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1. Simulation Studies  

We simulate data using the following procedures. 

Consider 𝑁 subjects and 𝑉 brain areas, where 𝑉 = 130,992. Let 𝑥! be the independent variable 

for subject 𝑖, 𝑧!", 𝑧!#, and 𝑧!$ be the site (from which data are collected), age, and gender, 

respectively, of subject 𝑖, 𝑚!% be the neural activity from the 𝑗&' brain area of subject 𝑖, and 𝑦! be 

the outcome for subject 𝑖. 

 
(1) 𝑥! = 𝜌( + 𝜌"𝑧!" + 𝜌#𝑧!# + 𝜌$𝑧!$ + 𝑒! 

 
where 𝑧!" is a random sample from a set of eight sites (mimicking the distribution of eight sites 
considered in the study),  𝑧!#~�̇�(𝜇 = 19, 𝜎 = 4.15, 𝑙 = 12, 𝑢 = 32), where �̇�() denotes a 
truncated normal distribution with mean 𝜇, standard deviation 𝜎, lower bound 𝑙 and upper bound 
𝑢, 𝑧!$~𝐵(0.42). These choices are made to approximate the distribution of covariates used in 
the real dataset; but can be chosen in other forms without loss of generality. We take 
parameters 𝜌( = 6.765, 𝜌" = −0.174, 𝜌# = −0.072, and 𝜌$ = −0.456 to be the estimates from 
the real data using Equation (1) above. How these parameters are set only affect the simulated 
values of 𝑥!; they will not affect parameter estimation of 𝛼(𝑗) and 𝛽(𝑗) below. Consider noise 
𝑒!~𝑁(0, 𝜎)#). 

 
(2) 𝑚!% = 𝜃((𝑗) + ∑ 𝜉!*𝜑*(𝑗)+

*," +	𝑥!𝛼(𝑗) + 𝑧!"𝑡"(𝑗) + 𝑧!#𝑡#(𝑗) + 𝑧!$𝑡$(𝑗) + 𝜀!  
 
where 𝜉!*~𝑁(0, 𝜆*), 𝜆* = 0.5*-", for 𝑖 ∈ {1,2, … ,𝑁}, 𝑗 ∈ {"

.
, #
.
, … , .

.
}, and 𝑘 ∈ {1,2, … , 𝐾}. 

{𝜑", 𝜑#, … , 𝜑+} is a set of basis functions (see sections 1.1 and 1.2 below). Let 𝛼(𝑗) = cos(2𝜋𝑗), 
𝜃((𝑗) = sin	(8𝜋𝑗), 𝑡"(𝑗) = cos	(8𝜋𝑗), 𝑡#(𝑗) = sin	(12𝜋𝑗), and 𝑡$(𝑗) = cos	(12𝜋𝑗). Consider noise 
𝜀!~𝑁(0, 𝜎/#). 
 

(3) 𝑦! = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝!), where 𝑝! =
"

"01234-(6!"0∑ 8#$9(%)0%
$&' ;#<0='>#'0=(>#(0=)>#)0?#)@

. 

 
where 𝛽(𝑗) = sin	(2𝜋𝑗), 𝛾 = −0.01, 𝜏" = 0.1, 𝜏# = 0.1, and 𝜏$ = 0.1. Consider noise 𝜖!~𝑁(0, 𝜎?#). 
For each simulation below, 𝜃(A  is chosen at the value so that the outcomes contain both 0’s and 
1’s (to simulate the scenario where the dataset contain both convertor and non-convertor 
subjects).  
 
We study different combinations of eigenfunctions ({𝜑", 𝜑#, … , 𝜑+}), idiosyncratic noises (𝜎)#, 𝜎/#, 
𝜎?#), and sample sizes (𝑁). For eigenfunctions, we consider 𝐾 = 4 basis functions and study the 
cases when they are orthogonal and when they are non-orthogonal (to cover the two general 
scenarios where the brain patterns consist of orthogonal and non-orthogonal neural signals). 
For noises, we consider a range of magnitudes, at (𝜎)#, 𝜎/#, 𝜎?#) = (0.01, 0.01, 0.01) (small noise), 
(0.1, 0.1, 0.1) (moderate noise), and (5, 5, 5) (very large noise). We consider very large noise 
because we want to see to what degree the estimates would be able to (and unable to) uncover 
the signals, and whether, even under very large noise level, signals can be recovered when 
there are more samples. To assess the performance of our method under different sample 
sizes, we consider 𝑁 to be 100 and 500. From the estimation performance under the selected 
combinations of noise levels and sample sizes, one can relatively easily peer into how the 
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model would perform under other magnitudes of noises and samples sizes. Overall, we 
examine 12 model conditions; for each condition, we conduct 100 bootstrap simulations. 
 
 
A summary of simulation studies  
 
Overall, the framework proposed in this study was able to uncover (simulated) areas of brain 
involved in mediation. Particularly, 
 

1. The framework successfully uncovered neural mediators across different combinations 
of eigenfunctions, idiosyncratic noises, and sample sizes.  

2. The performance on estimating the input map 𝜶 was better than it on estimating the 
output map 𝜷. With larger samples, however, the estimation of 𝜷 improved significantly. 

3. Both estimations of 𝜶 and 𝜷 deteriorated when more noises were added; but for each 
noise level, the estimation performance improved with more samples. At perhaps the 
extreme end when the noise was very large, the algorithm was still able to uncover some 
signals using large samples. 

4. The estimation using signals simulated from orthogonal basis functions outperformed 
those from non-orthogonal basis functions. Both cases saw significant improvement 
when less noise or larger a sample size was considered.  
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1.1 Orthogonal basis functions 

Consider {𝜑*(𝑗)}*,"B = {√2 sin(2𝜋𝑗) , √2 cos(2πj) , √2 sin(4𝜋𝑗), √2 cos(4𝜋𝑗)}. 
 
 

 
 

Figure S1. Simulation studies using orthogonal basis functions at different combinations of 
sample size and noise level. 
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1.2 Non-orthogonal basis functions 

Consider {𝜑*(𝑗)}*,"B = {1,√3(2𝑗 − 1), √5(6𝑗# − 6𝑗 + 1), √7(20𝑗$ − 30𝑗# + 12𝑗 − 1)}. 
 
 

 
 

Figure S2. Simulation studies using nonorthogonal basis functions at different combinations of 
sample size and noise level. 
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2. Theoretical Properties  

In the following, we demonstrate that the direct and indirect effects of a multivariate causal 
mediation model with binary outcomes can be captured on the odds ratio scale. 
 
Definitions. Let 𝑋 denote an independent variable for a given subject (e.g., prodromal 
symptoms), and 𝑌 an outcome variable (e.g., having psychosis or healthy). Suppose there are 
multiple mediators 𝑴 = (𝑀(1),𝑀(2), … ,𝑀(𝑉)). In the rs-fMRI context, the mediators are V 
dependent activations over the V voxels. Here we assume for simplicity that each subject is 
scanned under one condition. We use upper and lower cases to distinguish a random variable 
and its realization (real data), respectively. We use bold letter to specify a vector. 

Using potential outcomes notation 1–3, let 𝑌(𝑥) = 𝑌(𝑋 = 𝑥), 𝑴(𝑥) = 𝑴(𝑋 = 𝑥), and 
𝑌(𝑥,𝒎) = 𝑌(𝑋 = 𝑥,𝑴 = 𝒎). In the following, we extend the direct and indirect effects defined on 
the odds-ratio for a single mediator 4 to incorporate multiple (and high-dimensional) mediators. 

The total effect (TEs) conditional on a covariate 𝒁 = 𝒛 on the odds ratio (OR) is defined 
as 
 

𝑇𝐸;,;∗
DE |𝒛 = F(G(;),"	|	𝒛)/{"-F(G(;),"	|	𝒛)}

F(G(;∗),"	|	𝒛)/{"-F(G(;∗),"	|	𝒛)}
		                          (S.1) 

 
In words, it compares the odds of 𝑌 being 1 if 𝑋 takes value 𝑥 and the odds of 𝑌 being 1 

had 𝑋 took value 𝑥∗, on the OR scale, in a given stratum where 𝒁 = 𝒛. In a psychosis study, this 
will capture the effect of symptom score changing from 𝑥 to 𝑥∗ on developing psychosis at the 
odds ratio scale, for a specific age, gender, and site group. 

 
Next, the conditional controlled direct effects (CDEs) on the OR is defined as 

 
𝐶𝐷𝐸;,;∗

DE |𝒛 = F(G(;,𝒎),"	|	𝒛)/{"-F(G(;,𝒎),"	|	𝒛)}
F(G(;∗,𝒎),"	|	𝒛)/{"-F(G(;∗,𝒎),"	|	𝒛)}

																     (S.2) 
 

In words, it compares the odds of 𝑌 being 1 if 𝑋 takes value 𝑥 and the high-dimensional 
mediator 𝑴 is fixed (intervened to be) at 𝒎, and the odds of Y being 1 had 𝑋 took value 𝑥∗ while 
𝑴 were fixed at 𝒎, on the OR scale, in a given stratum where 𝒁 = 𝒛. In a psychosis study, this 
will capture the effect of symptom score changing from 𝑥 to 𝑥∗ on developing psychosis at the 
OR scale, with a brain region of interest fixed, via Transcranial magnetic stimulation (TMS), at 
𝑴 = 𝒎 for a specific age, gender, and site group. 

Similarly, the conditional natural direct effects (NDEs) on the odds ratio is defined as 
 

𝑁𝐷𝐸;,;∗
DE |𝒛 = F(G(;,𝑴(;∗)),"	|	𝒛)/{"-F(G(;,𝑴(;∗)),"	|	𝒛)}

F(G(;∗,𝑴(;∗)),"	|	𝒛)/{"-F(G(;∗,𝑴(;∗)),"	|	𝒛)}
       (S.3) 

 
where the underlined 𝑥∗ indicates that the mediator 𝑴 is set at the level it would have been 
under 𝑥∗ despite the independent variable being 𝑥. Hence, the natural direct effect quantifies the 
effect of the independent variable (changing from 𝑥 to 𝑥∗) on the outcome on the OR scale, with 
mediator fixed at 𝑴(𝑥∗) in a given stratum where 𝒁 = 𝒛.. In a psychosis study, this will capture 
the effect of symptom score changing from 𝑥 to 𝑥∗ on developing psychosis on the OR scale, 
with a brain region of interest fixed, via TMS, at the level had symptom score been 𝑥∗ (i.e. at 
𝑴(𝑥∗)), for a specific age, gender, and site group. 

Finally, the conditional natural indirect effects (NIEs) on the OR are defined as 
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𝑁𝐼𝐸;,;∗
DE |𝒛 = F(G(;,𝑴(;)),"	|	𝒛)/{"-F(G(;,𝑴(;)),"	|	𝒛)}

F(G(;,𝑴(;∗)),"	|	𝒛)/{"-F(G(;,𝑴(;∗)),"	|	𝒛)}
          (S.4) 

 
where the underlined 𝑥 indicates that the independent variable 𝑋 is set at the level 𝑥 despite the 
mediator is set at level 𝑴(𝑥∗) (namely, to what the mediator would have been had the 
independent variable been set to 𝑥∗). Hence, the natural indirect effect quantifies the effect of 
the mediator (changing from 𝑴(𝑥) to 𝑴(𝑥∗)) on the outcome on the OR scale, in a given 
stratum where 𝒁 = 𝒛. In a psychosis study, this will capture the effect of brain measurement of a 
region of interest (changing from 𝑴(𝑥) to 𝑴(𝑥∗) while fixing symptom score at 𝑥) on developing 
psychosis on the OR scale, for a specific age, gender, and site group.  

It follows, from Equations (S.1), (S.3), and (S.4), that the above total effect can be 
decomposed into a natural effect component and an indirect effect component on the OR scale: 
 

𝑇𝐸;,;∗
DE |𝒛 = {𝑁𝐼𝐸;,;∗

DE 	× 	𝑁𝐷𝐸;,;∗
DE }	|𝒛	 

 
The direct effect could also be defined as 𝑌s𝑥,𝑴(𝑥)t − 𝑌s𝑥∗,𝑴(𝑥)t.  In general, this 

would lead to a different decomposition of the total effect; this, however, is not of further concern 
as the modification is straightforward. 
 
Identification. To identify the direct and indirect effects using observed data, we require a few 
assumptions 5,6. In the following, we assume 𝒁 contains all relevant confounding variables. 
 
Assumption 1: 𝑌(𝑥) ⊥ 𝑋	|	𝒁. 
 
Assumption 2: 𝑌(𝑥,𝑴(𝑥)) ⊥ 𝑋	|	𝒁. 
 
Assumption 3: 𝑌(𝑥,𝑴(𝑥)) ⊥ 𝑴	|	{𝑋, 𝒁}. 
 
Assumption 4: 𝑴(𝑥) ⊥ 𝑋	|	𝒁. 
 
Assumption 5: 𝑌(𝑥,𝒎) ⊥ 𝑴(𝑥∗)	|	𝒁. 
 

Conditioning on covariate 𝒁, these assumptions imply that, there is no confounding for 
the relationship between: (A1-2) independent variable 𝑋 and outcome 𝑌; (A3) mediator 𝑴 and 
outcome 𝑌; (A4) independent variable 𝑋 and mediator 𝑴; and (A5) no confounding for the 
relationship between mediator and outcome that is affected by the independent variable. 
Together, they are often referred to as sequential ignorability assumptions. See 7,8 for detailed 
discussion of these assumptions, and see 9 for a critical evaluation of these assumptions in the 
high-dimensional setting. 

Under these assumption, 4,10 showed the average direct and indirect effects are 
identified from the regression function using the observed data for a single mediator and 
multiple mediators. Here, we show that their argument applies also to cases with high-
dimensional mediators. In particular, under Assumption 1, the total effect conditional on a 
covariate 𝒁 = 𝒛 on the OR scale is identifiable: 
 

𝑇𝐸;,;∗
DE |𝒛 =

𝑃(𝑌 = 1	|𝑥, 𝒛)/{1 − 𝑃(𝑌 = 1	|𝑥, 𝒛)}
𝑃(𝑌 = 1	|𝑥∗, 𝒛)/{1 − 𝑃(𝑌 = 1	|𝑥∗, 𝒛)}

. 

 
Under Assumptions 2-3, the conditional direct effect on the OR scale is identifiable: 
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𝐶𝐷𝐸;,;∗
DE |𝒛 =

𝑃(𝑌 = 1	|	𝑥,𝒎, 𝒛)/{1 − (𝑌 = 1	|	𝑥,𝒎, 𝒛)}
𝑃(𝑌 = 1	|			𝑥∗,𝒎, 𝒛)/{1 − (𝑌 = 1	|			𝑥∗,𝒎, 𝒛)}

.	 

 
Similarly, under Assumptions 2-5, the natural direct and indirect effects on the OR scales 

are identifiable. 
Suppose Assumptions 2-5 hold, and the model in Equations (iv) in the main text is under 

a logit link function,  
 

𝐸(𝑀(𝑣)|𝑋 = 𝑥, 𝒁 = 𝒛) = 𝛼( + 𝛼(𝑣)𝑥 + 𝒕(𝑣)𝒛,				𝑣 = 1, 2, … , 𝑉 
 

𝑙𝑜𝑔𝑖𝑡(𝑌 = 1|𝑋 = 𝑥,𝑴 = 𝒎,𝒁 = 𝒛) = 	𝛽( + 𝛾𝑥 +{ 𝑚(𝑣)𝛽(𝑣) +	𝝉Q𝒛
.

R,"
		 

 
The average controlled direct effect and natural indirect effect on the OR scale can be 

shown to be: 
 

𝐶𝐷𝐸;,;∗
DE |𝒛 = 𝑒<(;-;∗)                                                     (S.5) 

 
𝑁𝐼𝐸;,;∗

DE |𝒛 = 𝑒[∑ T(R)9(R)%
+&' ](;-;∗)                                    (S.6) 

 
Throughout, we assume that the independent variable does not interact with one or 

more of the mediators. When the independent variable interacts with one or more of the 
mediators, however, the bimodal framework considered in this paper is not appropriate for 
mediation analysis 11. Instead, one may consider: 
 

𝐸(𝑀(𝑣)|𝑋 = 𝑥, 𝒁 = 𝒛) = 𝛼( + 𝛼(𝑣)𝑥 + 𝒕}(𝑣)𝒛,				𝑣 = 1, 2, … , 𝑉 
 

𝑙𝑜𝑔𝑖𝑡(𝑌 = 1|𝑋 = 𝑥,𝑴 = 𝒎,𝒁 = 𝒛) = 	𝛽( + 𝛾𝑥 +{ 𝑚(𝑣)𝛽(𝑣) +{ 𝑥	𝑚(𝑣)	𝑏(𝑣)
.

R,"
+	𝝉}Q𝒛

.

R,"
 

 
Assume Assumptions 2-3 hold, we have 

 
𝐶𝐷𝐸;,;∗

DE |𝒛 = 𝑒[<0∑ 8(R)	V(R)%
+&' ](;-;∗) 

 
𝑁𝐼𝐸;,;∗

DE |𝒛 = 𝑒[∑ T(R)9(R)	0	∑ T(R)	V(R);%
+&'

%
+&' ](;-;∗) 

 
Remarks. When the counterfactuals are well defined and the Assumptions 1-5 hold, the right-
hand side of Equations S.5 and S.6 identify causal mediation effects. When one or more of the 
assumptions in Assumptions 1-5 fail to hold, or if the counterfactuals are not well defined, the 
right-hand side of Equations S.5 and S.6 may still be used in exploratory analysis to help 
identify potential mediators. For example, they could identify linear combinations of voxels that 
correspond to specific brain functions, suggesting mediation through correlates of those brain 
functions. In the article, for simplicity, we use “direct effect” and “indirect effect” to refer to the 
right-hand sides of Equations S.5 and S.6, respectively; we are agnostic throughout as to 
whether these expressions can be interpreted causally or should be taken as exploratory.  

Similarly, we use “mediator” agnostically to refer to variables that temporally follow the 
independent variable and precede outcome and potentially may lie on a causal pathway 
between them. We also note that the model only considers the case where the entire vector 𝑴 
is subject to a single level of intervention (𝑥). More generally, it would be possible to define 



9 
 

potential mediators when some elements of 𝑴 are subject to 𝑥 and other elements of 𝑴 are 
subject to 𝑥∗, which could support various decompositions of direct/indirect effects due to 
pathways acting through different 𝑴. In the fMRI setting described in the article we anticipate 
that the same elements of 𝑴 (brain regions) are subject to both 𝑥 and 𝑥∗. For example, minor 
prodromal symptoms and severe prodromal symptoms are associated with activation in the 
same brain regions, but with different intensities. 

 
 
3. A Comparison between Different Mediation Analysis Approaches 

To complement the presentations made in this study, in the following we provide a brief 
comparison between common mediation analysis. To avoid further confusion, we suppose that 
all covariates have been controlled.  

There are, broadly, two approaches to conduct mediation analyses: the difference 
approach and the product approach 12,13. Conceptually, both approaches employ a series of 
regression models to dissect the pathways between an independent variable, a mediator, and 
an outcome.  

The difference approach determines that a variable 𝑀 is a mediator as follows. Consider 
two regression models, one consisting of regressing an independent variable 𝑋 on the outcome 
𝑌 (call the estimated effect from the independent variable to the outcome as 𝛾), and the other 
consisting of regressing both the independent variable 𝑋 and the potential mediator 𝑀 on the 
outcome 𝑌 (call the estimated effect from the independent variable to the outcome under this 
setting as 𝛾A). If the effect of the independent variable 𝑋 on the outcome 𝑌 when the mediator 𝑀 
is not included in the regression model is considerably greater than the effect of the 
independent variable 𝑋 on the outcome 𝑌 when the potential mediator 𝑀 is included, it suggests 
that there is a significant mediation effect (that alleviates the direct effect of the independent 
variable on the outcome), and thus the mediation effect can be estimated by taking the 
difference between 𝛾 and 𝛾A.  

The product approach also considers two regression models, one consisting of 
regressing the independent variable 𝑋 on the potential mediator 𝑀 (call the effect of the 
independent variable on the potential mediator as 𝛼), and the other consists of regressing both 
the independent variable 𝑋 and the potential mediator 𝑀 on the outcome 𝑌 (call the effect of the 
potential mediator on the outcome while controlling the independent variable as 𝛽). The product 
approach determines that 𝑀 is a mediator if both 𝛼 and 𝛽 effects are significantly different from 
zero. Then, it suggests that there exists a pathway from the independent variable 𝑋 to the 
outcome 𝑌, connected (mediated) by 𝑀, and the mediation effect can be estimated by taking the 
product of 𝛼 and 𝛽. 

When the outcome is continuous, the estimated mediation effects from the difference 
and the product approaches are the same; when the outcomes are binary (such as being 
healthy or afflicted with a certain type of disease), and when the (disease) rate is rare (≤ 10	%), 
the product approach and difference approach approximately coincide 4. When the outcomes 
are binary, but the (disease) rate is common, the product approach and the difference approach 
diverge. The difference approach becomes particularly challenging because the coefficient of 
the independent variable using this method may not change when there is mediation (see 12 and 
see Chapter 2 of 14 for a discussion).  

Since the product approach is suitable for both rare and common cases (the dataset 
used in this study contains rare outcomes), we adopt this approach in this article. For the sake 
of completeness, we provide a brief technical summary of both approaches below.  
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The product approach. The product mediation analysis framework involves two steps 15–19. 
Consider the setting in Figure 1 (a) of the main text. The first step examines if the independent 
variable 𝑋 is associated with the mediator 𝑀. This is done using a conditional regression model: 

 
𝐸(𝑀|𝑥) = 𝜃( + 𝛼𝑥                                                    (S.7) 

 
where 𝐸 refers to the expectation operation, and 𝜃( and 𝛼 are coefficients for the intercept, and 
the independent variable 𝑥. In simpler terms, if the coefficient 𝛼 in (S.7) is significantly different 
from zero, it suggests that there is potentially an effect from the independent variable to the 
mediator. In other words, the red arrow below alpha in Figure 1 (a) exists.  

The second step checks if the mediator 𝑀 is associated with the outcome 𝑌, after 
controlling for the independent variable 𝑋. This is done using another conditional regression 
model: 

 
𝐸(𝑌|𝑥,𝑚) = 𝜃(A + 𝛾𝑥 + 𝛽𝑚                                        (S.8) 

 
where 𝜃(A , 𝛾, and 𝛽 are coefficients for the intercept, the independent variable 𝑥, and mediator 
𝑚. In simpler terms, if the coefficient 𝛽 in (S.8) is significantly different from zero, it suggests 
that there is potentially an effect from the mediator to the outcome. In other words, the red arrow 
below beta in Figure 1 (a) exists.  

Taken together, when both 𝛼 and 𝛽 are significantly different from zero, it means that (I) 
a change of 𝑋 affects 𝑀, and (II) a change in 𝑀 further affects 𝑌; therefore 𝑀 is significantly 
mediating the relationship between 𝑋 and 𝑌. In simpler terms, the mediation effect exists when 
the product 𝛼𝛽, which quantifies the mediation effect in this setting, is non-zero. In other words, 
both red arrows below alpha and beta in Figure 1 (a) exist, thereby connecting 𝑋 and 𝑌 via a 
pathway that passes through (mediated by) 𝑀. The remaining coefficient 𝛾A in (S.8) quantifies 
the direct effect of the independent variable 𝑋 on outcome 𝑌 (that is not mediated by 𝑀) (see 
Figure 1 (a)). 

 
The difference approach. The difference approach has two modeling steps. The first step is a 
conditional regression model, which investigates if variability in the independent variable 𝑋 is 
responsible for variability in outcome 𝑌.  
 

𝐸(𝑌|𝑥, 𝒛) = 𝜃( + 𝛾𝑥                                                        (S.9) 
 

where 𝐸 stands for expectation, 𝜃( and 𝛾 are coefficients for the intercept and the independent 
variable 𝑥.  

The second step is a conditional regression model, which checks if variability in the 
independent variable 𝑋 and mediator 𝑀 are both responsible for variability in outcome 𝑌.  

 
𝐸(𝑌|𝑥,𝑚) = 𝜃(A + 𝛾A𝑥 + 𝛽𝑚                                           (S.10) 

 
where 𝜃(A , 𝛾A, and 𝛽 are coefficients for the intercept, the independent variable 𝑥, and mediator 
𝑚. Note the coefficients are denoted with a prime (e.g. 𝛾A in (S.10)) to highlight that they are not 
necessarily the same as their counterparts (i.e. 𝛾 in (S.9)). 

If the coefficient of the independent variable on the outcome when a mediator is 
included, or 𝛾A, is considerably smaller than the coefficient of the independent variable on the 
outcome when the mediator is not included, or 𝛾, then it suggests that the mediator is at least 
partially responsible for explaining the variance (information) of the outcome 𝑌. To put more 
concretely, this indicates that including the mediator 𝑚, the independent variable 𝑥 explains a 
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less amount of variance (information) of 𝑌. The difference of 𝛾 − 𝛾A thus quantifies the mediation 
effect in this setting. 

 
 
4. A Brief Procedure for Bootstrap Experiments Used in This Study 

Denote (𝒙"∗ , 𝒚"∗ ,𝑴"
∗), (𝒙#∗ , 𝒚#∗ ,𝑴#

∗), … , (𝒙W∗ , 𝒚W∗ ,𝑴W
∗ ) as B sets of bootstrap data, where the 

independent variable, the outcome variable, and the mediator are jointly sampled from (𝒙, 𝒚, 𝑴). 
The 𝑗&' bootstrap sample has the same dimension as (𝒙, 𝒚, 𝑴); namely 𝒙%∗ and 𝒚%∗ each contains 
𝑁 bootstrapped observations and 𝑴%

∗ is 𝑁 × 𝑉. Let 𝑁𝐼𝐸"∗(𝑗), 𝑁𝐼𝐸#∗(𝑗), … , 𝑁𝐼𝐸W∗(𝑗) be the estimated 
mediation effect from each bootstrap experiment for the 𝑗&' voxel. Specifically, 𝑁𝐼𝐸V∗(𝑗) is the 
estimated indirect mediation effect corresponding to the 𝑗&' voxel using data (𝒙V∗ , 𝒚V∗ ,𝑴V

∗ ).  
The bootstrap t-statistic for the mediation effect corresponding to the 𝑗&' voxel is defined 

as 
 

𝑡%∗ =
𝑁𝐼𝐸�����∗(𝑗)
𝑆𝐸XYZ∗(%)

 

 
where 𝑁𝐼𝐸�����∗(𝑗) = ∑ XYZ#(%),

#&'
W-"

 is the mean indirect mediation effect for the 𝑗&' voxel, averaged 

across B bootstrap experiments, and 𝑆𝐸XYZ∗(%) =
∑ (XYZ#

∗(%)-XYZ[[[[[[∗(%))(,
#&'

√W
 is the standard error. 
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