Supplementary Information for

RubyACRs, non-algal anion channelrhodopsins with highly red-shifted absorption

Elena G. Govorunova ${ }^{1}$, Oleg A. Sineshchekov ${ }^{1}$, Hai Li ${ }^{1}$, Yumei Wang ${ }^{1}$, Leonid S. Brown ${ }^{2}$ and John L. Spudich ${ }^{1 *}$
${ }^{1}$ Center for Membrane Biology, Department of Biochemistry \& Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA; ${ }^{2}$ Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada.

* Address correspondence to: John L. Spudich.

Email: John.L.Spudich@uth.tmc.edu

This PDF file includes:

Figures S1 to S6
Tables S1 to S2

Ruer	00
Aacare	
${ }_{\substack{\text { Alacrab } \\ \text { Alcrib }}}^{\text {and }}$	
	（en
${ }_{\text {Alder }}^{\text {Ald }}$	Ms．
Hiccren	
${ }_{\substack{\text { Hiacr } \\ \text { Haces }}}$	
S2ACR3 T1ACR1	MDPLMMDEHEAW－RRDFARLLQEQP－CESSS
Seuenerelogo	
Ruler 2	
${ }^{\text {Ruber }}$	
${ }_{\substack{\text { Anacr } \\ \text { Aacrer }}}$	Vemer
${ }_{\substack{\text { Alacrab } \\ \text { Acherb }}}^{\text {ata }}$	俍
	（V）
（2xecr	
Ancer	（V）
	价
sack	
	价
$\begin{aligned} & \text { S2ACR1 } \\ & \text { S2ACR3 } \end{aligned}$	价
Seuenerelogo	
Ruler 2	
Ruer 1	
Conenens	
${ }_{\substack{\text { Rataral } \\ \text { Aacar }}}$	
${ }_{\text {апас̈ }}$	
	Itill
${ }_{\text {ARACCI2 }}$	
Hiacre	
\％ata	价
saxact	
	TPDDLELPRVTFMMVKDIVMIAFGVLAAMQKNVTLKWIFNLASYLVCFWLVVDLIQLMNQKKKYFQVH－ERCWEWILATMIYFFFAQSLFIFLYAVGPPC
Sepenerelogo	
Ruler 2	20 ${ }^{200}$
	${ }^{1} 144$
Ancrea	
${ }_{\substack{\text { Alacrib } \\ \text { Aucres }}}^{\text {ata }}$	
Alacreb	
Ancer	
${ }_{\text {ancer }}^{\text {Ancer }}$	
ниacre	
sack	
	（tal
	（e）
Stack	
${ }_{\substack{\text { Thecre } \\ \text { Thec3 }}}$	（e）
Sepenerelogo	
Ruluer	${ }_{320}{ }^{1}+{ }_{3}$
	D234 K238 N239
${ }_{\text {Remer }}$	
Anacri	TNSKRT
${ }_{\text {atacra }}$	TNTKK
A1acra	TPEH－DEEEGDSEEEKSRWWM
	TPEH DEEEGOSERESSV
${ }_{\text {ARMCI2 }}$	
	${ }_{\text {cose }}^{\text {TPEQ－}}$
stace	tein－deemosiek ssivwn
$\underbrace{\substack{\text { Thaca }}}_{\text {Thacer }}$	

Fig. S1. Protein sequence alignment of the rhodopsin domains of Laby channelrhodopsins. Residues are color-coded according to their chemical properties. The arrows point to the positions of the residues known to be functionally important in GtACR1.

Fig. S2. Protein sequence alignment of the rhodopsin domains of Hapto channelrhodopsins. Residues are color-coded according to their chemical properties. The arrows point to the positions of the residues known to be functionally important in GtACR1.

Fig. S3. Photocurrent traces recorded in response to the first 1-s light pulse at -60 mV at the amplifier output, normalized at their peak value. The duration of illumination is showed as a colored bar on top.

Fig. S4. (A and B) The magnitude of desensitization during continuous illumination (A) and halfdecay of photocurrent after switching the light off (B). The black lines show the mean values and s.e.m. ($n=5-10$ cells for each variant); colored circles, the individual data points. (C) The ratio of the peak amplitude to that of the stationary current (measured at the end of a $1-\mathrm{s}$ light pulse) in a series of pulses applied with $30-\mathrm{s}$ time interval. The lines are single exponential fits.

Fig. S5. (A, B and D) The action spectra of photocurrents generated by indicated proteins reconstituted with A1 (black) and A2 (red) retinal. (C) The difference spectra (A2-A1 retinal).

Fig. S6. The absorption spectrum of HfACR1 detergent-purified from Pichia (red solid line) compared to the action spectrum of photocurrents generated upon its expression in HEK293 cells from Fig. 1B (black dashed line).

Table S1. A list of Laby ACR homologs (in bold - synthesized and tested by patch clamp in this study)

	GenBank accession number	Abbreviate d protein name	Source organism	JGI gene model name	Total CDS lengt h	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{nm}) \end{aligned}$
1.	QDJC01000532	AaACR1	Aurantiochytrium acetophilum HS399	identical to AIACR1	691	
2.	QDJC01003161	AaACR2		identical to AIACR2	635	
3.	QDJC01000037	AaACR3		only two mismatches with AIACR3	683	
4.	MT002467	AIACR1	Aurantiochytrium limacinum ATCC MYA-1381	$\begin{aligned} & \text { fgenesh1_p } \\ & \text { g. } 12 \text { \# } 284 \end{aligned}$	696	590
5.	MT002473	AIACR2		$\begin{aligned} & \mathrm{gm1.7690} \\ & \mathrm{~g} \end{aligned}$	635	545
6.	MT002476	AIACR3		estExt Gen emark1.C 1_t20010	678	485
7.	$\begin{array}{\|l\|} \hline \text { MT002468, } \\ \text { BGKB01000037 } \\ \hline \end{array}$	A1ACR1	Aurantiochytrium sp. KH105		646	610
8.	BGKB01000105	A1ACR1			645	
9.	BGKB01000099	A1ACR3			680	
10.	BGKB01000102	A1ACR3			680	
11.	LNGJ01004228	A2ACR1	Aurantiochytrium sp. T66	identical to T1ACR1	649	
12.	LNGJ01002066	A2ACR3			759	
13.	$\begin{aligned} & \text { MT002469, } \\ & \text { GBG24568 } \end{aligned}$	HfACR1	Hondaea fermentalgiana FCC1311		646	610
14.	GBG24569	HfACR2			663	
15.	GBG23965	HfACR3			680	
16.	MT002463	SaACR	Schizochytrium aggregatum ATCC 28209	$\begin{aligned} & \text { fgenesh1_p } \\ & \text { g.3_\#_476 } \end{aligned}$	546	520
17.	JTFK01000019	S1ACR1	Schizochytrium sp. CCTCC M209059		645	
18.	JTFK01000324	S1ACR3			680	
19.	SMSO01000032	S2ACR1	$\begin{aligned} & \text { Schizochytrium sp. } \\ & \text { TIO01 } \end{aligned}$	Identical to AIACR1	696	
20.	SMSO01000014	S2ACR3			583	
21.	MT002470, MUFY01006470	T1ACR1	Thraustochytrium sp. ATCC 26185		649	590
22.	MUFY01006469	T1ACR2			666	
23.	MUFY01009420	T1ACR3			682	

Table S2. A list of Hapto ACR homologs tested in this study

	GenBank accession number	Abbreviated protein name	Source organism	JGI gene model name	Total CDS length	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{nm}) \end{aligned}$
1.	MT002471	PaACR1	Phaeocystis antarctica CCMP1374	Phant.0066s0015.1	1682	520
2.	MT002474	PaACR2		Phant.0011s0329.1	647	505
3.	MT002477	PaACR3		Phant.0016s0461.1, Phant.0016s0462.1, Phant.0016s0464.1	427	475
4.	MT002464	PaACR4		Phant.0060s0074.1	469	475
5.	MT002465	PaACR5		Phant.0086s0086.1	312	N.A.
6.	MT002466	PaACR6		Phant.0001s0932.1	471	N.A.
7.	MT002472	PgACR1	Phaeocystis globosa PgG	Phglo.0395s0005.1	327	480
8.	MT002475	PgACR2		Phglo.0149s0014.1	435	480
9.	MT002478	PgACR3		Phglo.0128s0040.1	505	N.A.

