
Figure 4: (a) Number of large eigenvalues (defined as µk > 0.1κτ) of the Maury matrix plotted against the
fraction f of a given Horsfield order g constricted for the H10 airway tree network with added constrictions.
The legend indicates which Horsfield order g constrictions were applied to for each tree. The total number
of modes is 29,240. (b) Comparison of VH parameter σV for all networks in (a) computed through full
simulation (x-axis) and estimated using just the largest-eigenvalue modes of the Maury matrix (y-axis)
as identified in figure (a). All of the calculations in figures (a) and (b) used κ/ jT j = 5cm H20 L−1 and
τ = 4s. (c) Simulated σV versus κ/ jT j for the networks IB1-4 as labelled. Markers indicate results from
numerical integration of (6) and (7) while lines indicate approximations using modes corresponding to the
largest 1% of the eigenvalues in the Maury spectrum. (d) Visualisation of ∆V in the simulation of IB2 with
κ/ jT j = 12.5cmH20L−1 (circled in (c)). (e) The prediction of ∆V for the same simulation using the 1% of
the modes (corresponding to the largest 299 eigenvalues of the Maury matrix). See Supplementary Video 1
for a full 360◦ view of (d) and (e).

of the total lung elastance κ/ jT j for children from 5-30cm H20 L−1 [33, 34, 35]. As κ is reduced, airway

resistance has a more significant contribution to the dynamics in (20), and so VH is increased due to the

heterogeneity of network resistance. The variation between the networks is characteristic of the different

network structures, with IB1 and IB2 showing significantly more VH than IB3 and IB4.

Based on our findings in figure 4(a) and (b), we calculated only the largest 1% of eigenvalues for each

network and used these to estimate σV in figure 4(c), making comparison with full simulations. The ap-

proximations perform marginally worse for smaller values of κ, however overall the agreement is very strong.

Since the networks remain the same for different κ values, once the modes had been calculated (which in

this case takes �20s on a single processor) parameter sweeps over κ or τ were performed analytically and so

did not require repeated simulation (each of which also takes �20s on the same single processor when using

a sinusoidal pleural pressure, but on the order of minutes for non-linear and non-analytic pleural-pressure).

Therefore, we were able to predict the relationship between VH and lung elastance accurately and more

efficiently using this method.

An explicit example of this reduced dimensionality approximation is given in figures 4(d) and 4(e) for the

network IB2, corresponding to the highlighted simulation in 4(c), which shows distributions of ventilation
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Figure 5: Visualisation of a selection of the eigenvectors corresponding to the largest eigenvalues of the
Maury matrix for the IB2 network. The eigenvectors plotted are those with the largest values of eT

|T |v̂k

from the subset of modes that satisfy µk > 0.1κτ for the simulation values used in figure 4(d). In each plot,
sphere size is proportional to the magnitude of eigenvector entries on all terminal nodes for the eigenvector
labelled. The locations of the eigenvector entries highlight regions of impaired ventilation (according to the
model) with the larger eigenvalue modes showing the least well-ventilated regions. The colours represent
eigenvector entries with opposite sign. See Supplementary Video 2 for a full 360◦ view of this figure.

∆Vi (see (24)) over terminal units computed by full simulation (figure 4(d)) and the reduced model (figure

4(e)). The heterogeneity in ventilation is a result of the airway geometry and topology generated by the

space-filling branching algorithm, as well as the branch radii which scales with its parent airway from the

CT image, and is captured very efficiently by the reduced model.

3.2.2 Characterisation of realistic airway networks

Large-eigenvalue (high-resistance) eigenvectors of the Maury matrix are centralised on those terminal nodes

most affected. Therefore, the eigen-decomposition of the Maury matrix is a powerful tool for visualising and

ranking the least ventilated regions, regardless of the chosen value of lung elastance κ. Figure 5 visualises

a subset of the largest eigenvalue eigenvectors of the IB2 network by the size of spheres superimposed onto

its terminal nodes. Comparing this to figure 4(d) we see that these are localised on the least ventilated

terminal nodes. Furthermore, the largest eigenvalue modes highlight the regions of poorest ventilation, as

the eigenvalue is a measure of the resistance of the mode. The modes in figure 5 are selected by their value of

eT
|T |v̂k, which is the coefficient in the mode sum in (24), so that they are all important in this reconstruction

(for small enough κτ).
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4 Discussion

In section 3.1 we showed that for a range of lung airway networks the spectrum of the Maury operator

is a more efficient tool than the Laplacian operator for dimensionality reduction in the calculation of flow

through the network. Under fixed-pressure boundary conditions, the dominant flow eigenmodes can occur

throughout the spectrum, and depend on the resistance structure of the network. Therefore, it is not possible

a priori to calculate only the most dominant modes without computing the whole spectrum. However, when

we extend the Maury matrix construction to simulations of lung ventilation (including elastic recoil of the

acini), it is only the largest eigenvalue modes that significantly contribute to the distribution of gas delivery

and hence the extent of VH. These modes are generally the most efficient to compute using methods based on

power iteration, as used here. Therefore, this provides a method for efficient prediction and characterisation

of poorly ventilated regions of the lung based on the geometry and topology of the airway tree. The method

has significant advantages over previous approaches of dimensionality reduction in this area, which generally

involve replacing parts of the tree with symmetric models [36, 37] based on “trumpet” models [38] of the

airway geometry. These methods remove the asymmetry of the smaller airways, and sacrifice some of the

complexity of the system to reduce dimensionality, which is not the case for the spectral graph theory

methods used here.

The main limitation of the work presented here is the restriction to linear resistance relations, as well as

the rigidity of airway branches. First, the Reynolds number in the large airways exceeds the threshold for

turbulence, and even flow in the smaller airways is affected by inertia and better described by a non-linear

pressure-drop relation [39]. Additionally, airways themselves are compliant, albeit much less so than the

acinar units [40], which affects the distribution of flow. Nonetheless, the work presented here is an important

first step to going beyond simple “reduction by symmetry” methods of dimensionality reduction in lung

airway models. In the limit of tidal or shallow breathing, it is likely that assumptions of linear pressure-drop

relations (potentially different from the Poiseuille assumption used here) are a good approximation, in which

case the methods presented here can tell us a great deal about the resistance properties of the airway network

independent of choices of other specific simulation parameters (e.g. tissue elastance, breath volume, etc.).

The results shown here are also limited to artificial lung airway geometries, and use a combination of

idealised cast-based models and algorithm-generated image-based networks. Therefore, the simulations and

results in this paper do not predict how lungs will behave in specific states of health or disease. The models

used here do not contain enough information about the small airways or tissue compliance to make patient-

specific predictions of VH, which was measured in the original study by 3He MRI [26]. However, the methods

introduced in this paper can be adapted to patient-specific modelling of airway mechanics. In particular,

the dimensionality reduction demonstrated here will enable faster computation that can be used to make

inverse problems requiring multiple model realisations computationally tractable. In future work we plan

to combine CT and 3He MRI data to develop patient-specific models of lung structure and function, and

this research will make it much more feasible by reducing the computational time required to estimate the

ventilation distribution for a particular candidate airway network.

A further application of the findings of this paper is in characterisation of complex airway tree models.

The largest eigenvalue modes of the Maury matrix are localised on regions that have higher resistance, and

hence poorer ventilation. Since these eigenmodes are also often the most efficient to calculate (due to the

nature of power iteration methods) this provides an efficient method to visualise “problem” lung regions.

The relative importance of a given mode depends both on its eigenvalue (larger eigenvalues indicating larger

resistance per terminal node) and the specific boundary conditions considered.
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The methods in this paper are generic to resistance trees, and hence we expect this to have applications

outside of the application of lung mechanics. First, other resistance trees in biology, such as the pulmonary

vasculature, can be analysed using the same principles. Second, in discrete mathematics, the steady diffusion

problem is identical to the linear resistance problem, therefore diffusion on tree networks can also be studied

within this framework. For example, transport of gas in the respiratory zone of the lungs is dominated by

diffusion on the tree network of acinar ducts, and so in future work we aim to use this formulation to produce

low dimensional representations of models of these networks.

In summary, this paper has demonstrated how spectral graph theory provides a powerful tool for di-

mensionality reduction in the analysis of lung ventilation. This is achieved by reformulating the physical

model for gas transport using a linear operator (the Maury matrix) that captures patterns of ventilation

heterogeneity more efficiently than the traditional Laplacian operator, by exploiting the tree-like structure

of the network. This approach shows potential for the description of a wider class of transport processes on

tree-like networks.
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