups/day) adjusted for sex, age, smoking, BMI and excessive 

alcohol consumption. Excessive alcohol consumption was defined as >14 units/week for women and 

>21 units/week for men. Next, we tested the association of the coffee-related CpG with liver enzymes 

in the Rotterdam Study (n=1,406)14. Generalized linear mixed effects models were fitted using the R 

package lme4 and liver enzymes were log transformed to obtain normal distribution. Three models 

were analyzed, where each liver enzyme was an outcome, adjusted for age, sex, BMI, smoking, whole 

blood cells proportion, batch effects and excessive alcohol consumption. All analyses were performed 

using the statistical package R, version 3.0.2.  

Quantitative RT-PCR and knockdown of PHGDH in liver cell lines 

Seven established human hepatoma cell lines (including PLC/PRF/5, HepG2, HepRG, Hep3B, 

SNU398, SNU449 and Huh6) were cultured separately. HepG2, Hep3B, SNU398, SNU449 and Huh6 

were cultured in Dulbecco's modified Eagle’s medium (Invitrogen-Gibco, Breda, the Netherlands) 

complemented with 10% (v/v) fetal calf serum (Hyclone, Lonan, UT), 100 IU/ml penicillin, 100 μg/ml 
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streptomycin, and 2 mM L-glutamine (Invitrogen-Gibco). The hepatoblastoma cell line PLC/PRF/5 

was cultured on fibronectin/collagen/albumin-coated plates (AthenaES) in Williams E medium 

(Invitrogen-Gibco, Breda, the Netherlands) complemented with 10% (v/v) fetal calf serum, 100 IU/ml 

penicillin, 100 μg/ml streptomycin, and 2 mM L-glutamine. The human liver progenitor cell line - 

HepaRG was cultured in William's E medium supplemented with 10% (v/v) fetal calf serum, 100 

IU/ml penicillin, 100 μg/ml streptomycin, 5 μg/ml insulin (Sigma-Aldrich, St. Louis, MO), and 50 μM 

hydrocortisone hemisuccinate (Sigma-Aldrich, St. Louis, MO). The identity of all cell lines was 

confirmed by STR genotyping. 

RNA was isolated using the Machery-NucleoSpin RNA II kit (Bioke, Leiden, The Netherlands) and 

quantified using a Nanodrop ND-1000 (Wilmington, DE, USA). cDNA was synthesized from total 

RNA using a cDNA Synthesis Kit (TAKARA BIO INC). The cDNA of all target genes was amplified 

for 50 cycles and quantified with a SYBRGreen-based real-time PCR (Applied Biosystems) according 

to the manufacturer’s instructions. GAPDH was considered as a reference gene to normalize gene 

expression. Relative gene expression was normalized to GAPDH using the formula 2−ΔΔCT (ΔΔCT = 

ΔCTsample − ΔCTcontrol). All primer sequences are included in Table S3. 

Lentiviral pLKO knockdown vectors (Sigma–Aldrich) targeting PHGDH or control were obtained 

from the Erasmus Biomics Center and produced in HEK293T cells. After a pilot study, the shRNA 

vectors exerting optimal gene knockdown were selected (shRNA sequences: 

CCGGCAGACTTCACTGGTGT CAGATCTCGAGATCTGACACCAGTGAAGTCTGTTTTT and 

CCGGCGCAGAACTCACTTGTG GAATCTCGAGATTCCACAAGTGAGTTCTGCGTTTTT, 

target sequences are CAGACTTCACTG GTGTCAGAT and CGCAGAACTCACTTGTGGAAT, 

respectively). Stable gene knockdown cells were generated after lentiviral vector transduction and 

puromycin (2.5μg/ml; Sigma) selection. The relative expression levels of PHGDH with nine lipid-

associated genes, reported in the previous GWAS and experimental studies48-50, were examined. 
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Results 

Characteristics of the cohorts participating in the discovery phase (n=9,612) and replication phase 

(n=6,177) are presented in Table 1. The mean age across all participating cohorts ranged from 41.1 

years in Airwave cohort to 78.6 years in CHS_EA cohort. The majority of the study participants were 

women (61.44%). Mean total coffee intake among cohorts ranged from 0.6 cups/day in the CHS_AA 

cohort to 3.5 cups/day in the RS-III-2 cohort, while mean total tea intake ranged from 0.3 cup/day in 

the EPIC_Italy cohort to 3.4 cups/day in TwinsUK (Table 1).  

The quantile-quantile (QQ) plots were generated and corresponding lambda value computed for the 

overall meta-analysis of the discovery and replication panels combined, indicated no statistical 

inflation in the fully adjusted models for coffee or tea consumption (Figure S3). Furthermore, we 

inspected effect-size distribution plots indicating that one cohort (Lifelines, n=186) had an effect-size 

scale non-comparable to other participating cohorts (Figure S4). As the Lifelines cohort had a high 

standard deviation for coffee consumption, and also no data on tea consumption, we excluded this 

cohort from further analysis. 

EWAS meta-analysis of 9,612 participants with European ancestry in the discovery phase identified 

11 CpG sites associated with coffee consumption at a suggestive significant level (P < 5.0×10-6) in 

model 2 (Table 2A). We sought for replication of these CpGs in independent cohorts of both 

ancestries (EA and AA) comprising 6,177 participants, where 7 CpGs were successfully replicated 

(0.05/11 CpGs P < 4.5×10-3). In the combined meta-analysis of discovery and replication cohorts, 11 

CpGs passed the epigenome-wide significance threshold (P < 1.0×10-7) (Table 2A). A Manhattan plot 

showing the EWAS on coffee consumption is depicted in Figure 2A. Forest plots for the significantly 

associated CpGs showed small effects but an overall consistent direction across participating cohorts 

(Figure S5). Heterogeneity was also assessed; for those CpGs showing nominal evidence of 

heterogeneity (P < 0.05), we additionally provided results from random-effects inverse-variance meta-

analysis (Table S4). The CpG with the most significant association with coffee consumption was 

cg05575921 (P= 2.17×10-15, β= -0.0016) annotated to AHRR, repressor of the AHR (Aryl Hydrocarbon 

Receptor) gene (Figure 3A). 
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EWAS meta-analysis of tea consumption from all participating cohorts (n=15,789) showed two 

suggestively associated CpGs (P < 5.0×10-6), namely cg20099906 (CACNA1A) and cg0584170 

(PRDM16) (Table 2B). The Manhattan plot showing the EWAS results on tea consumption is 

depicted in Figure 2B. 

When excluding the cohorts with different time points of collection between methylation and beverage 

intake data, the results of association between DNA methylation levels and coffee, and tea 

consumptions did not change substantially (Table S5). Furthermore, investigating potential ancestry 

effects, we performed an EWAS meta-analysis of coffee consumption separately in EA (n=12,868) 

and AA (n=2,921) participants. Our results showed that out of the 9 CpGs significantly associated 

with coffee consumption in EA participants (n=12,868), none replicated in AA participants (P < 0.005 

(0.05/9)). Conversely, EWAS in AA participants (n=2,921) showed one CpG site (cg05822739) 

associated with coffee consumption (P= 1.08×10-7, β= -0.0015), which was not identified in EA 

participants despite the larger sample size (Table S6).  

Of the 11 CpGs significantly associated with coffee consumption, nine have been annotated to the 

genes AHRR, F2RL3, FLJ43663, HDAC4, GFI1, and PHGDH (Figure 3B). A heatmap depicting 

average expression of these 6 genes across 53 human tissues, available on the "Functional Mapping 

and Annotation of genetic associations with FUMA" webtool40, is provided in the Figure S6. Based on 

the tissue specificity of differential expression using FUMA, these genes showed an up-regulation in 

the transverse colon while they seemed to be down regulated in the coronary artery. Furthermore, 

esophagus muscularis and lung tissue showed a differential expression of the genes (Figure S7). The 

pathway analysis using IPA for the 6 annotated genes showed enrichment for serine biosynthesis (P= 

1.36×10-3) and xenobiotic metabolism signalling (P= 2.71×10-3) and association with inflammatory 

response (P-value between 4.48×10-2 and 4.42×10-5) (Table S7).  

The 11 coffee-associated CpGs were further explored in association with genetic variation (meQTL) 

or expression levels of their nearby or distant genes (eQTM) using the BIOS-BBMRI database. Eight 

of the CpGs were associated with genetic variants in the neighbouring genes (cis-meQTLs) (Table S8). 
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By overlapping cis-meQTL variants with GWAS results in the NHGRI-EBI GWAS Catalog, we did 

not find cis-meQTLs or their proxies (LD R2 > 0.8) to be associated with any traits in previous 

GWASs. Furthermore, 6 of the 11 CpGs showed association with expression levels of their nearby 

genes (eQTM) (Table S8), including 3 CpGs annotated to AHRR that were associated with expression 

of EXOC3. Among the 11 CpGs, the most significant association with eQTM was between 

cg14476101 and expression levels of PHGDH (P= 2.05×10-55). Literature search for the association 

between the 11 identified CpGs and any phenotypes or diseases in PubMed showed overlap with some 

traits that are shown in Table S9, in particular between the CpGs annotated to AHRR and smoking. 

We next assessed the causal association between coffee consumption and the 11 identified CpGs in the 

RS and FHS. The weighted GRS-based MR analysis did not support the causal association, which 

might be due to lack of statistical power. For example, we observed non-significant results between 

coffee consumption and cg14476101 (GRS-β= -3.42×10-5, GRS-P= 0.22). Additionally, our results 

from the multi-IVs, conventional and sensitivity MR analyses for this CpG also did not show 

significant evidence for causality (IVW-β= 0.01, IVW-P= 0.1) (Table S10 and Figure S8). We also 

tested the potential causal association of the coffee-associated CpGs with cardiovascular disease and 

metabolic traits. Multi-instrument MR analyses showed that cg01940273 could be causally associated 

with T2D, BMI, WHR, LDL-C and total cholesterol (Figure S9); cg05575921 with BMI, WHR and 

HDL-C (Figure S10); cg09935388 with T2D and HDL-C (Figure S11); cg11550064 with BMI, 

WHR, HDL-C, LDL-C, total cholesterol, triglycerides and CHD (Figure S12); and cg23916896 with 

T2D, BMI, HDL-C and total cholesterol (Figure S13) (Table S11). The causal association between 

cg14476101 and fatty liver disease has been previously confirmed by MR analysis in FHS, where 

hypermethylation at the locus was associated with lower fatty liver (P= 0.01)51.  

The inverse association of coffee consumption with liver diseases has been well documented by 

different researchers14,47,52. The CpG cg14476101 and its annotated gene (PHGDH) have been 

reported in previous studies to be associated with fatty liver disease and adiposity53,54. Methylation-

gene expression association between cg14476101 and PHGDH has also been verified in liver tissue54. 

Moreover, the expression level of PHGDH gene has been associated with liver fat51. Thus, we sought 
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to show the three-way association among coffee consumption, DNA methylation of cg14476101 and 

liver function in the Rotterdam Study. To this end, we tested the association of coffee consumption 

and three liver enzymes (n=4,756) adjusted for potential confounders, which showed a negative 

association between coffee consumption and serum levels of AST (P= 0.008, β= -0.005) and GGT (P= 

0.004, β= -0.011) (Table S12). In addition, we tested the association of cg14476101 with the liver 

enzymes (n=1,406) adjusted for age, sex, BMI, smoking, whole blood cells proportion, batch effects 

and excessive alcohol consumption, and observed a nominal association with the serum levels of AST 

(P= 0.016, β= -0.26) and a suggestive association with GGT (P= 0.06, β= -0.43). These data may 

suggest that the observed link between PHGDH expression and fatty liver disease is mediated by 

coffee consumption via altering DNA methylation levels of cg14476101.  

To gain further insight into the mechanism linking PHGDH to fatty liver disease, we conducted 

additional experimental studies. We measured the expression level of PHGDH in several human liver 

cell lines and, subsequently, related it to the expression levels of a panel of lipid-associated genes. 

Figure 4A displays the PHGDH expression level in seven liver cell lines. From this, we selected 

snu398 cells, with the highest expression levels of PHGDH, and snu449 cells, with the lowest 

expression levels of PHGDH, and compared the relative expression levels of PHGDH with nine know 

lipid-related genes, reported in the previous GWAS and experimental studies to be involved in lipid 

metabolism48-50. The PHGDH expression level was correlated with the expression levels of five of 

these lipid-associated genes (Figure 4B). Next, we knocked down PHGDH expression in PLC/PRF/5 

cells using lentiviral shRNA vectors (Figure 4C). After silencing PHGDH, we observed a significant 

decrease of LPL expression and a significant increase of LDR and ABCA1 expression (P < 0.05) in 

both knocked down cells (Figure 4D), in line with the observed correlations in snu398 and snu449 

cells. These experiments may suggest a potential role of PHGDH in lipid metabolism and fat 

accumulation in the liver, that could occur through regulating the expression of lipid-associated genes.  
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Discussion 

In this study, we conducted the largest EWAS meta-analyses of coffee and tea consumption to date 

comprising more than 15,000 participants. We found that coffee consumption was associated with 

differential methylation of peripheral blood-derived DNA at 11 CpG sites. The genes annotated to 

some of the identified CpGs have potential relevance in pathways underlying coffee metabolism and 

have been associated with various health outcomes55-57. Among these, cg14476101 was significantly 

associated with expression level of its annotated gene PHGDH and a reduced risk of fatty liver 

disease. Our experimental studies further demonstrated a correlation between expression levels of 

PHGDH and some lipid-associated genes in liver cells, suggesting a potential role of PHGDH in 

hepatic-lipid metabolism. 

Our EWAS meta-analysis revealed 11 CpGs significantly associated with coffee consumption, seven 

of which were negatively associated with coffee intake. Four of these seven CpGs are annotated to the 

AHRR (Aryl-Hydrocarbon Receptor Repressor). This gene encodes a repressor of AHR, which has 

been previously associated with coffee consumption in a large-scale GWAS (n=91,462)33. AHRR and 

AHR, alongside with CYP1A1 and CYP1A2, belong to the xenobiotic metabolism pathway, in which 

AHR is activated via various ligands such as polycyclic aromatic hydrocarbons (PAHs) or with ligands 

of natural origins (e.g., food)58. PAHs are carcinogenic substances found in tobacco smoke59, which 

can also be formed during coffee roasting processes60. It has been established that PAHs are mediating 

their impact on the cell via AHR61. Nevertheless, the AHRR CpGs identified in our analysis associated 

with coffee have been also reported in previous EWAS of smoking62,63. Although we accounted for 

smoking status in our analyses, given that cigarette smoking is associated with coffee consumption64 

and smoking has a notable effect on DNA methylation62, the association between these CpGs with 

coffee consumption might warrant cautious interpretation. We speculate that methylation within 

AHRR might influence the xenobiotic pathway and the subsequent genes (AHR, CYP1A1 and 

CYP2A2) identified in the coffee consumption GWAS33. The other three CpGs negatively associated 

with coffee consumption in our study are annotated to the F2RL3, GFI1 and IER3 genes, which were 

previously shown to be involved in a wide range of phenotypes from inflammatory response65,66, to 
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cancer67,68 and cardio-metabolic diseases69,70. Because of the strong association between coffee and 

cardiovascular disease71 as well as cancer72, further experimental studies are warranted to investigate 

whether alteration of DNA methylation level at the associated CpGs change gene expression and 

confer risk for these complex diseases.  

Five of the 11 identified CpGs were positively associated with coffee consumption. Four of these are 

annotated to FLJ43663, HDAC4 and PHGDH. To date, little research has focused on FLJ43663 in 

disease predisposition. A recent study showed the involvement of FLJ43663 as a risk factor for 

Behçet’s disease73 and another study reported that FLJ43663 gene polymorphisms were associated 

with the risk of breast cancer in a Han Chinese population74. The second gene, HDAC4 is a member of 

the xenobiotic metabolism signalling. This gene is involved in cocaine-related behaviours75, with a 

proposed mechanism that cocaine-induced nuclear export of HDAC4 could promote development of 

cocaine reward behaviours. Furthermore, animal studies have previously shown that HDAC4 

inhibition increases sensitivity to cocaine, whereas overexpression of the gene has opposite effect, 

which further supports the importance of HDAC4 in conditioned place preference in addictive 

behaviour76. Our study is the first to show a link between coffee consumption and FLJ43663 and 

HDAC4 genes, although further investigation is needed to address the exact mechanisms through 

which these genes might play a role in human diseases. 

Finally, PHGDH gene is of particular interest. This gene encodes the phosphoglycerate dehydrogenase 

enzyme that catalyses the first and rate-limiting step in the phosphorylated pathway of serine 

biosynthesis. Methylation-gene expression association between cg14476101 and PHGDH has been 

demonstrated in blood and liver54. The CpG site has been reported to be negatively associated with the 

levels of liver enzymes in serum53 and the risk of non-alcoholic fatty liver disease (NAFLD)51. 

Methylation of cg14476101 has also been linked to adiposity measured by BMI and waist 

circumference54. Another EWAS has reported the association between this CpG and blood 

concentration of steroid hormones, which are upregulated in obesity77. In line with our findings in the 

Rotterdam Study, several studies have shown an inverse association between coffee consumption and 

liver enzymes, including ALT, AST, and GGT78. Previous studies have also associated coffee 
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consumption with reduced risk of chronic liver disease47, hepatocellular carcinoma79, and cirrhosis80. 

These findings might proposed a link between PHGDH expression and liver function, which can be 

mediated by coffee consumption via altering the DNA methylation levels of cg14476101. We 

attempted to provide additional evidence of directionality of coffee consumption on cg14476101 using 

Mendelian randomization techniques, but the power of our MR analyses was limited due to the lack of 

availability of genetic data for some cohorts limiting sample size combined with a lack of strong 

genetic instruments for this CpG. The non-significant results can also be explained by other reasons. 

Firstly, population stratification, although we used genetic information from large GWAS performed 

mainly in European population and adjusted by population substructure43. Secondly, pleiotropy, since 

some of the SNPs used as instrumental variables have also been associated with lipid traits and body 

size which might influence the causal estimates. Yet, the results of MR excluding potential pleiotropic 

variants were fairly similar and MR-Egger, implemented in this study, is an useful approach to 

account for pleiotropy81. Thirdly, the genetic variants for coffee consumption were associated with 

number of cups of coffee per day among coffee drinkers, and the effect estimates might not relate to 

DNA methylation observed among ever/never coffee drinkers82.  

Furthermore, we knocked down the expression of PHGDH in human liver cells and revealed a 

correlation between expression of this gene and lipid-associated genes (LPL, LDLR and ABCA1), 

which suggest a potential role of PHGDH in hepatic-lipid metabolism. Previous evidence has also 

indicated that reduced expression of PHGDH is closely associated with the development of fatty liver 

disease57. In addition, our results showed a suggestive association between coffee consumption and 

cg06690548 annotated to SLC7A11 (β=0.0008, P= 2.0×10-7). The SLC7A11 gene is known as 

transporter of cysteine and glutamate, whereas caffeine promotes glutamate release in the posterior 

hypothalamus83. The CpG has been also reported in two EWASs to be associated with liver enzymes 

and NAFLD51,53. Moreover, similar experimental studies demonstrated the involvement of SLC7A11 in 

hepatic-lipid metabolism53. Thus, more experimental studies are merited to further elucidate in what 

way epigenetic modification of PHGDH and SLC7A11 could explain the beneficial effect of coffee 

consumption on liver diseases. 
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In our study, EWAS meta-analysis of tea consumption showed only two suggestive associations, 

despite having the advantage of much larger sample size and good statistical power compared to the 

previously published EWA study20. In the earlier study, Ek et al. reported two CpGs associated with 

tea consumption in women, nevertheless, those CpGs were not replicated in our study. Lack of 

statistically significant association between tea consumption compared with coffee in our analysis can 

be explained by different bioavailability of polyphenols and other chemical compounds or much lower 

concentration of caffeine in tea compared to coffee. Among the two CpGs suggestively associated 

with tea consumption, cg20099906 is annotated to CANA1A (Calcium Voltage-Gated Channel Subunit 

Alpha1 I). It has previously been shown that food polyphenols can inhibit cardiac voltage-gated 

sodium channels84. In addition, the major compound of tea is a polyphenol called epigallocatechin-3-

gallate, that was shown in an in vivo study to modulate the Ca2+ signals85. This might indicate a 

potential link between DNA methylation of cg20099906 and cardiovascular diseases. Future studies 

with even larger sample sizes are needed to replicate these suggestive associations with tea intake and 

investigate their potential links with different health outcomes.  

The major strength of the present study is the large sample size and multi-ethnic contribution. All 

contributing cohorts had DNA methylation measured in whole blood, and adjustment for cell 

components allowed us to account for different epigenetic markers within cells present in the blood. 

Incorporation of different adjustment models allowed us to limit confounding to a certain extent. Yet, 

the findings of this study should be considered in light of some limitations. One important concern 

regarding this analysis is smoking, given that the effect of smoking on DNA methylation has been 

recognized62 and previous studies have shown that heavier smokers tend to drink more coffee64. Even 

though we adjusted for smoking in our analysis, some differences might not be tackled by our 

statistical approach and might yield confounded analysis to some extent. Also, we cannot rule out the 

possibility of residual confounding in our analysis, given that some of the participating cohorts did not 

have data for current, former and never smokers. Furthermore, smoking status might be misclassified 

or the possibility of second-hand smoke cannot be ruled out. The results presented could reflect 

potential pleiotropy, confounding or both, or it could provide insight into the potential causal role of 
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coffee with DNA methylation and disentangling these would merit further investigations. In addition, 

only total coffee was assessed and was used as a continuous variable (cups/day), and some cohorts 

have different cup sizes. However, we believe that this limitation would rather dilute the findings. We 

also did not include information on coffee brewing methods, which might have a large effect on what 

compounds are in the final beverage (e.g. filtered vs non-filtered coffee). Finally, since our study 

consists mainly of middle aged and elderly individuals of two ancestries, other studies are needed to 

assess the generalizability of our findings to other age groups and ancestries.  

The present study is thus far the largest EWAS meta-analyses exploring the association of coffee and 

tea consumption with DNA methylation. We found that coffee consumption is significantly associated 

with differential DNA methylation at 11 CpGs in blood. The genes annotated to some of these CpGs 

have potential relevance in pathways underlying coffee metabolism and have been linked to risk of 

diseases. These findings may provide new insights into the mechanism of action of coffee 

consumption in conferring disease risk. Future studies with larger and more ethnically diverse sample 

sizes are warranted to validate our findings and to explore the biological relevance of the associated 

DNA methylation sites and genes in beneficial and harmful association with different health outcomes.  
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Table 2A. Inverse-variance weighted fixed effects meta-analysis of EWAS with coffee consumption 

CpG 

 

CHR 

 

Position 

 

Gene 

 

Discovery phase 

(n=9,612) 

Replication phase 

(n=6,177) 

Overall meta-analysis  

(n=15,789) 

β P-value β P-value β P-value I2 Direction Het P-v 

cg05575921 5 373378 AHRR -0.0014 2.33E-10 -0.0027 7.93E-08 -0.0016 2.17E-15 70.3 ----+---+-------+ 0 

cg25648203 5 395444 AHRR -0.001 1.87E-09 -0.0011 8.02E-06 -0.001 7.31E-14 21.7 ----+---+-------- 0.2 

cg03636183 19 17000585 F2RL3 -0.0014 1.04E-10 -0.0014 2.95E-03 -0.0014 1.15E-12 37.9 ---++---------+-+ 0.06 

cg21161138 5 399360 AHRR -0.0011 1.81E-09 -0.001 9.01E-04 -0.0011 6.66E-12 0 ----------------- 0.47 

cg15928106 7 130646078 FLJ43663 0.0014 1.14E-06 0.0022 1.60E-03 0.0015 1.59E-08 52.3 +--+-++++-+++++-- 0 

cg11550064 2 240148191 HDAC4 0.0007 1.41E-06 0.0006 4.06E-03 0.0007 2.11E-08 47.2 --+++++-++++++-+- 0.01 

cg09935388 1 92947588 GFI1 -0.0012 7.78E-07 -0.0013 8.89E-03 -0.0012 2.32E-08 36.9 ----+---+------++ 0.06 

cg20228731 7 130646051 FLJ43663 0.0014 1.14E-06 0.0017 9.69E-03 0.0015 3.87E-08 48.4 ++---++++-++++++- 0.01 

cg06126421 6 30720080 NA -0.0009 1.15E-04 -0.0021 7.91E-06 -0.0011 4.50E-08 43.8 ----+--++------?- 0.03 

cg14476101 1 120255992 PHGDH 0.0011 4.41E-06 0.0015 2.21E-03 0.0011 4.71E-08 0 -++++++++++++++++ 0.99 

cg23916896 5 368804 AHRR -0.0011 4.34E-05 -0.0019 8.55E-05 -0.0013 4.76E-08 0 ---+----+----+--+ 0.86 

*cg06690548 4 139162808 SLC7A11 0.001 1.46E-07 0.0004 0.1055 0.0008 2.01E-07 0 +++++++++-+++-+++ 0.83 
 

Model adjusted for sex, age, smoking, WBCs, technical covariates, BMI and alcohol consumption.  

CpG, DNA methylation site; CHR, chromosome; Gene, annotated gene; NA, not annotated; β= effect; I2= heterogeneity in meta-analysis. 

The epigenome-wide significance threshold for association is 1.1×10E-7. 

       
*Suggestive association was considered between 5×10E-6 and 1.1×10E-7. 
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Table 2B. Inverse-variance weighted fixed effects meta-analysis of EWAS with tea consumption 

CpG CHR Position Gene  

Overall meta-analysis 

(n= 15,069)   

        β P-value I2 Direction Het P-v 

*cg20099906 19 13344820 CACNA1A -0.0008 1.06E-06 17.7  -+-+--++--+--+-- 0.2513 

*cg05804170  1 3121514 PRDM16 -0.0002 2.11E-06 0 -+--+-+-+----++- 0.9769 
 

Model adjusted for sex, age, smoking, WBCs, technical covariates, BMI and alcohol consumption. 
  

CpG, DNA methylation site; CHR, chromosome; Gene, annotated gene; β= effect; I2= heterogeneity in meta-analysis 
 

  *Suggestive association was considered between 5×10E-6 and 1.1×10E-7.  
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Figure 1. An overview of our study including EWAS meta-analysis to identify DNA methylation sites associated with coffee and tea consumption, and post-

EWAS in silico and in vitro experiments. RS= Rotterdam Study, FHS= Framingham Heart Study, ALSPAC= The Avon Longitudinal Study of Parents and 

Children, CHS= Cardiovascular Health Study, ARIC=  The Atherosclerosis Risk in Communities, EPIC= Prospective Investigation into Cancer and Nutrition, 

KORA= Cooperative Health Research in the Augsburg Region Study.   
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Figure 2. Manhattan plots depicting the results of EWAS meta-analysis in the overall sample for coffee (A) and tea (B) consumption in the fully adjusted model. 

The red line indicates the genome-wide significance P-value threshold of 1.1×10-7. 
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Figure 3. The CoMET plots depicting genomic regions where the CpGs annotated to the AHRR gene (A) and the PHGDH gene (B) are located. The x-axis 

indicates the position in base pair (bp) (hg19) for the region, while y-axis indicates the strength of association from EWAS with coffee consumption. The red 

line indicates the Bonferroni threshold for Epigenome-wide significance (P= 1.1×10-7). The figure was computed using the R-based package CoMET, while the 

Ensembl is a genome database resource (http://ensemblgenomes.org/). The correlation of the surrounding CpGs was computed using methylation measures in 

the Rotterdam Study.  
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Figure 4. A) Relative expression levels of 

PHGDH gene against a reference gene 

(GAPDH) in 7 human liver cell lines. Gene 

expression levels were quantified by qRT-

PCR. Data were normalized to the PLC cell 

line (PLC, set as 1). The results are presented 

as mean ± SEM of three independent 

experiments with 2-4 biological repeats each. 

B) Relative expression levels of 9 lipid-

associated genes in snu499 cell line (with the 

lowest level of PHGDH expression) and 

snu398 cell line (with the highest level of 

PHGDH expression) are shown. Relative 

gene expression levels were quantified by 

qRT-PCR. GAPDH serves as a reference 

gene, and gene expression levels in snu449 

cell line set as 1. Data are means ± SEM of 

three independent experiments with 2-4 

biological repeats each. This figure shows 

that, compared with snu4499 cells, snu398 

cells differentially express five of the lipid-

associated genes (FDFT1, HMGCR, LDLR, 

LPL, and ABCA1). C) Established PHGHD 

knockdown cell lines (shPHGHD-1 and -2), 

PLC cells transduced with lentiviral shRNA vectors targeting PHGDH or scramble control. qRT-PCR analysis of PHGDH expression were performed in stable 

knockdown or scramble control PLC cells. Data are normalized to the scramble control (scramble, set as 1). Data are means ± SEM of three independent 

experiments with 2-4 biological repeats each, **P<0.01 and ***P<0.001. D) Expression levels of five lipid-associated genes in stable PHGDH knockdown or 

scramble control PLC cells. Data were normalized to the scramble control (scramble, set as 1). Data are means ± SEM of three independent experiments with 

2-4 biological repeats each. Comparisons between groups were performed with Mann-Whitney test. Differences were considered significant at P < 0.05 (indicated 

by*). The figure demonstrates that knockdown of PHGDH gene expression by lentiviral shRNA vectors resulted in significant decrease in the expression level 

of LPL and significant increase in the expression levels of LDLR and ABCA1 in both knockdown cells. 
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