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Abstract

This paper introduces a linear operator for the purposes of quantifying the spectral properties of

transport within resistive trees, such as airflow in lung airway networks. The operator, which we call the

Maury matrix, acts only on the terminal nodes of the tree and is equivalent to the adjacency matrix of

a complete graph summarising the relationships between all pairs of terminal nodes. We show that the

eigenmodes of the Maury operator have a direct physical interpretation as the relaxation, or resistive,

modes of the network. We apply these findings to both idealised and image-based models of ventilation

in lung airway trees and show that the spectral properties of the Maury matrix characterise the flow

asymmetry in these networks more concisely than the Laplacian modes, and that eigenvector centrality in

the Maury spectrum is closely related to the phenomenon of ventilation heterogeneity caused by airway

narrowing or obstruction. This method has applications in dimensionality reduction in simulations of

lung mechanics, as well as for characterisation of models of the airway tree derived from medical images.

1 Background

In healthy human lungs, the airways form a bifurcating tree where, on average, around the first 16 generations

of airways are purely conductive and serve to transport gas from the mouth to the alveolar region where

the majority of gas exchange takes place. The conducting airways terminate in ∼30,000 respiratory units

(or acini) [1], where diffusion becomes the dominant transport mechanism. Resistive flow in the conducting

airways, as well as tissue compliance, determines the ventilation mechanics and hence requires a high-

dimensional mathematical model to be represented accurately [2, 3, 4]. Efficient dimensionality reduction

algorithms are needed to improve the computation time and tractability of using such models in inverse

problems in the future.

Furthermore, understanding the relationship between structure and function in the lungs is crucial to

identifying lung disease physiology and its progression. One particular marker of progression in obstructive
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lung conditions is “ventilation heterogeneity” (VH), or the uneven distribution of fresh gas in the lungs,

which can result from obstructions in or narrowing of the airways [5, 6, 7]. The methods presented here

provide a new approach to characterise the resistance structure and its effect on VH. This will be useful for

visualisation and characterisation of complex airway models based on patient computed tomography (CT)

images, lung casts or micro-CT scans of excised lungs.

Graph theory perspectives have proven useful in characterising, classifying and understanding transport

in various examples of biological networks [8, 9, 10]. The approach we take in this paper uses concepts from

spectral graph theory, where a linear operator describing a particular physical property or characteristic of

the network is decomposed into its eigenspectum. This has proved a useful for dimensionality reduction and

visualisation of large data sets in various areas of science [11] and has a number of real-world applications

[12] including diffusive transport networks [13], but has not previously been applied to the airways. Some

standard operators, such as the adjacency and Laplacian operators, are generic to all networks and can be

adapted to characterise different processes or uncover important motifs in the network [14]. However, for

lung airway networks and other resistive trees, these operators are not necessarily the optimal representation

of the physical processes of interest on the network, as we show here.

In this paper we demonstrate that the resistive properties of realistic tree networks can be characterised

by a tree-specific operator that we call the Maury matrix, first introduced in ref. [15]. This matrix provides

a complete description of the linear resistance relations on the network. Furthermore, this operator provides

a new method for dimensionality reduction in modelling these resistance trees, which we use to calculate

gas flow and VH in the lung airway network. In section 2, we formulate the transport problem on an

airway network in terms of the conductance Laplacian and the Maury matrix, and show how each can be

approximated via spectral reduction. We show how VH is evaluated for a set of realistic airway network

models (four of which are based on CT imaging). In section 3, we compare spectral approximations of the

Laplacian and Maury operators, and show in particular how the reduced Maury operator efficiently captures

spatial patterns of VH.

2 Methods

Unlike in several other examples of biological transport networks, mammalian airways develop robustly into

tree networks [1], such that they contain no cycles and airways can be defined hierarchically by parent

airways branching into children airways. Therefore, we model a tree network N = {V, E} consisting of a set

of nodes (or vertices), V = {vi}, and a set of branches (or edges) representing airways, E = {ej = (vi, vi′)}.
The intrinsic hierarchy in tree networks means that we can consistently define each branch’s orientation to

point from its more proximal node vi to the more distal node vi′ based on its graph distance from the root

node v1.

The set of terminal nodes is denoted T ⊂ V and we order the indices i so that the terminal nodes are at

the end of the list of nodes T = {v|V|−|T |+1, . . . , v|V|}, where |.| indicates the number of objects in the set.

The tree topology means that every branch ej has a unique distal node vi′ so we index the branches such

that j = i′− 1. In the conducting airways of the lung, the root node represents the entrance from the upper

airway, which is connected to the trachea that we label as branch e1 (and so the carina is v2). See figure

1(a) for an overview of this notation. The distribution of flow through the airway network in the lung is

primarily dependent on the interplay between resistance and compliance of the airways and tissue. In this

paper we focus on new ways to model and analyse the resistance of the airway network, and its implications
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Figure 1: (a) Sketch of an airway tree network with nodes V = {v1, . . . , v8} and branches E = {e1, . . . , e7}.
The set of internal nodes Vint = {v2, v3, v4} is coloured red and the set of terminal nodes T = {v5, . . . , v8}
is coloured blue. The sets T2 and T3 denote the subsets of T descended from branchs e2 and e3 respectively.
(b) The network shown here has weighted adjacency matrix R where the nodes are the terminal nodes T
from figure (a). The branch weights are labelled where rj corresponds to the resistance of branch ej in figure
(a).

for the distribution of gas flow.

2.1 The Conductance Laplacian

The network incidence matrix N ∈ Z|V|×|E| maps the nodes of the network to their associated branches. Its

entries are

Ni,j =


−1 if ej = {vi′ , vi}

1 if ej = {vi, vi′}

0 if vi /∈ ej .

(1)

We model flow through the conducting airways of the lung by a linear resistance equation so that the branch

flux is given by

q = diag(r)−1NTP (2)

where q ∈ R|E| is the vector of branch fluxes, r ∈ R|E| is the vector of branch resistances and P ∈ R|V| is

the vector of node pressures. The incidence matrix N is a discrete boundary operator, mapping 1-chains

(branch quantities) to 0-chains (node quantities), and is the discrete analogue of the divergence operator in

vector calculus [16]. Similarly, NT is analogous to the gradient operator and performs the reverse mapping.
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Applying N to (2) gives

LP = Q, (3)

where L = Ndiag(r)−1NT is the network conductance Laplacian. The node flux Q = Nq for each node vi is

equal to the sum of fluxes into node i from the branches connected to it. Assuming incompressibility, these

are zero except on any nodes that are sources or sinks. In the lung, gas can only enter or exit the conducting

airways via the upper airway or the transitional bronchioles (which feed the acini), so henceforth, we assume

that the root v1 and terminal nodes vi ∈ T are the only sources or sinks. Therefore, the vectors of node and

branch quantities can be written as

P =

 P1

Pint

Pterm

 , Q =

 Q1

0

Qterm

 , q =

 q1

qint

qterm

 , r =

 r1

rint

rterm

 . (4)

Here, the separate blocks of P and Q distinguish the quantities defined on the root node v1, internal nodes

Vint = {v2, . . . , v|V|−|T |}, and terminal nodes T = {v|V|−|T |+1, . . . , v|V|}. Likewise, q and r are separated

into quantities defined on the root branch e1, the internal branches Eint = {e2, . . . , e|V|−|T |−1} and terminal

branches Eterm = {e|V|−|T |, . . . , e|V|−1}. In block form, the incidence and Laplacian operators are

N =

 1 0 0

−a Nint B

0 0 −I

 , L =

 r−11 −r−11 aT 0

−r−11 a Lint −BΓterm

0 −ΓtermBT Γterm

 . (5)

Here a = (1, 0, . . . , 0)T and I ∈ R|T |×|Eterm| is the identity matrix. The rows of the matrices Nint ∈ R|Vint|×|Eint|

and B ∈ R|Vint|×|Eterm| indicate the connections of the internal nodes vi ∈ Vint to the internal branches ej ∈
Eint and the terminal branches ej ∈ Eterm respectively. For brevity, we have denoted diag(rterm)−1 ≡ Γterm.

The internal Laplacian operator is given by Lint = r−11 aaT + Nintdiag(rint)
−1NT

int + BΓtermBT .

The relation
∑

iNij = 0 holds for all j, and so NTe|V| = 0 where eM ≡ (1, . . . , 1)T ∈ RM denotes the

all-one vector of size M , and so e|V| is the vector identifying all nodes. Thus, e|V| is a zero-eigenvalue mode

of L, and multiplying (3) by eT
|V| gives the condition for global mass conservation Q1 = −

∑
vi∈T Qi. In

fully connected networks, as considered here, this is the only zero-eigenvalue mode and so the conductance

Laplacian L is rank |V| − 1. Therefore, if P is a valid solution to (3) then so is P + c e|V| for any c ∈ R.

It follows that |T | + 1 boundary conditions are required to define the |V| + |T | unknowns in (3) (|V| node

pressures and |T | terminal fluxes).

In the context of lungs we are generally interested in pressure boundary conditions on P1 and Pterm. To

remove the arbitrary pressure constant, we first reformulate in terms of the pressure drop relative to the

entry node v1 such that ∆P = P1e|V| − P, and so ∆P = (0,∆Pint,∆Pterm)T . Thus, given ∆Pterm and

inserting (4) into (3), the system of equations to be solved is

Lint∆Pint = BΓterm∆Pterm, (6)

Qterm = Γterm

(
BT ∆Pint −∆Pterm

)
. (7)

Equation (6) can be solved efficiently for ∆Pint by numerical linear algebra methods due to the sparsity of

the operator Lint. In general, for connected networks, Lint is invertible and so substituting (6) into (7) gives
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the terminal fluxes in terms of the pressure boundary conditions

Qterm = Γterm

[
BT L−1intBΓterm − I

]
∆Pterm. (8)

In practice, we solve this system of equations by implementing the “SparseLU” method from the C++ library

Eigen [29], based on LU factorisation, to solve (6) for ∆Pint given boundary conditions on ∆Pterm and then

substitute the solution for ∆Pint into (7).

2.1.1 Associated spectra of the Conductance Laplacian

The solution to (6) can also be expressed in terms of the eigenbasis of the operator Lint. In general the

internal Laplacian Lint has |V| − |T | − 1 non-zero eigenvalues that we label λ1 ≤ λ2 ≤ . . . ≤ λ|V|−|T |−1

with corresponding eigenvectors û1, . . . , û|V|−|T |−1, where the hat indicates a normalised vector such that

ûT
k ûk′ = δkk′ and δ is the Kronecker delta. Substituting the eigen-decomposition of Lint into (6) and solving

for ∆Pint gives

∆Pint =

|V|−|T |−1∑
k=1

(
ûT
k BΓterm∆Pterm

λk

)
ûk. (9)

Substituting this solution into (7) gives the corresponding solution for Qterm.

Dimensionality reduction can in principle be achieved using spectral methods by reconstructing the system

with a subset of the eigenmodes. We can measure the relative dominance of each mode in the decomposition

in (9) by the size of the coefficient |pk| =
∣∣ûT

k BΓterm∆Pterm/λk
∣∣. However, the relative weight of these

modes is dependent on the boundary condition ∆Pterm. A more general measure of how well a subset of

the eigenmodes captures the behaviour of the whole operator, independent of boundary conditions, is to

consider how closely these modes approximate the inverse of the operator, Lint, which we measure by the

normalised distance δL [11] given by

δL(M) =
||L−1int −

∑M
k=1 λ

−1
k ûkûT

k ||F
||L−1int ||F

=

√√√√√1−

(
M∑
k=1

λ−2k

)/|V|−|T |−1∑
k=1

λ−2k

, (10)

where ||.||F indicates the Frobenius norm and M ∈ {1, . . . , |V| − |T | − 1} is the number of modes used

in the approximation. Evidently, the modes with the smallest eigenvalues contribute the most to this

reconstruction, however depending on the boundary conditions used they may not be the most dominant in

the reconstruction of the solutions ∆Pint and Qterm.

2.2 The Maury matrix

An alternative representation of the resistive airway tree network is presented in [15] for the case of a

symmetric dyadic tree. Here, we generalise this operator to all connected trees and name it the Maury

matrix in reference to [15]. To derive this operator, we begin by noting that connected sub-trees of the airway

network can be defined due to the hierarchical structure of trees. We define the matrix S = (s1, . . . , s|E|)

where each column sj maps the branch ej to a subset of nodes Vj ⊂ {v2, . . . , v|V|} descended from it such
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that

Sij =

1 if vi+1 ∈ Vj
0 if vi+1 /∈ Vj

. (11)

The first column of S is s1 = e|V|−1 as all nodes except v1 are descended from the root branch. The column

vectors sj satisfy the relation sj = ij +
∑n

n′=1 sjn′ where {ej1 , . . . , ejn} are the n child branches of ej , and

ij is the jth column of the identity matrix I ∈ R(|V|−1)×(|V|−1). This relation follows from noting that each

sub-tree Ej is a union of its child subtrees and its connecting node, such that Vj = {vj+1,Vj1 , . . . ,Vjn}. It

follows that SNT = (e|V|−1,−I) and therefore

N =

(
1 0 . . . 0

−(ST )−1

)
, (12)

Substituting (12) into Nq = Q gives q = −ST (0,Qterm)T ≡ TTQterm, where the rows of T ∈ R|T |×|E| are

comprised of the final |T | rows of the matrix S. Substituting this into (2) and multiplying both sides by

−S diag(r) gives

−

(
∆Pint

∆Pterm

)
= S diag(r)ST

(
0

Qterm

)
. (13)

Comparing (13) to (3) we see that ST diag(r)S ≡ L−10 where L−10 is the conductance Laplacian L with the first

row and column removed (or the reduced Laplacian, as features in the matrix-tree theorem [17]). Finally,

the bottom |T | rows of (13) directly relate the terminal pressure drops to the fluxes

RQterm = −∆Pterm, (14)

where R = Tdiag(r)TT is the aforementioned Maury operator. Comparing with (8) gives

R =
[
Γterm

(
BT L−1intBΓterm − I

)]−1
. (15)

The entries of the terminal node map Tij are 1 if the terminal node v1+|V|int+i is descended from branch

ej and zero otherwise (see (11)). We denote the set of subset of terminal nodes descended from ej as Tj ⊂ T
(see figure 1(a)). The Maury matrix is symmetric and in index notation its components are

Ri,i′ =
∑

ej∈P1→i∩P1→i′

rj , (16)

where P1→i = {ej1 , ej2 , . . . , ejN } is the unique direct path on the tree from v1 to a terminal node vi ∈ T .

Each term Ri,i′ is equivalent to the resistance distance [18] between the node v1 and node viLCA such that

viLCA is the lowest common ancestor (LCA) node of the terminal nodes vi and vi′ .

A direct solve of (14) is an inefficient method for solving the system of equations (compared to (6) and

(7)) because the matrix R has, in general, |T |2 non-zero entries and so cannot benefit from any algorithms

optimised for the factorisation of sparse matrices. Nonetheless, this does not inhibit computation of the

spectra of R because we can decompose R into sparse, non-square matrices. Details of the numerical methods

used are given in section 1.3 of the Supplementary Text.
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2.2.1 Spectral properties of the Maury matrix

Diagonalising the Maury matrix R into its normalised eigenbasis and substituting into (14) gives

(
QT

termv̂k

)
µk = −∆PT

termv̂k, (17)

for each eigenvalue µk and associated eigenvector v̂k. The matrix R has the form of an adjacency matrix for a

complete network of resistors (with self-loops) relating the terminal nodes (as shown figure 1(b)). Therefore,

as shown in (17), the modes act as resistors in parallel with resistance µk, each subject to the pressure drop

∆Pterm · v̂k. As it is a weighted adjacency matrix, the matrix R is non-negative, regular and symmetric and

so by the Perron–Frobenius theorem its largest eigenvalue mode µ1 is unique and is the only eigenvector

v̂1 in the spectrum of R that can be expressed as an all-positive vector. Additionally, this implies that the

eigenvalues of the Maury matrix are all positive, and so we order the indices by µ1 ≥ µ2 ≥ . . . ≥ µ|T | (the

opposite ordering to modes of the Laplacian).

From (17) the solution for the terminal node fluxes is

Qterm = −
|T |∑
k=1

(
∆PT

termv̂k

µk

)
v̂k (18)

and so an approximation to Q
(approx)
term is given by limiting the sum in (18) to some subset of the mode

spectrum. The magnitude of the coefficient |qk| =
∣∣∆PT

termv̂k/µk

∣∣ quantifies the relative importance of each

term in the expansion of (18). As for the internal Laplacian operator, we measure the accuracy of such an

approximation for arbitrary boundary conditions by the convergence of the inverse of R such that

δR(M) ≡

√√√√√1−

 |T |∑
k=|T |−M+1

µ−2k

/ |T |∑
k=|T |−M+1

µ−2k

, (19)

where M is the number of (smallest eigenvalue) modes used in the expansion. We will compare this with

δL(M) for specific networks to compare the general efficiency of dimensionality reduction for these two

operators.

2.3 Dimensionality reduction in simulations of ventilation in the lungs

In models of ventilation in the lungs, the effects of lung tissue compliance generally dominate the mechanics

compared to airway resistance, except in cases where there is airway narrowing or blockage [19]. Consider the

simplest model of ventilation where each terminal node vi ∈ T is connected to an elastic bag of volume Vi(t)

and elastance κ with all bags subject to the same pleural pressure Ppl(t) driving the breathing motion at

time t. The terminal fluxes are related to the bag volumes via Qterm(t) = −V̇(t) and the terminal pressures

are Pterm = Ppl(t)e|T | + κV(t). Then (14) becomes

RV̇(t) + κV(t) = −Ppl(t)e|T |. (20)

We are interested in characterising how the distribution of ventilation is affected by the airway resistance,

and so have assumed that the lung unit compliances are all equal to κ. Diagonalising R into its eigenbasis
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in (20) gives

µkȧk(t) + κak(t) = −Ppl(t) eT
|T |v̂k, (21)

where V(t) =
∑

k ak(t)v̂k. Thus each mode of R is characterised by an independent ODE with a resistance

term µk and elastance κ driven by a pressure term proportional to eT
|T |v̂k. Solving (21) for ak(t) gives

V(t) = −Ppl(t)

κ
e|T | +

∑
k


(
eT
|T |v̂k

)
κ

e
− κ
µk

t
∫ t

0

Ṗpl(t
′)e

κ
µk

t′
dt′

 v̂k. (22)

The first term in the solution is the elastic contribution from all units, while the second term is the resistive

contribution. The sum in the resistive term can be approximated by the largest eigenvalue modes with

a cutoff on the order µk/(κτ) ∼ O(1) (where τ is the typical breath timescale), since modes satisfying

µk/(κτ)� 1, will be dominated by lung unit compliance (the first term in (22)).

In the simulations used in this paper we take the pleural pressure to be sinusoidal such that Ppl =

Ppl0 + Ps sin(2πt/τ). Substituting into (22) we see that the periodic solution (when t� µ1/κ) is

V(t) =− 1

κ

(
Ppl0 + Ps sin

2πt

τ

)
e|T |

+ Ps

∑
k

eT
|T |v̂k

κ

[
2πµk/(κτ)

1 + (2πµk/(κτ))2

](
cos

2πt

τ
+

2πµk

κτ
sin

2πt

τ

)
v̂k.

(23)

We define the ventilation of each terminal unit as ∆Vi = max (Vi(t))−min (Vi(t)), where the maximum and

minimum are taken over a single breath cycle 0 ≤ t < τ , which gives

∆Vi = 2Ps

( 1

κi
−
∑
k

eT
|T |v̂k

κ

[
(2πµk/(κτ))2

1 + (2πµk/(κτ))2

]
v̂k,i

)2

+

(∑
k

eT
|T |v̂k

κ

[
2πµk/(κτ)

1 + (2πµk/(κτ))2

]
v̂k,i

)2
1/2

.

(24)

Inefficient ventilation of the lungs can occur if there are blockages or narrowing of the airway lumen, which

can be caused by numerous pathophysiological factors, resulting in increased resistance of those airways and

inhomogeneous delivery of gas to the lung units, commonly known as ventilation heterogeneity (VH). To

characterise this in simulations we measure ventilation heterogeneity via the coefficient of variation of the

ventilation σV across all terminal units,

σV =

√∑
i(∆Vi −∆V )2

∆V
, where ∆V =

1

|T |
∑
i

∆Vi . (25)

Therefore the above decomposition gives a method to approximate the ventilation efficiency of an airway

network given κ and τ by truncating the sums in (24) to M < |T | modes of the Maury matrix. While this

method is specifically derived for sinusoidal breathing, it provides a useful qualitative measure of relative

efficiency that can be used for comparing different networks and is easily computed using a subset of the full

spectrum of the Maury operator.
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2.4 Airway Models

In this paper we use idealised models of airway geometry and models derived from CT images, which we

now briefly describe.

First, we adopt the Weibel-type model used in [20, 21] to systematically test the effect of asymmetry in

resistance on the spectral properties of the Maury and Laplace operators. This idealised model describes a

dyadic tree where each airway branches into major and minor daughters such that

amaj

apar
=
lmaj

lpar
=

(
1 +A

2

) 1
3

,
amin

apar
=
lmin

lpar
=

(
1−A

2

) 1
3

, (26)

where a and l are the radii and lengths respectively of the parent and (major and minor) daughter branches

as labelled by the subscripts. The parameter 0 ≤ A < 1 quantifies the asymmetry in branching (A = (1−2r)

in terms of the notation in [20]). The cube root results in the two daughter airways having the same combined

effective Poiseuille resistance and volume as the symmetric (A = 0) case. In this model we assume a length-

to-diameter ratio of 3 for all airways and a fixed number of divisions N between the root branch and the

terminal branches (resulting in N + 1 generations of airways).

In real lungs, branches terminate in a wide range of generations. To characterise this effect we use the

Horsfield model 1 [22] derived from cast measurements of an adult male, with airways isotropically scaled

to 60% of their original volume to a lung with ∼ 3L functional residual capacity (approximately that of the

average adult). The model is terminated at Horsfield order 4 (as defined in [22]) because this corresponds to

the transitional bronchioles as defined by Weibel [1] and gives 29, 240 terminal airways, approximately the

number of acini in the lung [23]. In this model, parent airways branch into daughters that are in different

‘Horsfield orders’ (generations counting up from the terminal nodes) and thus larger branches (with smaller

resistance) give rise to more terminal nodes. The radii and lengths are Gaussian random variables with mean

taken from the data in [22] and a standard deviation of either 10 or 20% of the mean to approximate the

variation in healthy lungs, which we label H10 and H20 respectively.

Finally, we also use four image-based (IB) models derived from computed tomography (CT) images.

These use volume-filling branching algorithms [24, 25] to populate the distal generations of airways in each

lobe of the lung, which cannot be resolved from CT. The radius of these distal airways is assumed from an

exponential fit to lung cast data, as in [25], such that

logD(z) = (z −N) log(RdH) + logDN , (27)

where D(z) is the airway diameter, z is the Horsfield order of the airway, N is the Horsfield order of the most

distal ancestor airway taken from CT and its diameter DN . The parameter RdH is taken to be 1.15 as in [25].

The four IB models used here (labelled IB1-4) are from CT scans of children with cystic fibrosis and normal

lung function (measured by spirometry) from a previously published study [26] (IB2 is shown in figures 4

and 5 below). The number of airways successfully acquired from CT depends on the image resolution, and

was approximately between 3-5 generations of bifurcations from the trachea, and was acquired using the

open-source software Pulmonary Toolkit [27]. The algorithm to generate these models used the C++ library

stl reader [28] and is detailed in section 1.2 of the Supplementary Text.

As a simple first approximation, the branch resistance is assumed to follow Poiseuille’s law and so r =

8πνl/a4 where ν is the viscosity of air. To compute the spectra of the operators we use the Eigen [29] and

Spectra [30] libraries in C++. The source codes of the algorithms used are available in online repositories
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Figure 2: Normalised discrepancy in the cumulative estimate of the inverse of the (a) Maury operator and
(b) internal Laplacian operator using the number of eigenmodes indicated on the x-axis where modes are
ordered from smallest to largest eigenvalues. These are computed from the sums in (19) and (10) respectively.
The networks H10 and H20 are the Horsfield model 1 with independent Gaussian random variables with
standard deviations of 10% and 20% respectively added to the original airway diameter and length. Models
IB1 through to IB4 are image-based trees derived from CT data as outlined in section 2.4. The vertical
dashed lines indicate the point where each curve passes 50% accuracy.

[31, 32].

3 Results

In the following section we first study the spectra of the Maury operator for a number of idealised and

image-based airway models and compare with the spectra of the internal Laplacian operator. Then, in the

final results section we demonstrate how (24) can be used to produce a low-dimensional approximation of

simulations and characterise realistic lung networks.

3.1 Comparison of Maury and internal Laplacian operator mode structures

The Maury and internal Laplacian operators encode similar information regarding the resistance of the

network, as shown by the relation in (15). However, they represent the resistance relations differently, and

thus the eigenvectors of the two operators relate to different properties of the tree (see (9)) and (18)).

Therefore, we wish to know which spectrum is more efficient for realistic lung airway networks.

Figure 2 shows the relative accuracy of the inverse approximation for each operator (from (19) and (10))

plotted against the number of eigenmodes used in the approximation. The Maury decomposition is more

variable between networks, and in particular performs better (i.e. a smaller number of modes are required

to capture more of the behaviour) for the image-based airway networks. In particular, the network labelled

IB4 only requires a single mode to approximate 80% of the Maury inverse. This mode has a small eigenvalue

and hence represents a “short-circuit” that, given appropriate boundary conditions, may account for the

majority of the flow on the network. In contrast, the Frobenius norm of the inverse Laplace operator is

largely comprised of high-resistance modes, and so the corresponding eigenvectors are centralised on high-

resistance motifs in the network. The mode reconstruction is more accurate in the image-based networks

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.15.042416doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.042416
http://creativecommons.org/licenses/by-nc-nd/4.0/


than the Horsfield networks for either operator, which is due to the increased variance of resistance in these

networks, however the effect is stronger for the Maury operator.

3.1.1 Characterisation of network resistance with fixed pressure boundary conditions

We now consider fixed boundary conditions for the pressure-drop ∆Pterm = e|T |, such that flow is directed

from the mouth (represented by the root node v1) to the alveolar region (represented by the terminal nodes

vi ∈ T ). Therefore, any flow heterogeneity that results is due to the distribution of resistance in the networks.

To comprehensively cover a range of possible networks, we apply these conditions to the Weibel-type model

described by (26) with N = 9 divisions (512 terminal nodes), representative of approximately 1/64th of the

conducting airways [1].

The mode weights |qk| and |pk| (see (9) and (18)) of the spectra of the Maury and internal Laplacian

operators respectively rank the modes in terms of their relative importance to the solution flow and pressure

solutions respectively. As the network asymmetry parameter A is changed from A = 0 (symmetric) to

A = 0.98 (all-but-one path having very large resistance), the dominant vectors of the Maury matrix transition

from highest resistance modes (smallest index) to the lowest resistance modes (largest index), see figure 3(a).

This characterises the transition from a flow solution that is homogeneously spread over all the terminal nodes

and one that is concentrated on a small collection of terminal nodes that terminate the low-resistance paths

in the tree. The A = 0 case is considered in more detail in section 1.1 and 1.2 of the Supplementary Text.

For all values of A there is a small subset of modes in the Maury spectrum that dominate the flow

solution (figure 3(a)). In contrast, the Laplace spectrum does not demonstrate any strong ordering of mode

dominance for the majority of A values and clear separation of modes occurs only at small values of A (figure

3(b)). For larger A values the Maury spectrum outperforms the Laplace spectrum in terms of the number of

modes required to reconstruct the solutions (figure 3(c)). However, the difference is small in human lungs,

where it is estimated that A ≈ 0.35 [20]. The Maury matrix performs best at extreme values of A, but for

all A values a 75% accuracy can be achieved using at most 10 eigenmodes (∼2% of the spectrum).

3.2 Practical application to simulations of lung ventilation mechanics

As shown in section 2.3, a simple mechanical model of regular tidal breathing can be generated by including

a dynamic pressure boundary condition at the terminal nodes that takes into account the elastic recoil of

the acini. Then, it is the largest eigenvalue modes of the Maury matrix that most significantly impact

on the ventilation profile, and the distribution of ventilation is well approximated by a subset of these

modes using the expansion in (24). The largest eigenvalue modes correspond to high resistance paths in the

tree, as demonstrated systematically in section 2.1 of the Supplementary Text, and so are also useful for

characterising complex models of airway structure.

3.2.1 Dimensionality reduction in simulations and characterisation of realistic airway net-

works

First, we consider the Horsfield model 1 networks H10 and H20, which provide a realistic model of the

asymmetric branching airway network. Choosing parameters for elastance κ and time-scale τ that are

representative of an average adult (listed in figure 4), all eigenvalues of the Maury matrix satisfied µk/(κτ) <

0.1. Therefore, the ventilation is approximately homogeneous in these networks and the airway resistance

has little effect on ventilation.
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Figure 3: Relative magnitude of contributions of each eigenmode to the sums in equations (a) (18) and (b)
(9) of a 10-generation Weibel network versus the A value of that network. Each dot represents the relative
contribution of one of the 512 modes for the tree corresponding to that particular value of A, coloured
by mode index; (a) Maury matrix (eigenvalues ordered largest to smallest) and (b) internal Laplacian
(eigenvalues ordered smallest to largest). (c) The minimum number of modes required to achieve particular
approximations the sums in (18) and (9) for the Maury and internal Laplace operators respectively.

To generate networks with high-resistance paths, we systematically applied constrictions to the Horsfield

network by selecting a fraction f of the airways (at random) in a given Horsfield order g and reducing their

radius by a factor between 50% and 95% (drawn from a uniform random distribution between these limits).

The networks generated are idealised examples of the effects of obstructive lung disease, with different

networks for disease centred on proximal (g = 15), central (g = 10), or distal (g = 5) airways. In the

constricted networks, we found that as the number of random constrictions is increased (either by increasing

f or reducing g), the number of independent large-eigenvalue modes of the Maury matrix rises (figure 4(a)).

This agrees with our interpretation of these modes being centred on high-resistance paths in the tree.

The VH parameter σV from (25) does not depend strongly on g in this airway model, and so its variation

in figure 4(b) is mainly due to the range of f values used (larger f results in more constricted airways and

so greater VH). Regardless of f and g values, we see that using only large-eigenvalue modes in (25) gives a

very good approximation of the simulated VH for all values of f and g. These reconstructions use at most

1% of the full Maury spectrum, and so represent a significant reduction in dimensionality.

Figure 4(c) shows the effect on VH of changing κ in image-based models of ventilation and compares it

to the prediction made using spectral decomposition. For each network we chose a range of realistic values
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Figure 4: (a) Number of large eigenvalues (defined as µk > 0.1κτ) of the Maury matrix plotted against the
fraction f of a given Horsfield order g constricted for the H10 airway tree network with added constrictions.
The legend indicates which Horsfield order g constrictions were applied to for each tree. The total number
of modes is 29,240. (b) Comparison of VH parameter σV for all networks in (a) computed through full
simulation (x-axis) and estimated using just the largest-eigenvalue modes of the Maury matrix (y-axis)
as identified in figure (a). All of the calculations in figures (a) and (b) used κ/ |T | = 5cm H20 L−1 and
τ = 4s. (c) Simulated σV versus κ/ |T | for the networks IB1-4 as labelled. Markers indicate results from
numerical integration of (6) and (7) while lines indicate approximations using modes corresponding to the
largest 1% of the eigenvalues in the Maury spectrum. (d) Visualisation of ∆V in the simulation of IB2 with
κ/ |T | = 12.5cmH20L−1 (circled in (c)). (e) The prediction of ∆V for the same simulation using the 1% of
the modes (corresponding to the largest 299 eigenvalues of the Maury matrix). See Supplementary Video 1
for a full 360◦ view of (d) and (e).

of the total lung elastance κ/ |T | for children from 5-30cm H20 L−1 [33, 34, 35]. As κ is reduced, airway

resistance has a more significant contribution to the dynamics in (20), and so VH is increased due to the

heterogeneity of network resistance. The variation between the networks is characteristic of the different

network structures, with IB1 and IB2 showing significantly more VH than IB3 and IB4.

Based on our findings in figure 4(a) and (b), we calculated only the largest 1% of eigenvalues for each

network and used these to estimate σV in figure 4(c), making comparison with full simulations. The ap-

proximations perform marginally worse for smaller values of κ, however overall the agreement is very strong.

Since the networks remain the same for different κ values, once the modes had been calculated (which in

this case takes ∼20s on a single processor) parameter sweeps over κ or τ were performed analytically and so

did not require repeated simulation (each of which also takes ∼20s on the same single processor when using

a sinusoidal pleural pressure, but on the order of minutes for non-linear and non-analytic pleural-pressure).

Therefore, we were able to predict the relationship between VH and lung elastance accurately and more

efficiently using this method.

An explicit example of this reduced dimensionality approximation is given in figures 4(d) and 4(e) for the

network IB2, corresponding to the highlighted simulation in 4(c), which shows distributions of ventilation
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Figure 5: Visualisation of a selection of the eigenvectors corresponding to the largest eigenvalues of the
Maury matrix for the IB2 network. The eigenvectors plotted are those with the largest values of eT

|T |v̂k

from the subset of modes that satisfy µk > 0.1κτ for the simulation values used in figure 4(d). In each plot,
sphere size is proportional to the magnitude of eigenvector entries on all terminal nodes for the eigenvector
labelled. The locations of the eigenvector entries highlight regions of impaired ventilation (according to the
model) with the larger eigenvalue modes showing the least well-ventilated regions. The colours represent
eigenvector entries with opposite sign. See Supplementary Video 2 for a full 360◦ view of this figure.

∆Vi (see (24)) over terminal units computed by full simulation (figure 4(d)) and the reduced model (figure

4(e)). The heterogeneity in ventilation is a result of the airway geometry and topology generated by the

space-filling branching algorithm, as well as the branch radii which scales with its parent airway from the

CT image, and is captured very efficiently by the reduced model.

3.2.2 Characterisation of realistic airway networks

Large-eigenvalue (high-resistance) eigenvectors of the Maury matrix are centralised on those terminal nodes

most affected. Therefore, the eigen-decomposition of the Maury matrix is a powerful tool for visualising and

ranking the least ventilated regions, regardless of the chosen value of lung elastance κ. Figure 5 visualises

a subset of the largest eigenvalue eigenvectors of the IB2 network by the size of spheres superimposed onto

its terminal nodes. Comparing this to figure 4(d) we see that these are localised on the least ventilated

terminal nodes. Furthermore, the largest eigenvalue modes highlight the regions of poorest ventilation, as

the eigenvalue is a measure of the resistance of the mode. The modes in figure 5 are selected by their value of

eT
|T |v̂k, which is the coefficient in the mode sum in (24), so that they are all important in this reconstruction

(for small enough κτ).
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4 Discussion

In section 3.1 we showed that for a range of lung airway networks the spectrum of the Maury operator

is a more efficient tool than the Laplacian operator for dimensionality reduction in the calculation of flow

through the network. Under fixed-pressure boundary conditions, the dominant flow eigenmodes can occur

throughout the spectrum, and depend on the resistance structure of the network. Therefore, it is not possible

a priori to calculate only the most dominant modes without computing the whole spectrum. However, when

we extend the Maury matrix construction to simulations of lung ventilation (including elastic recoil of the

acini), it is only the largest eigenvalue modes that significantly contribute to the distribution of gas delivery

and hence the extent of VH. These modes are generally the most efficient to compute using methods based on

power iteration, as used here. Therefore, this provides a method for efficient prediction and characterisation

of poorly ventilated regions of the lung based on the geometry and topology of the airway tree. The method

has significant advantages over previous approaches of dimensionality reduction in this area, which generally

involve replacing parts of the tree with symmetric models [36, 37] based on “trumpet” models [38] of the

airway geometry. These methods remove the asymmetry of the smaller airways, and sacrifice some of the

complexity of the system to reduce dimensionality, which is not the case for the spectral graph theory

methods used here.

The main limitation of the work presented here is the restriction to linear resistance relations, as well as

the rigidity of airway branches. First, the Reynolds number in the large airways exceeds the threshold for

turbulence, and even flow in the smaller airways is affected by inertia and better described by a non-linear

pressure-drop relation [39]. Additionally, airways themselves are compliant, albeit much less so than the

acinar units [40], which affects the distribution of flow. Nonetheless, the work presented here is an important

first step to going beyond simple “reduction by symmetry” methods of dimensionality reduction in lung

airway models. In the limit of tidal or shallow breathing, it is likely that assumptions of linear pressure-drop

relations (potentially different from the Poiseuille assumption used here) are a good approximation, in which

case the methods presented here can tell us a great deal about the resistance properties of the airway network

independent of choices of other specific simulation parameters (e.g. tissue elastance, breath volume, etc.).

The results shown here are also limited to artificial lung airway geometries, and use a combination of

idealised cast-based models and algorithm-generated image-based networks. Therefore, the simulations and

results in this paper do not predict how lungs will behave in specific states of health or disease. The models

used here do not contain enough information about the small airways or tissue compliance to make patient-

specific predictions of VH, which was measured in the original study by 3He MRI [26]. However, the methods

introduced in this paper can be adapted to patient-specific modelling of airway mechanics. In particular,

the dimensionality reduction demonstrated here will enable faster computation that can be used to make

inverse problems requiring multiple model realisations computationally tractable. In future work we plan

to combine CT and 3He MRI data to develop patient-specific models of lung structure and function, and

this research will make it much more feasible by reducing the computational time required to estimate the

ventilation distribution for a particular candidate airway network.

A further application of the findings of this paper is in characterisation of complex airway tree models.

The largest eigenvalue modes of the Maury matrix are localised on regions that have higher resistance, and

hence poorer ventilation. Since these eigenmodes are also often the most efficient to calculate (due to the

nature of power iteration methods) this provides an efficient method to visualise “problem” lung regions.

The relative importance of a given mode depends both on its eigenvalue (larger eigenvalues indicating larger

resistance per terminal node) and the specific boundary conditions considered.
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The methods in this paper are generic to resistance trees, and hence we expect this to have applications

outside of the application of lung mechanics. First, other resistance trees in biology, such as the pulmonary

vasculature, can be analysed using the same principles. Second, in discrete mathematics, the steady diffusion

problem is identical to the linear resistance problem, therefore diffusion on tree networks can also be studied

within this framework. For example, transport of gas in the respiratory zone of the lungs is dominated by

diffusion on the tree network of acinar ducts, and so in future work we aim to use this formulation to produce

low dimensional representations of models of these networks.

In summary, this paper has demonstrated how spectral graph theory provides a powerful tool for di-

mensionality reduction in the analysis of lung ventilation. This is achieved by reformulating the physical

model for gas transport using a linear operator (the Maury matrix) that captures patterns of ventilation

heterogeneity more efficiently than the traditional Laplacian operator, by exploiting the tree-like structure

of the network. This approach shows potential for the description of a wider class of transport processes on

tree-like networks.
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