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ABSTRACT 

Despite myriad demonstrations of feasibility, the high dimensionality of fMRI data remains a 

critical barrier to its utility for reproducible biomarker discovery. Recent studies applying 

dimensionality reduction techniques to resting-state fMRI (R-fMRI) have unveiled 

neurocognitively meaningful connectivity gradients that are present in both human and primate 

brains, and appear to differ meaningfully among individuals and clinical populations. Here, we 

provide a critical assessment of the suitability of connectivity gradients for biomarker discovery. 

Using the Human Connectome Project (discovery subsample=209; two replication subsamples= 

209×2) and the Midnight scan club (n=9), we tested the following key biomarker traits – reliability, 

reproducibility and predictive validity – of functional gradients. In doing so, we systematically 

assessed the effects of three analytical settings, including i) dimensionality reduction algorithms 

(i.e., linear vs. non-linear methods), ii) input data types (i.e., raw time series, [un-]thresholded 

functional connectivity), and iii) amount of the data (R-fMRI time-series lengths). We found that 

the reproducibility of functional gradients across algorithms and subsamples is generally higher 

for those explaining more variances of whole-brain connectivity data, as well as those having 

higher reliability. Notably, among different analytical settings, a linear dimensionality reduction 

(principal component analysis in our study), more conservatively thresholded functional 

connectivity (e.g., 95-97%) and longer time-series data (at least ≥20mins) was found to be 

preferential conditions to obtain higher reliability. Those gradients with higher reliability were 

able to predict unseen phenotypic scores with a higher accuracy, highlighting reliability as a critical 

prerequisite for validity. Importantly, prediction accuracy with connectivity gradients exceeded 

that observed with more traditional edge-based connectivity measures, suggesting the added value 

of a low-dimensional gradient approach. Finally, the present work highlights the importance and 

benefits of systematically exploring the parameter space for new imaging methods before 

widespread deployment. 
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HIGHLIGHTS 

- There is a growing need to identify benchmark parameters in advancing functional connectivity 

gradients into a reliable biomarker. 

- Here, we explored multidimensional parameter space in calculating functional gradients to 

improve their reproducibility, reliability and predictive validity. 

- We demonstrated that more reproducible and reliable gradient markers tend to have higher 

predictive power for unseen phenotypic scores across various cognitive domains.  

- We showed that the low-dimensional connectivity gradient approach could outperform raw 

edge-based analyses in terms of predicting phenotypic scores. 

- We highlight the necessity of optimizing parameters for new imaging methods before their 

widespread deployment.  
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INTRODUCTION 

Inspired by the resurgence of dysconnectivity models in neuropsychiatric disorders over the past 

decade (Catani and Ffytche, 2005; van den Heuvel and Sporns, 2019), research targeting brain 

connectivity has become a central focus of imaging-based biomarker discovery in clinical 

neuroscience (Castellanos et al., 2013; Di Martino et al., 2014). Early neuroimaging studies have 

targeted specific connections/networks of interest, often motivated by prior neuropsychological 

models of brain dysfunction (Garrity et al., 2007; Greicius et al., 2007; Roalf and Gur, 2017). 

However, as alternative conceptual views emphasized the importance of understanding whole 

brain network topology, more recent work has characterized the system-level principles of brain 

organization (Menon, 2011; van den Heuvel and Sporns, 2019). Resting state fMRI (R-fMRI) has 

been particularly useful in these efforts (Castellanos et al., 2013), as it made major findings in 

functional neuroimaging possible, including discovery of canonical functional brain networks 

(Craddock et al., 2012; Yeo et al., 2011), identification of areal boundaries based on connectivity 

profiles (Cohen et al., 2008; Wig et al., 2014) and characterization of graph-theoretical properties 

for network topology (e.g., small-worldness, centrality, rich-club) (Bullmore and Sporns, 2009; 

Van Den Heuvel and Sporns, 2011). Recognizing the high dimensionality of functional 

connectivity data, however, emerging efforts have highlighted the need for identifying summary 

metrics that can distill complex whole-brain connectivity data into more parsimonious sets of 

organizing principles. Toward this goal, a framework has been introduced to reduce such 

complexity into a set of dimensions describing the ‘connectivity space’ of the brain (Haak et al., 

2018; Langs et al., 2016; Margulies et al., 2016; Mars et al., 2018a, 2018b; Vos de Wael et al., 

2020). Despite the value of these approaches, there is currently a lack of consensus on which 

method is the most applicable to develop an effective imaging biomarker. 

 

In the present work, we sought to address this missing gap and advance connectome-based 

biomarker discovery by systematically assessing the reliability and predictive validity of low-

dimensional representations of whole-brain functional connectivity. By applying a dimensionality 

reduction algorithm to whole-brain functional connectivity data, this approach has effectively 

unveiled multiple primary axes – referred as ‘gradients’ (or more formally ‘manifolds’ in the case 

of non-linear dimensionality reduction). These gradients describe smooth transitions of functional 

connectivity patterns along the cortical surface. Indeed, a recent study using this technique 
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(Margulies et al., 2016) revealed several important principal systems of large-scale cortical 

hierarchy such as the transition from sensory to transmodal areas, the segregation of the primary 

sensory/motor systems (Hilgetag and Goulas, 2020; Mesulam, 1998) and the pattern spanning 

across an intrinsic to task-positive or multiple-demand network (Duncan, 2010; Fox et al., 2005). 

A low-dimensional representation of functional connectivity, therefore, provides a unified 

perspective to efficiently explain cognitively plausible macro-scale mechanisms of the functional 

brain, which has led to these approaches to recently gain increasing attention in the neuroimaging 

community. 

 

Prior work has examined connectivity gradients and their relations using a variety of methods and 

analytic choices. One approach is to focus on specific regions, such as the striatum, sensorimotor 

areas and mesial temporal lobe structures including the entorhinal cortex and hippocampus (Haak 

et al., 2018; Marquand et al., 2017; Navarro Schröder et al., 2015; Przeździk et al., 2019; Vos de 

Wael et al., 2018). These functional connectivity profiles reveal ordered changes along the primary 

axes, which often effectively recapitulate underlying anatomical connectivity transition across the 

brain areas (Marquand et al., 2017). Other studies have also examined how the connectivity 

gradients are related to ongoing cognition. These have revealed that the principal gradient is linked 

to patterns where the cognition is guided by information from memory rather than sensory input 

(Murphy et al., 2019, 2018) and contributes to detailed representations of task-relevant functional 

states (Sormaz et al., 2018). One of the most important uses for the gradient approach, however, 

is to identify biomarkers for clinical samples. Hong, et al. demonstrated autism-related decreases 

in the separation of brain networks along the hierarchy that describes transitions from unimodal to 

transmodal cortices, and demonstrated that these changes were predictive of social and behavioral 

difficulties that these individuals reported (Hong et al., 2019). While these studies supported 

feasibility and potential clinical utility for the use of low-dimensional connectome representations, 

key issues remain. Importantly, a broad catalogue of relevant parameters and algorithms results in 

a high level of analytic degrees of freedom. As such, there is a growing need to identify benchmark 

parameters that provide an efficient and reliable parameter space for connectivity gradients. This 

call is particularly urgent, because the software packages to calculate gradients have been 

increasingly more available (e.g., BrainSpace, https://brainspace.readthedocs.io/en/latest/, Vos de 

Wael et al., 2020; congrads, https://github.com/koenhaak/congrads, Haak et al., 2018). These 
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efforts will likely accelerate the pace of future studies, and without benchmark parameters, they 

will yield the findings only based on suboptimal analytic settings.  

 

Here, we provided a quantitative assessment of gradient-based measures for usage in biomarker 

discovery studies based on multiple openly shared large-sample datasets. Central to this goal, we 

have explored the parameter options for algorithmic decisions, including: i) gradient extraction 

method (i.e., principal component analysis [PCA], Jolliffe, 2011; diffusion map embedding [DE], 

Coifman et al., 2005; Laplacian Eigenmaps [LE], Belkin and Niyogi, 2003), ii) data representation 

(i.e., timeseries, un-thresholded and thresholded functional connectivity matrices), iii) amount of 

functional imaging data included (5-50 minutes), and iv) their impact on univariate and 

multivariate indices of reliability (i.e., intraclass correlation coefficient, Shrout and Fleiss, 1979; 

discriminability, Bridgeford et al., 2020). To ensure that these measures have practical value, we 

also explored the ability of gradients to predict various phenotypic measures, including cognition, 

personality, and psychiatric symptoms. Finally, we assessed between-algorithm and -sample 

reproducibility, critical aspects of valid and robust imaging biomarkers. 

 

METHODS 

General analytic flow. TABLE 1 outlines a four-fold analytic strategy of the current study. Analysis-

1 examined raw functional gradient profiles from three different dimensionality reduction 

algorithms (i.e., PCA, DE, LE). We assessed the similarity of gradients produced by the different 

algorithms, as well as their reproducibility in a non-overlapping sample. Analysis-2 evaluated the 

reliability of each gradient using two established metrics (i.e., ICC [univariate] and 

discriminability [multivariate], Bridgeford et al., 2020), and compared them across different 

algorithms and input data representation (i.e. time-series vs. functional connectivity with different 

thresholds). Analysis-3 evaluated the effect of R-fMRI time-series length (5 to 50mins) on the 

reliability. Finally, Analysis-4 assessed prediction accuracy of each gradient for various behavioral 

and cognitive outcomes, systematically varying the algorithm and input type as well as R-fMRI 

time-series length.  

 

Data and code availability statement. In performing these analyses, we used Matlab 2017b as our 

main computing platform. Specifically, PCA was calculated based on pca.m implemented in the 
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‘Statistics and Machine Learning Toolbox’, while DE and LE calculation, as well as gradient 

alignment, were done using the BrainSpace toolbox (https://brainspace.readthedocs.io/en/latest/, 

Vos de Wael et al., 2020). ICC was computed using a function (IPN_icc.m) from the Connectome 

Computation System (Xu et al., 2015, zuoxinian/CCS: Connectome Computation System), which 

was implemented based on the established approach (Shrout and Fleiss, 1979). Finally, 

discriminability was calculated by compute_mnr.m in neurodata/discriminability.  

The data analyzed in this study were all downloaded from two open source data repositories: the 

Human Connectome Project (HCP, Glasser et al., 2013) and the Midnight Scan Club (MSC, 

Gordon et al., 2017). All the codes and the list of the subjects used in this study are released in 

ChildMindInstitute/GradientBiomarker. 

 

Subjects and imaging-behavior data. In HCP, we selected three independent sets to demonstrate 

the reproducibility of our findings: i) discovery (or training set for prediction analyses; 209 

subjects; age: 27.7±3.7ys, 106 males), ii) replication-1 (or test-1 set in prediction analyses; 209 

subjects, age: 28.4±4.0ys, 106 males) and iii) replication-2 (or test-2 set in prediction analyses; 

another 209 subjects; age: 29.3±3.4ys, 74 males). Notably, in discovery and replication-1 datasets, 

we selected the subjects based on their genetic unrelatedness (i.e. no overlapped family member) 

to rule out inflated reproducibility or prediction accuracy in our findings. The replication-2 was a 

subset of remaining subjects whose family members overlapped with those of either discovery or 

replication-1 subjects. From these cases, we included R-fMRI and phenotypic scores, which were 

analyzed in Analysis-1, -2 and -4 (see TABLE 1). On the other hand, in Analysis-3, to assess 

different R-fMRI time-series effects based on more densely sampled individual fMRI data, we 

chose the MSC data that has 9 subjects (age: 29.1±3.3ys, 5 males), each having 10 sessions of 30-

mins R-fMRI data. 

 

1. HCP: The description about R-fMRI and behavioral data of HCP is detailed elsewhere (Barch 

et al., 2013; Glasser et al., 2013; Smith et al., 2013). Briefly, R-fMRI data was acquired from a 

3T Siemens connectome-Skyra scanner using a gradient-echo EPI sequence (TE=33.1ms, 

TR=720ms, flip angle = 52°, 2.0mm isotropic voxels, 72 slices, multiband factor of 8) at each 

individual. The data was obtained through two sessions, each of which ran two R-fMRI scans 

(each approximately 15 minutes). The two R-fMRI scans were acquired for different phase 
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encoding directions (left-right [LR] and right-left [RL] scans), and thus two sessions provided 

4 R-fMRI datasets in total ([LR1, RL1, LR2, RL2] × ~15mins = ~60mins [4×1200volumes]). 

The HCP also provided a rich array of phenotypic scores for each participant (Barch et al., 

2013). Among the available phenotypic scores, we selected 6 major cognitive and psychiatric 

domains (i.e., alertness, cognition, emotion, personality, sensory and psychiatric and life 

functions; 65 different individual scores in total), and associated the raw scores and their factor 

scores (see SUPPLEMENTARY FIGURE 1 for specific items and factors) to functional gradients.  

2. MSC: Acquisition details are specified in the original data descriptor paper (Gordon et al., 2017). 

We included R-fMRI datasets from 9 subjects who underwent 30 minutes of a gradient-echo 

EPI scan (TE = 27ms, TR = 2.2s,  flip angle = 90°, 4.0mm isotropic voxels, 36 slices) over ten 

subsequent days (30mins×10=5 hours [818×10 volumes] in total). We did not include 

behavioral data from MSC. 
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TABLE 1. SUMMARY OF OBJECTIVES, MATERIALS, METHODS AND KEY FINDINGS. 
Aims Analytic methods Datasets Key findings 

Analysis-1 1. Profiling of gradients 
a. Using different algorithms (i.e. PCA, DE, LE) 
b. Using different input data types (i.e. time-series, un-

thresholded FC, and thresholded: 5, 25, 50, 75, 90, 
95, 96, 97, 98, 99%) 

c. Estimating the variance explained by each 
component across the algorithms 

2. Reproducibility test: Correlating extracted gradients 
a. Between the three algorithms 
b. Between discovery and replication datasets 

Concatenated two 
R-fMRI time-series 
(=2×15=30mins) in 
both two sessions 
(total: two 30mins 
time-series for test 
and retest) in 209 
subjects (discovery 
& replication) 

1. First four gradients are similar across algorithms (FIGURE 1A, C). 
2. Discrepant patterns from the 5th gradient can be aligned using a 

Procrustes linear transformation (FIGURE 1C). 
3. PCA and LE show the most similar gradient patterns, whereas PCA 

and DE reveal the least similar patterns (FIGURE 1C). 
4. The discovery-replication reproducibility is generally high (r>0.8) 

until the 6th gradient (even if they are in raw order), and further 
increased after a gradient matching process (FIGURE 1C).  

5. As FC threshold is increased, variance explained becomes less 
dominated by first primary gradients, regardless of algorithm used 
(FIGURE 1B). 

To assess raw 
functional 
gradients and 
their 
reproducibility  

Analysis-2 1. Profiling of intraclass correlation coefficient (ICC) 
a. Calculating ICC at each gradient across the 

algorithms and across different input data types 
b. Counting # of gradients with ICC>0.5 to compare 

between algorithms and input data types 
c. Detecting the most reliable gradient among those 

from different parameter setting and visualizing its 
whole-brain pattern 

2. ICC comparison between the algorithms 
a. Constructing a similarity matrix of ICC between the 

algorithms 
b. Assessing between- and within-subject variability 

3. Discriminability comparison at each gradient across 
the algorithms and input data types. 

Concatenated two 
R-fMRI time-series 
(=2×15=30mins) in 
both two sessions 
(total: two 30mins 
time-series for test 
and retest) in 209 
subjects (discovery 
& replication) 

Regardless of the algorithm used, gradient reliability:  
1. is positively associated with the variance explained (i.e., gradient 

order, FIGURE 2A). 
2. increases with higher FC thresholds (FIGURE 2A). 
3. is maximized in the 95-97% range of FC threshold. 
4. is maximum in the default mode, fronto-parietal and dorsal attention 

networks, mainly due to a high between-subject variability (FIGURE 
2B). 

5. is highly reproducible (SUPPLEMENTARY FIGURE 3). 
 

Between the different algorithms, 
1. PCA generally shows higher ICC (FIGURE 2A). 
2. However, DE shows higher reliability in the range of minor gradients 

(from about 40th gradient order; FIGURE 2A). 
3. PCA and DE show high discriminability (nearly perfect values when 

using FC matrices with a high threshold (FIGURE 2C). 

To compare the 
reliability of 
gradients across 
the algorithms 
and input data 
types 

Analysis-3 1. Evaluation of ICC change as a function of R-fMRI 
time-series length across the three algorithms 

a. Calculating ICC of the gradient from 95%-
thresholded FC across 5, 10, 20, 30, 40, 50 mins of 
time-series data 

b. Categorizing the ICC into the ‘fair, ‘moderate’, 
‘substantial’ and ‘almost perfect’ intervals and 
assessing the proportions across different scan times. 

c. Assessing the time-series length-dependent ICC 
changes across different functional networks. 

2. Evaluation of discriminability as a function of time-
series length across the three algorithms 

Midnight Scan 
Club R-fMRI time-
series of 9 subjects 
(each having ten 
30mins of data=5 
hours of R-fMRI 
data) 

1. As the time-series length gets longer, reliability is monotonously 
increased over the whole brain without distinct patterns across the 
functional subnetworks (FIGURE 3A) 

2. PCA shows higher reliability than other algorithms regardless of scan 
duration in all categories (i.e., moderate, substantial and almost 
perfect, FIGURE 3A middle panels) 

3. In general, from-30-to-40 mins of R-fMRI data change makes the 
largest jump of ICC increase (FIGURE 3A bottom panels). 

4. The gradients explaining more variance reveal higher discriminability 
compared to the minor gradients (FIGURE 3B). 

To assess effects 
of R-fMRI time-
series length on 
the reliability of 
functional 
gradients 

Analysis-4 1. Testing a prediction accuracy 
a. Reducing the dimensionality of phenotypic data 

using an exploratory factor analysis (EFA) 
b. Performing a prediction test on the factor scores and 

entire phenotypic scores 
2. Relating a prediction accuracy to reliability of 

gradients 
3. Assessing prediction accuracy across different 

algorithms and input data types 
a. Comparing between algorithms and between input 

data types 
b. Checking the spatial patterns of contributing features 

across the whole brain 
4. Assessing the prediction accuracy across different R-

fMRI time-series lengths 
5. Comparing the prediction accuracy with connectome-

based predictive modeling 

Concatenated two 
R-fMRI time-series 
(=2×15=30mins) in 
both two sessions 
(total: two 30mins 
time-series for test 
and retest) in 209 
subjects and 65 
phenotypic scores 
in 3 datasets of 209 
subjects (training, 
test1 and test2) 

1. EFA identified 3 factors from entire phenotypic scores, representing, 
externalizing and externalizing symptoms, and general cognitive 
function (SUPPLEMENTARY FIGURE 1) 

2. General cognitive function was predicted in many more gradients 
(especially for the components explaining larger data variance) 
compared to internalizing and externalizing factor scores (FIGURE 
4A, B). The findings were highly reproducible in the test-2 dataset. 

3. Averaged prediction accuracy was significantly associated gradient 
reliability (both ICC and discriminability (FIGURE 4A). 

4. Across all choices of algorithms and thresholds, prediction accuracy 
was maximized with PCA using a 95-6% threshold (FIGURE 5) 

5. The brain regions with higher reliability tend to show greatest feature 
contributions to CCA-based prediction (FIGURE 5) 

6. The gradients outperform connectome-based predictive modeling in 
terms of phenotypic score prediction (FIGURE 6) 

7. 5-10 minutes of data are insufficient to reliably predict phenotypic 
scores. 20 minutes may be a reasonable compromise between clinical 
feasibility and biomarker optimization (FIGURE 7). 

To evaluate 
prediction power 
of gradients 
based on various 
combinations of 
parameter 
setting, and to 
relate this 
accuracy to the 
reliability 
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fMRI preprocessing and parcellation 

1. HCP: We used R-fMRI data that already underwent HCP’s minimal preprocessing pipeline 

(Glasser et al., 2013). No slice timing correction was performed, spatial preprocessing was 

applied, and structured artefacts were removed using ICA+FIX (independent component 

analysis followed by FMRIB’s ICA-based X-noiseifier, Salimi-Khorshidi et al., 2014), which 

is known for its ability to remove >99% of the artefactual components from a given dataset. 

Cleaned R-fMRI data was represented as a time-series of grayordinates (i.e., a combination of 

cortical surface vertices and subcortical standard-space voxels) and bandpass filtered at 0.008-

0.08 Hz. We discarded the first 10 volumes (7.2sec) to allow the magnetization to stabilize to a 

steady state (=1190 volumes). We downsampled the original 32k time-series into those with 

10k vertices to accelerate further preprocessing steps. To generate test-retest datasets while 

reducing potential session-related batch effects, we concatenated normalized signals (i.e. z-

score) of LR1 and RL2 (see a previous ‘1. HCP’ section for acronyms) images (test; 2380 

volumes), and also those of RL1 and LR2 images (retest; 2380 volumes), each yielding ~30mins 

of time-series across the individuals. To reduce computational cost for gradient calculation, we 

averaged vertex-wise time-series into a larger-size of regions of interest across the whole brain 

using a Schaefer parcellation (Schaefer et al., 2018). While the original parcellation has 1000 

ROIs on the 32k cortical surface, 2 ROIs were discarded during the 10k downsampling due to 

their small parcel size. This provided two sets of 998×2380 time-series matrices (test and retest) 

at each individual, which became the main inputs for following gradient calculation.  

2. MSC: We have used the data that were already preprocessed by the MSC imaging pipeline 

(Gordon et al., 2017). The steps included slice-timing correction, frame-to-frame alignment for 

head motion correction, intensity normalization and distortion correction. Preprocessed fMRI 

data was registered to anatomical images and sampled onto the vertices of extracted 32k cortical 

surfaces (fs_LR_32k). Again, we downsampled the original 32k grayordinates time-series into 

those with 10k vertices and averaged the time-series signals into 998 ROIs of the Shaefer’s 

parcellation map. This provided 10 sets of 998×818 time-series matrices at each individual, 

which were used to assess the effects of the amount of data in following analyses.  

 

Analysis-1. Gradient extraction, alignment, and reproducibility tests 
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While current literature for dimensionality reduction highlights the strengths of many conceptually 

distinct methods, here we focused on three primary ones, including the most representative and 

simple linear algorithm (i.e. principal component analysis) and two nonlinear manifold learning 

methods that have been previously used in the neuroimaging field (i.e., diffusion embedding map, 

Coifman and Lafon, 2006; Laplacian Eigenmaps, Belkin and Niyogi, 2003). Another factor that 

may affect the gradient calculation is the type of signals that are entered into the algorithm. 

Centered at row-wise 90% thresholding (i.e., a threshold leaving only top 10% of the strongest 

functional connectivity at each brain area; a method proposed in previous studies, Margulies et al., 

2016; Yeo et al., 2011), we have applied a systematically varied threshold from 0, 25, 50, 75, 90, 

95, 96, 97, 98 and 99% on a functional connectivity matrix to see which threshold would lead to 

the most reliable gradients across the whole brain. We also tested the effect of time-series signals 

without constructing a connectivity matrix, aiming to assess if raw time-series may already show 

high reliability. The combination of these parameters and algorithms yielded 3 (# of different 

algorithms) × 11 (different input data representation) pairs of functional gradient results. 

 

1. Gradient extraction 

a. Principal Component Analysis (PCA): PCA was performed using singular vector 

decomposition (SVD: X=USVT; X: time series or a [un]thresholded functional connectivity 

matrix, U: left-singular vectors, S: a diagonal matrix of singular values, V: right-singular 

vectors). In an SVD setting, the columns of V represent principal directions (axes) of cortical 

points for which distance is determined by their functional connectivity. The columns of U×S 

are principal components or scores of brain areas projected onto those identified principal axes 

(so called “functional gradient”). S is related to the eigenvalues of covariance matrix via 

𝜆𝑖=Si2/(n-1), which can later be used to estimate variances explained by each principal 

component. We applied SVD to both time series (998×2380) and functional connectivity 

matrices (998×998) of each individual to obtain PCA-derived functional gradients. Notably, 

the U×S from SVD is equivalent to principal components of eigenvector decomposition. 

b. Diffusion Embedding (DE): This method, a widely used nonlinear dimensionality reduction 

algorithm, has been used in a recent study demonstrating the major connectome hierarchical 

systems in both human and non-human primate brains (Margulies et al., 2016). Mathematical 

details of this algorithm can be found elsewhere (Coifman and Lafon, 2006; Langs et al., 2016, 
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2014; Margulies et al., 2016; Vos de Wael et al., 2020). Briefly, this algorithm starts with a 

calculation of an affinity or similarity matrix between given data points. In our case, each data 

point represents a specific cortical area in the brain, and every cell in the affinity matrix (size: 

998×998) refers to the extent of how strong functional connectivity is formed between two 

brain areas (in case of time series data) or how similar the functional connectivity profiles of 

two brain areas are (in case of functional connectivity data). For the latter, the functional 

connectivity matrix can be row-wise thresholded before building an affinity matrix. After row-

wise thresholding, the connectivity vector at each brain area becomes sparse, which can affect 

the similarity calculation. To address this issue, we followed the previous approach (Margulies 

et al., 2016) to employ cosine similarity as a main distance metric in this study. After 

calculating the similarity matrix, the DE converted it into a transition probability map (p) 

between data points and estimated its power pt, which represents the Markov-chain diffuse 

process evolving as the time t along the brain graph (i.e., brain nodes linked by functional 

connectivity). Here, we used 0 (=default setting) for t, following the previous study (Margulies 

et al., 2016; Vos de Wael et al., 2020). By doing so, the algorithm can quantify diffusion 

distances between cortical areas, which can capture local embedding of a given brain graph 

based on the eigenvectors and eigenvalues of a diffusion operator.   

c. Laplacian Eigenmaps (LE): This nonlinear dimensionality reduction algorithm has been 

employed in multiple neuroimaging studies (Haak et al., 2018; Marquand et al., 2017). 

Similarly with DE, the input to this algorithm was an affinity matrix (with cosine similarity 

but also eta2 similarity, following the previous study, Haak et al., 2018). Minimization of a 

cost function based on this affinity graph ensures that points close to each other in the original 

data space are mapped close to each other in the low-dimensional manifold, thereby preserving 

local distances. LE achieves this goal by calculating the graph Laplacian (L=D[Degree matrix]-

A[affinity matrix]) and solving its generalized eigenvalue problem (Lg = λDg where the 

eigenvectors gk correspond to the m smallest eigenvalues λk). Again, the affinity matrix can be 

constructed directly from time series (998×2380) or based on a thresholded connectivity matrix 

(998×998).  

 

2. Template generation and alignment 
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As the order of identified gradients and the direction of their signs from dimensionality reduction 

algorithms are data- and algorithm-specific, the results are often not matched. This mismatch 

occurs between subjects (even when using the same method), between methods (even when 

applying to the same subject) and also between test-retest datasets (even if applying the same 

method to the same subject but with different sessions of data). To make them comparable, a post-

hoc matching process to align identified gradients to a reference template is required. To this end, 

we constructed a group-level gradient template that consists of 250 components (which accounts 

for 100% of data variability across all algorithms). We first extracted individualized gradient maps 

(each 250×998), applying PCA to the functional time-series. We then stacked the gradients from 

all subjects (n=209) into a large 2D matrix (52,250 [=250×209]×998), and performed PCA again 

on this matrix. This generated a set of group-level gradient templates (250×998), which were used 

as a reference to which all individual maps were aligned using Procrustes transformation (Wang 

and Mahadevan, 2008). Of note, Analyses-2 to -4 used this PCA-derived group-level template, 

whereas Analysis-1 relied on the templates directly from each algorithm to evaluate algorithm-

specific gradient profiles. 

 

3. Between-/within-algorithm reproducibility  

One of the important criteria in developing a robust biomarker is reproducibility. To this end, we 

tested two reproducibility aspects. First, we calculated the within-subject cross-algorithm gradient 

similarity between PCA, DE and LE. Second, we also calculated within-algorithm gradient 

similarity between discovery and replication datasets. For each, we examined the reproducibility 

along the gradient order. To evaluate the effect of a post-hoc gradient matching process, we 

systematically assessed those reproducibility measures before and after the Procrustes alignment. 

 

Analysis-2. Reliability evaluation across different parameter setups 

We assessed reliability of gradient measures based on both univariate and multivariate statistics, 

namely intraclass correlation coefficient (ICC, Shrout and Fleiss, 1979) and discriminability 

(Bridgeford et al., 2020). Briefly, ICC is a statistic defined as the between-subject variability 

divided by the sum of within- and between-subject variability. While this is one of the widely used 

reliability metrics, it allows only for univariate items and is valid only under the Gaussian 

assumption, thus any violation against this condition challenges its interpretation. To fill these 
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gaps, we also included the discriminability (Bridgeford et al., 2020). This recently proposed 

reliability index is nonparametric, thus requiring no distribution assumption, capable of taking into 

account for multivariate information and, most importantly, could provide an upper bound on the 

predictive accuracy of any classification task in unseen data. Statistical definition, theoretical 

background and validation of this metric can be found in (Bridgeford et al., 2020). Briefly, this 

measure quantifies the degree to which multiple measurements of the same subject are more 

similar to one another than they are to other subjects. To do this, it computes the distance between 

all pairs of subjects, and calculates the fraction of time that a within-subject distance is smaller 

than between-subject distance. The average of this fraction is referred to the discriminability. 

 

Using these two indices, we have systematically investigated the reliability of functional gradients. 

Notably, we assessed which combination of dimensionality reduction algorithms and input data 

types provides the highest reliability, by counting the number of resulting gradients with ICC 

greater than 0.5. We then visualized the whole brain ICC of gradients from that selected parameter 

combination and compared them between the algorithms. We also sorted out the ICC spatial 

patterns based on the established functional community atlas (Yeo et al., 2011) to see which brain 

network reveals particularly high or low reliability. Moreover, to decompose the sources of ICC, 

we separately calculated within- and between-subject Euclidean distances in the gradient space 

and see which one explains more dominantly those high ICC values. Lastly, the discriminability 

index was assessed across the algorithms, stratified based on the input data types (i.e., time-series, 

differently thresholded functional connectivity matrices). 

  

Analysis-3. Reliability evaluation across different R-fMRI time-series length 

Apart from the algorithm used and input data type, another critical factor affecting the quality of 

extracted gradients is an amount of the data available (i.e., a time-series length of R-fMRI). Given 

that most clinical studies rely on relatively limited amount of R-fMRI data due to practical 

challenges, figuring out a lower bound of the scan time to obtain reasonable reliability and 

sensitivity in detecting behavioral association will have a direct impact on prospective data 

collection. To address this question, we benefited from the densely sampled individual data from 

MSC, where 9 subjects are available, each having 10 different sessions of R-fMRI. The targeted 

time-series lengths were 5-, 10-, 20-, 30-, 40- and 50mins. To generate these fMRI time-series 
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lengths, we randomly chose a contiguous segment(s) of R-fMRI time-series as the same length as 

a targeted time length among the entire 300mins data and merged them if needed. For instance, to 

make 40mins data, we selected one 30mins contiguous segment keeping the original volume order 

(please recall that one session data of MSC is 30min) and another 10mins of data and merged them. 

This strategy to choose ‘contiguous’ volume segments was to keep any inherent properties of the 

original data related to its stationarity, while randomly aggregating the data. This process was 

performed two times separately, in order to make test-retest datasets. Once we generated these 

different lengths of fMRI data, we systematically applied the three dimensionality reduction 

algorithms to evaluate their reliability as a function of an amount of the data.  

In this analysis, we focused on the 2nd PCA-derived gradient, given its highest ICC among 

multiple combinations of parameters and different gradient order. We iterated the above random 

data generation process and reliability calculation 10 times and reported the averaged results. We 

also categorized the resulting ICC values according to the widely accepted interpretation guideline 

(ICC≤0.4: fair, 0.4<ICC≤0.6: moderate, 0.6<ICC≤0.8: substantial, 0.8<ICC<1: almost perfect; 

Landis and Koch, 1977) as well as in terms of canonical functional communities to display the 

network-stratified ICC patterns across different algorithms. Finally, we performed the same 

analysis assessing the effect of amount of the data based on discriminability.  

 

Analysis-4. Prediction framework based on canonical correlation 

Because of their statistical definition, both ICC and discriminability serve as indicators for a degree 

of how unique individual information the given measure retains to distinguish it from the group of 

items or subjects (Zuo and Xing, 2014). Hence, they are not only reliability metrics but also can 

be used as a marker for inferring the upper bound of prediction power of a given metric. For 

instance, if the reliability is low, there is less probability for this measure to predict independent 

phenotypic data, since the measure (here, a gradient) per se is already less individually 

distinguishable. To explicitly test this relationship (i.e., reliability vs. prediction accuracy) for 

gradients, we performed a gradient-based prediction analysis for phenotypic scores provided in 

HCP and related the prediction accuracy to reliability of the gradients.  

 

1. Profiling of HCP phenotypic scores based on their covariance matrix and factor analysis 
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The 65 HCP phenotypic scores targeted in this study are categorized into 6 different domains 

including alertness, cognition, emotion, personality, sensory and psychiatric/life functions (Barch 

et al., 2013). Given their high interdependency (see SUPPLEMENTARY FIGURE 1A), it is tempting 

to hypothesize the existence of underlying latent factors. To test this hypothesis, we first applied 

an exploratory factor analysis on the 209 (subjects) × 65 (phenotypic scores) matrix and obtained 

factor scores to see overall individual phenotypic patterns. We then used these factor scores as a 

responder in following prediction analyses. 

 

2. Prediction framework (SUPPLEMENTARY FIGURE 2)  

The predictor was a single gradient map derived from a specific dimensionality reduction 

algorithm and input data type (e.g., PCA on a 95% thresholded connectivity matrix) using 30mins 

of R-fMRI data across individuals (size=209×998 [subject by brain areas]). The responder was a 

single phenotypic score of the same individuals (size=209×1; either factor score or raw phenotypic 

score). While previous analyses targeted 250 gradients in total, here we focused on only the first 

100 gradients because the later gradients explained less than 1% of the variance of the original 

connectome data. We used a canonical correlation analysis (CCA) to associate the two sets of 

variables (i.e., predictors and responder, McIntosh and Mišić, 2013; Smith et al., 2015; Wang et 

al., 2018). Briefly, CCA – a generalized multivariate correlation approach – finds linear 

combinations of the variables in each of two multivariate sets such that the two sets make the best 

correlation with each other. As a result, CCA provides canonical coefficients (weights for linear 

combinations) which, in the prediction context, become trainable parameters that will be applied 

to the unseen test cases. Before prediction, we first performed PCA on the gradient matrix 

(predictor; 209×998 [subject by brain areas]) to reduce its original high dimensionality into 209×X 

(X = # of the components that can explain >90% of variability of an original matrix). This 

dimensionality-reduced gradient matrix and the phenotypic score were then fed into CCA to find 

canonical coefficients. After learning both PCA and CCA coefficients of gradients from the 

training data (discovery), we applied the PCA coefficients to raw gradient scores of the test cases 

(test-1), and then the CCA coefficients to these reduced features, and finally performed an inverse 

mapping of PCA in order to reconstruct phenotypic scores. The prediction accuracy was measured 

using Spearman correlation between the predicted phenotypic scores and the original scores. 
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We created the above prediction framework 100 [# of targeted gradients] × 3 [# of factor] or 65 [# 

of raw phenotypic scores] times. This group of predictions was again iteratively performed across 

all pairs of 3 different algorithms × 11 input data types (time series and differently thresholded 

functional connectivity matrices). Increased Type-I errors due to multiple prediction accuracy 

calculations (i.e., Spearman correlation) were controlled by false discovery rate (FDR) at 5% 

(Benjamini and Hochberg, 1995). We counted the number of gradients showing FDR-survived 

significant prediction across different input data types at each algorithm (i.e., PCA, DE and LE) to 

assess the parameter combination providing the most predictive gradient markers. All prediction 

analyses were repeated using a second independent dataset (test-2) for reproducibility of findings. 

 

3. Relationship between prediction accuracy and reliability 

Once we obtained a prediction accuracy table (100[# of targeted gradients] × 3 or 65[# of factor 

or phenotypic scores]), we averaged the accuracy values at each row (=each gradient) to measure 

a general prediction power across phenotypic scores. We then correlated this averaged prediction 

accuracy and reliability (whole-brain averaged ICC and discriminability) based on Spearman 

correlation. We tested this prediction-reliability correlation across all combinations of the 

algorithms and input data types.  

 

4. The effect of R-fMRI time-series length on prediction 

We evaluated the effect of R-fMRI time-series length on prediction accuracy. As done in Analysis-

3, we selected the gradients from PCA applied to the 95% thresholded functional connectivity, 

given its highest reliability. Because the MSC data has only 9 subjects, it was not enough to find 

generalizable CCA coefficients for prediction. Thus, we instead used the HCP dataset, randomly 

choosing the segments of R-fMRI volumes among one-hour data, by varying the time-series length. 

We created different lengths (i.e., 5-, 10-, 20-, and 30mins) of test-retest time-series data from both 

training and test-1 cases, and conducted the same reliability/prediction analyses as done in 

Analysis-3 and -4. We also performed a prediction analysis using 50mins data to see if the accuracy 

keeps improving without making a saturation. 

 

5. Comparison with conventional edge-based connectome prediction 
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Finally, to assess the unique strength of low-dimensional gradient approaches compared to the 

conventional methods, we selected the recently proposed, connectome-based predictive modeling 

(Shen et al., 2017, YaleMRRC/CPM) as a reference to compare. This simple yet powerful method 

directly takes a connectivity matrix of individuals as an input, trains a robust regression after 

selecting only predictive edges (connectivity) and tests unseen samples in a cross-validation setting. 

The only parameters that can be tuned in CPM is the alpha threshold for the selection of edges 

showing a high correlation with a given responder. To make a fair comparison, therefore, we 

systematically varied the threshold of CPM between 0.001 and 0.05 with every 0.0025 interval 

and aggregated only the significant predictions (after FDR corrections). We tested the CPM based 

on factor scores, and compared the results to those of gradients.  

 

RESULTS 

Gradient extraction, alignment, and reproducibility tests.  

Comparison of the connectivity gradients generated using PCA, DE, and LE (FIGURE 1) suggested 

that similarities exist among the algorithms, though primarily for those explaining the highest 

amounts of variance. Specifically, the first four gradients generated by the three algorithms were 

highly similar (e.g., spatial correlation across the 4 gradients: 0.86±0.11 [PCA-DE], 0.97±0.02 

[DE-LE], 0.90±0.07 [PCA-LE]), and the later components exhibited a rapid drop-off in similarity 

across these methods. Given the expectation that the gradient components explaining less variance 

would be more sensitive to the choice of algorithm, we matched components across the three 

algorithms using Procrustes alignment (Wang and Mahadevan, 2008). This procedure suggested a 

notably higher degree of similarity in the results (at least for 10 components as shown in FIGURE 

1C). Importantly, we found that those gradient components having a high cross-algorithm 

similarity also exhibited a high degree of reproducibility across the samples (replication-1) as well. 
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Figure 1. Profiling of functional gradient and its reproducibility. A) Mapping of the first 10 gradients directly 
from time series data (PCA, DE, and LE in order) before alignment. B) Relative proportion of variance explained for 
PCA and DE as a function of gradient order (x-axis) and threshold (color-coded). Please note that LE has 
algorithmically different principles in terms of ordering the components (selecting the smallest eigenvalues first), thus 
showing upside-down flipped curves compared to those of PCA and DE. C) The summary of cross algorithm similarity 
of the first 20 gradient maps was shown before (left) and after (right) matching with Procrustes transformation. In the 
right bottom corner, the test-retest reproducibility of the gradients is also present between different samples before 
and after alignment. The first few gradients (e.g., 1-6 gradients) are similar to one another, regardless of whether 
matching was used, and that for the later gradients, a gradient alignment dramatically improved both the cross-
algorithm and cross-sample reproducibility. 
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Reliability evaluation across different parameter setups.  

Regardless of the algorithm used, ICC was highest for those that explain a greater proportion of 

the variance (i.e., the lower order gradients). This is consistent with our findings that lower order 

gradients are more stable and replicable within a subject – properties that would be expected to 

yield higher test-retest reliability. Second, generally we found an advantage for using threshold 

matrices over time-series data, and particularly more conservative thresholds (e.g., >90%). Of note, 

as one would expect, too conservative thresholding (>98%) turned out to actually reduce reliability, 

suggesting that excessive thresholding can remove important individual variations in connectome. 

 

In FIGURE 2, to illustrate key points, we depicted the reliability maps derived from 95% threshold 

functional connectivity. Yet, the findings were generalizable to other combinations of parameters, 

which are presented in SUPPLEMENTARY FIGURE 3. First, when the vertices are sorted into 

networks, we found that those in the dorsal attention, frontoparietal and default mode system have 

higher ICC than the rest of the brain (two sample t-tests between these two network systems: 

p<0.001, t=17.2 for PCA; p<0.001, t=14.9 for DE; p<0.001, t=19.7) – regardless of the algorithm 

employed (PCA, DE, LE). Examination of contributing sources of variation to ICC revealed that 

these high ICCs are primarily derived from higher between-subject variability of those gradients, 

rather than lower within-subject variability. Overall, discriminability was highest for the PCA, and 

lowest for LE. For the gradients from LE, given that previous studies employed the eta2 similarity 

(Haak et al., 2018; Marquand et al., 2017) for the affinity matrix calculation, we also evaluated the 

reliability based on this approach, and found slightly decreased reliability compared to the ones 

from the cosine similarity (SUPPLEMENTARY FIGURE 4). 
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Figure 2. Reliability of functional gradients. A) Upper: The whole-brain mean intraclass correlation coefficient 
(ICC) is plotted across the thresholding approach (color-coded) and as a function of the gradient order (x-axis) for the 
three dimensionality reduction algorithms. The inset at each graph presents the number of gradients with >0.5 ICC 
(all algorithms commonly show the peaks in the range of 95-97%). The rightmost graph shows cross-algorithm 
comparisons of ICC at 95% thresholding. Bottom: The spatial distribution of the ICC for the first 10 matched gradient 
components is mapped on the whole-brain cortex. B) Top: At each algorithm, averaged ICC across 1-10 gradients was 
sorted out based on a canonical functional network atlas (Yeo et al., 2011). Middle: The similarity of whole-brain ICC 
patterns across the gradients is shown. Note that the diagonal components represent within-algorithm similarity, 
whereas the off-diagonal shows between-algorithm similarity. Bottom: The two sources contributing to ICC, namely 
within-subject and between-subject variability, are separately computed across the three algorithms. Note that high 
ICC is generally driven by high between-subject variability rather than low within-subject variability. C) The 
discriminability of gradients across the algorithms as a function of gradient order (x-axis) and thresholding approach 
used (color-coded).  
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Reliability evaluation across different time-series lengths.  

Here, we examined the relationship between R-fMRI time-series length and gradient reliability, 

both at the vertex and whole-cortex levels. To accomplish this goal, we leveraged the Midnight 

Scan Club data (Gordon et al., 2017), which allowed to create two subsets of data of varying 

amount of R-fMRI data per participants (i.e., 5-, 10-, 20-, 30-, 40-, 50 minutes). Consistent with 

prior findings (Birn et al., 2013; Noble et al., 2017), we found that regardless of the connectivity 

gradient algorithm or thresholding strategy employed, vertex-wise reliability (indexed by ICC) 

progressively increased with the amount of data available. For the purposes of clarity, we focused 

our reporting on the findings from the PCA/95% thresholding strategy (FIGURE 3), which were 

superior in terms of reliability. We found that at 20 minutes, >50% of vertices achieved at least 

moderate reliability (ICC>0.4) and >30% of the vertices reached the classification of substantial 

(ICC>0.6). Of note, the number of vertices achieving reliability that would be classified as 

“substantial” or “almost perfect” more than doubled when increasing from 5 to 20 minutes, and 

from 20 to 50 minutes.  Importantly, when we sorted vertices by network, we found that those in 

the default, attention and frontoparietal networks tended to be substantially higher than those in 

the visual, somatomotor and limbic networks across all time-series lengths (two sample t-tests at 

each length [showing the least significant statistics among 5 different lengths]: p<0.001, t=11.1 

for PCA; p<0.02, t=2.43 for DE; p<0.06, t=1.91 for LE). 

 

Our examination of discriminability suggested a more complex relationship across different orders 

of gradients. In all algorithms, the gradients explaining larger data variance tended to exhibit 

greater discriminability than those ones explaining smaller variance, with differences in 

discriminability among gradients decreasing with the amount of data. Of note, regardless of the 

algorithm employed, increases in discriminability as a function of fMRI time-series length were 

prominent when increasing from 5- to 10-minutes, and from 30- to 40-minutes; findings were 

otherwise relatively steady across durations.  
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Figure 3. Effects of scan duration on reliability. A) Top: The changes of ICC across the whole brain are shown as 
a function of increasing R-fMRI time-series length for the second gradient from the 95% thresholded functional 
connectivity matrix. Overall, PCA shows the highest regional ICC as increasing time-series length. PCA with only 5 
minutes of data produces ICC values comparable to DE with as much as 40 minutes of data. Middle: The changes of 
ICC as a function of time-series length are categorized into widely used ICC interpretation criteria (ICC≤0.4: fair, 
0.4<ICC≤0.6: moderate, 0.6<ICC≤0.8: substantial, 0.8<ICC<1: almost perfect; (Landis and Koch, 1977). Here only 
from the moderate range is shown to focus on relatively acceptable ICC values. Please note that from 20mins data 
already >60% of vertices over the whole brain present ICC>0.4. DE and LE follow PCA in order. Bottom: As done in 
Figure 2, the data amount-dependent whole-brain ICC changes were stratified into 7 functional communities (Yeo et 
al., 2011) and shown across the algorithms. To assess how the ICC changes as every 10mins-length increase, we 
computed the difference of ICC between the current time length and the previous one. The peak of this ICC changes 
occurs normally in longer time-series (e.g., 40-50 mins). B) The discriminability as a function of increasing time-
series length is present across the full gradients. Note that in 20mins or more data, all PCA gradients are highly 
discriminable, whereas there exist a range of discriminability values across gradients for DE and LE. 
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Gradient-based prediction analysis.  

We systematically evaluated the prediction ability of functional gradients across different 

combinations of the algorithms and time-series/connectivity thresholding strategies.   

 

1. Factor score prediction (SUPPLEMENTARY FIGURE 1): Before a prediction analysis, we first 

profiled the patterns of 65 HCP phenotypic scores. In exploratory factor analysis, we focused 

on the 3 factor-model because k=3 made an elbow point in the graph of variance explained. The 

resulting three factors were summarized into i) externalizing (psychiatric/life function [thought 

problem, attention problem, rule break, other problems, total problem, ADHD, inattention 

problem, hyperactivity, antisocial]), ii) internalizing (emotion [anger, fear, sadness], social 

relationship [loneliness, hostility, rejection, perceived stress], personality [neuroticism], 

psychiatric/life function [withdraw, internalizing, depress, anxiety, avoid]), and iii) general 

cognitive function (cognition [fluid intelligence, language reading/comprehension, spatial 

orientation processing, verbal episodic memory], emotion [emotional recognition]). From these 

factors, we extracted individual scores to enter into a prediction framework as responders.  

 

In the test-1 dataset, when using gradients from PCA and 95% thresholded connectivity matrix, 

the factor-3 representing global cognitive functions was generally well predicted across many 

gradients (# of gradients showing significance=61 out of 100 gradients after FDR correction), 

while the other twos (i.e., externalizing, internalizing) showed significance in only a few 

gradients (FIGURE 4A). This pattern was largely replicated across other combinations of 

algorithms and input data types as well (FIGURE 5A), suggesting a strong association of 

functional gradients towards general cognitive performances. Notably, when associating this 

prediction accuracy to reliability (i.e., ICC and discriminability), it showed strong positive 

correlations (FIGURE 4A), reflecting a clear advantage of assessing reliability in inferring a 

phenotypic prediction power. This prediction-reliability relationship was consistently found in 

the second independent dataset (test-2) as well.  
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Figure 4. CCA-based behavioral prediction and its relationship to reliability. A) The results of three-factor score 
prediction using gradients from PCA and 95% thresholded functional connectivity are present (left: test-1 and right: 
test-2). Each cell in the left matrix represents the prediction accuracy (Spearman correlation between observed and 
predicted scores) of 100(# of predictors [gradients]) × 3(# of factors [externalizing, internalizing and general cognitive 
functions) tests. The black dots in the matrix indicate FDR-survived predictions. Please note that the most FDR-
significant predictions occur from general cognitive functions, and only few in the externalizing and internalizing 
symptoms. The next scatter plots present the relationship between reliability (top: ICC, bottom: discriminability) and 
prediction accuracy (i.e., row-wise averaged r values from the left matrix). Both show a strong positive relationship, 
suggesting that more reliable the gradient is, higher prediction power it has for unseen phenotypic scores. Notably, in 
the discriminability plot (bottom), most dots are positioned in the rightmost side. However, if the rightmost side (the 
range for nearly perfect discriminability) is stretched out, the discriminability is still correlated to the prediction 
accuracy as shown in the inset. Virtually identical results were replicated in the test-2 datasets. B) The same format 
of the results but for the entire 65 phenotypic scores (belonging to the 6 different domains) were presented. Again, the 
black dots indicate the FDR-significant prediction, and the predicted 18 different phenotypic scores were listed next 
to the matrix. The rightmost scatter plots are the relationships for reliability (top: ICC, bottom: discriminability) and 
averaged prediction accuracy.  
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Figure 5. Comparison of behavioral prediction across algorithms and input data representation. Left: The group 
of matrices (size: 100×3×11 [# of gradients×# of factors×# of input data types]) presents the distribution of three-
factors prediction accuracy as a function of input data types (i.e., time series, 0, 25, 50, 75, 90, 95, 96, 97, 98, 99% 
thresholded from left to right) and the gradient algorithm used (PCA, DE, LE). Note that for both PCA and DE, the 
predictive accuracy is maximized for the upper thresholds (95%-97%). Middle: Averaged prediction accuracy is 
presented across different input data types (color-coded) as a function of gradient order (top) and as a function of 
whole-brain ICC (bottom). As the gradient order gets higher, prediction accuracy gradually decreases. Notably this 
pattern was distinct across the input data types, with a tendency of less-conservatively thresholded functional 
connectivity (e.g., 0-50%) showing generally lower prediction accuracy compared to the highly thresholded 
connectivity input. As whole-brain ICC increases, the prediction accuracy accordingly increases. Right: In both PCA 
and DE, the 95-96% thresholding range shows the highest number of FDR-significant prediction gradients, whereas 
in LE, the time-series based gradients show the highest number of significant predictions. Notably, when mapping the 
feature contribution from CCA training, its spatial distribution appears highly resembling patterns with the ICC whole-
brain profiles regardless of the algorithms used.  
 

Beyond prediction based on a single gradient map, we also tested whether combining multiple 

gradients can further improve the prediction accuracy. The first step in this process was to 

identify the most promising subset of gradients to combine, in an unbiased manner. To 

accomplish this, we split the training cases (i.e., discovery dataset) into 5 folds, and performed 

a within-sample prediction analysis, which provided a set of gradients showing significant 

factor-score prediction. We combined these gradients into a single, large feature matrix (209´ 

[998´ # of gradients]) to enter it to the CCA framework. We then followed the same prediction 
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procedures as above (see ‘2. Prediction framework’ in the METHOD) to test unseen cases 

(replication-1). It is important to note that the test cases were completely isolated from this 

gradient selection process. The result showed that the combined gradient approach greatly 

improved prediction accuracy in general cognitive domains from 0.33 (maximum Spearman 

correlation in the single-gradient based prediction) to 0.41, suggesting the collective power of 

useful gradients with high predictive ability (see FIGURE 6). On the other hand, the 

externalizing symptoms showed a decreased performance (from 0.2 to 0.12 Spearman 

coefficient).  

 

 
Figure 6. Comparisons of prediction accuracy between functional gradients and connectome-based predictive 
modeling (CPM) approaches. Only the factor scores showing significance prediction in both gradient and CPM 
approaches are shown (i.e., externalizing symptoms and general cognition domains). Individual pale blue dots in the 
violin plot represent the significant accuracy among 100 gradients, whereas the orange dots are the accuracy derived 
from the tests of systematic p-value thresholding for feature selection in CPM. Additionally, an individual isolated 
blue dot (filled) above or below each gradient result represents the prediction accuracy when using multiple gradients. 
See ‘Gradient-based prediction analysis’ in METHOD and ‘Full phenotypic score prediction’ in RESULTS for details. 
Most accuracy values in the single gradient approach outperform those of CPM, suggesting added values of low-
dimensional connectivity representation compared to the pure edge-based analysis. The statistics are based on non-
parametric Wilcoxon Rank sum tests comparing the accuracy between the two methods. Combining multiple gradients 
showed a prediction improvement in the general cognitive domain. The reason why the same multiple-gradient 
approach yielded a worse accuracy in the externalizing symptoms may be likely because of less generalizability about 
significantly predictive gradients for externalizing symptoms between training and test datasets.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 17, 2020. ; https://doi.org/10.1101/2020.04.15.043315doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.15.043315


28 

 

In part, this may suggest that our strategy to select gradients for combination was suboptimal; 

toward this point, had we selected the individual gradients that performed best in the test dataset, 

and combined them, prediction would have gone up to 0.32 for externalizing. Alternatively, it 

may reflect the fact the effects for the psychiatric factors were notably smaller than those 

observed for the cognitive –possibly due to the fact that the HCP samples are largely 

neurotypical subjects. Related to this point, recent work has highlighted the suboptimal nature 

of psychiatric tools such as the Adult Self Report in non-psychiatric samples (Alexander et al., 

2020). 

 

Finally, we assessed the difference between ICC (univariate) and discriminability (multivariate) 

in terms of their ability to infer a phenotypic prediction. To this end, we constructed a precision-

recall curve at each reliability measure, by which we could compare how much their reliability 

can screen only ‘FDR-survived’ significant phenotypic predictions. Again, here we used the 

prediction result from PCA applied on 95% thresholded functional connectivity matrix. This 

analysis demonstrated no statistical differences between the two measures (SUPPLEMENTARY 

FIGURE 5), although ICC revealed the FDR-survived significant prediction even in the 

relatively lower, arbitrary thresholds (ICC=0.2-0.3), whereas in discriminability only nearly 

perfect thresholds (=1) suggested FDR significances, which may serve as a practically more 

useful criterion, given its non-arbitrariness.  

 

2. Full phenotypic score prediction: Similar prediction results were observed in raw 65 phenotypic 

scores as well (FIGURE 4B; note that the result was based on PCA applied on the 95% 

thresholded functional connectivity). Indeed, most gradients showing FDR significance were 

found in the categories of cognition and psychiatric/life function, and much less in other domains. 

Specifically, those scores showing at least one significant prediction were found: in the 

cognition domain, fluid intelligence, episodic memory, executive functions, language, spatial 

orientation, verbal/working memory; in emotion, emotional support; in personality, positive 

traits (agreeableness, openness); in sensory, olfaction and taste; in psychiatric and life function, 

withdrawn, attention problem, rule breaking, critical item, total problem, ADHD and antisocial. 

As in the factor-score based analysis, the averaged prediction accuracy across these phenotypes 

was positively correlated to ICC and discriminability, emphasizing utility of reliability.  
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When expanding this analysis towards other combinations of different algorithms and time-

series/connectivity thresholding strategies (FIGURE 5), PCA-based gradients showed overall 

higher prediction rates compared to other methods. Moreover, the 95-97% of thresholding 

appears to be the most predictive range in both PCA and DE, as similarly found in their 

reliability profiles. Notably, when mapping the canonical coefficients learned from training 

across all gradients showing significant prediction, the spatial patterns across the whole brain 

highly resembled those areas showing high vertex-wise ICC, suggesting a strong relationship 

between reliability and individual prediction in the local brain areas. 

 

 
Figure 7. The effect of the data amount (i.e., time-series length) on phenotypic outcome prediction and its 
relationship to reliability. Left: The prediction accuracy for factor scores based on gradients from PCA and 95% 
thresholded functional connectivity is shown as a function of different time-series length (5, 10, 20, 30, 50mins). Right: 
As the amount of the data gets larger, the number of FDR-significant prediction cases also monotonously increases.  

 

3. The effect of time-series length on prediction: Similar to what has been done in Analysis-3, we 

systematically varied the time-series length to construct functional gradients and investigated 

the corresponding changes of prediction accuracy. Exemplifying the results based on PCA 

applied on 95% thresholded functional connectivity (FIGURE 7), we demonstrated significant 

effects of time-series length. Specifically, while the increase of the length made a monotonous 

increase of prediction performances, particularly 10-to-20mins data length change yielded the 

largest increase of a prediction performance, whereas it rather remains stable during 5-10mins 

and 20-30mins time increase.  
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4. Comparison with conventional edge-based prediction: The CPM analysis consistently yielded 

significant phenotypic predictions across almost all alpha thresholds in externalizing symptoms 

and general cognition domains (Spearman coefficients ranged from r=0.17 [p<0.013] to r=0.20 

[p<0.003] for externalizing; and r=0.17 [p<0.014] to r=0.22 [p<0.0014] for cognition; all p 

values survived the FDR correction), though none for internalizing. Yet, the accuracy level was 

significantly lower compared to the gradient approaches (see FIGURE 6) in both phenotypic 

scores, as indicated by Wilcoxon rank sum tests between CPM and gradients (p<0.001 for 

externalizing and p<0.048 for cognition), suggesting added values of low-dimensional 

functional connectivity representation. 

 

DISCUSSION 

The present work evaluated the suitability of connectivity gradients for cognitive and psychiatric 

biomarker discovery. We identified a benchmark set of parameter selections that maximizes 

reliability and as a result, enhance the ability to predict features of a specific individual. Our 

analyses focused on three key factors, (i) reproducibility, (ii) reliability and (iii) predictive power, 

and explored how they change depending on the threshold and type of functional similarity data, 

how gradients are extracted, and the amount of data. While there are many factors that can 

potentially determine reliability, we found that certain sets of the analytical strategies for the 

calculation of gradients were more useful in the context of biomarker discovery. These include i) 

using a linear dimensionality reduction algorithm (e.g. PCA), ii) utilizing the gradients that explain 

a greater amount of the variance of the original data, iii) extracting gradients using more 

conservatively thresholded functional connectivity matrices and iv) focusing on more reliable and 

predictively powerful  high-order transmodal systems rather than low-level primary sensory 

systems. Notably, while our findings experimentally support these recommendations, future work 

should tailor them, depending on the analysis goal of a given study. 

 

Our study examined two different aspects of reproducibility, one focused on cross-algorithm 

similarity and the other on the replication of findings in different sample data (replication-1). A 

well-established caution that exists for many dimensionality reduction techniques, is that 

component orders and directionality (either positive or negative) can be sensitive to minute 

differences in data. As a result, testing reproducibility directly on the raw functional gradients 
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across different methods and thresholding strategies may not be appropriate. Examination of the 

raw functional gradients across algorithms suggested significant variation, particularly in the 

gradients accounting for less variance. Importantly, our findings demonstrated the utility of 

Procrustes alignment in matching gradients across techniques, parameters and subjects to enable 

meaningful comparisons, and demonstrated a high degree of cross-algorithm agreement once 

properly aligned. Another noteworthy point is that the algorithms differed in the amount of 

variance explained along the gradient order. By the algorithmic nature of PCA, its lowest order 

gradients (e.g., the first few primary components) explain the highest amount of variance, while 

the nonlinear algorithms exhibited variances that are more evenly explained by the gradients along 

the order (especially when the gradients were based on more conservatively thresholded functional 

connectivity [98-99%]). This may explain why measures of reliability tended to drop off more 

rapidly as gradient order increased with PCA than with its nonlinear alternatives (FIGURE 2A). It 

also emphasizes the value of thresholding in increasing reproducibility across algorithms.  

 

It is important to note that although our findings favor PCA with respect to reliability and 

predictive validity of individual gradients, this does not negate prior findings with the more 

sophisticated, nonlinear algorithms examined (i.e., diffusion embedding, Laplacian eigenmaps). 

Our results, however, do suggest the merits of carefully establishing the need for such algorithms 

over more basic methods (e.g., PCA) before their adoption. This consideration may be particularly 

relevant when gradient techniques are applied to regional brain areas. Indeed, a recent study (Haak 

et al., 2018) using Laplacian Eigenmaps (LE) found a unique ability of non-linear manifold 

learning to recapitulate the functional connectivity organizations (i.e. connectopies) of visual and 

somatosensory areas, which was not able to be detected using PCA (applied to un-thresholded data, 

which we found to be suboptimal in our whole-brain application). Along the same lines, we also 

found that those nonlinear methods explain greater variance in higher order gradients compared to 

PCA, suggesting that these approaches have higher sensitivity in probing local, more nonlinearly 

embedded data structures in the manifold space. The current moment is especially useful to test 

these methods and better understand costs and benefits given their growing availability in 

relatively turnkey packages, such as BrainSpace (Vos de Wael et al., 2020). At a minimum, studies 

using nonlinear algorithms could benefit from including a comparison against linear methods to 

justify their use in a specific context. As the present work was comprehensive, though not 
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exhaustive, it is undoubtedly possible that variations of these nonlinear algorithms and their 

parameters may be able to bring performance to be notably in excess of that seen with PCA. Future 

work would benefit from such demonstrations. 

 

Beyond algorithm selection, we also found that the application of thresholds to correlation matrices 

and the type of affinity matrix calculation (e.g., cosine vs. eta-squared similarity) in gradient 

analyses play an important role to determine its reliability. While many studies include 

supplementary analyses that vary the threshold applied to demonstrate the robustness and 

limitations of their findings (Cole et al., 2013; Garrison et al., 2015; Hong et al., 2019), this is not 

the norm. Based on our analysis applying a relatively conservative threshold can help improve the 

reliability and prediction accuracy of gradients. This is not surprising, as thresholding is intended 

to remove noisy connections, which contain limited signal. As would be expected, our work also 

found that highly stringent thresholds result in diminishing returns and eventual loss of signal. As 

such, threshold selections should ideally be based on exhaustive searches of threshold parameters 

on test datasets that can be used to assess reliability and validity, prior to application to datasets of 

interest. Of note, our work also examined the impact of the nature of the thresholding approach 

(i.e., row-wise vs. global [applied to full matrix]), finding little differences in these changes. 

 

Building on an emerging theme in the functional connectomics literature, the present work found 

that “more data is better” – for both reliability and predictive accuracy. Our vertex-wise reliability 

analyses using intraclass correlation coefficient showed progressive increases as the amount of 

data available increased from 5-50 minutes. These findings mimic those of edgewise connectivity 

and areal parcellation in prior studies  (Elliott et al. 2019; Noble et al. 2017; Xu et al. 2016; Zuo 

et al. 2019; Nikolaidis et al. 2020). Consistent with these works, vertices within the frontoparietal, 

default and dorsal attention networks showed higher reliability with lower amounts of data. This 

finding raises the question as to whether the prominence of findings in these networks in the 

literature may be a reflection of their reliability. Our connectome-wide reliability analyses based 

on discriminability also supported the value of greater amounts of data, though patterns of change 

were less progressive, advantages were only found for going from 5 to 10 minutes of data per 

subject, and then from 30 to 50 minutes. As would be expected based on the increases in reliability 

observed in both univariate and multivariate perspectives, the significance of predictive 
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relationships also increased with data availability, regardless of the domain of behavior being 

examined. Of note, from multivariate perspectives, compared to the ICC, discriminability may 

provide a more explicit criterion to determine a predictive power of gradients. Indeed, as shown in 

FIGURE 4, nearly 1 value of discriminability usually confirmed FDR-significant phenotypic 

predictions, whereas whole-brain averaged ICC revealed significant prediction across even the 

ranges that are considered as “poor” and somewhat arbitrary (=0.2-0.3).  

 

A key limitation of the present work is that the connectivity gradients framework was notably more 

successful in predicting cognitive than psychiatric variables. We do not believe this should be 

taken to infer that connectivity gradients are not relevant to psychopathology. Instead, we posit 

that the lower performance with psychiatric variables is likely a reflection of the composition of 

the Human Connectome Project, which was largely focused on neurotypical adults. In such a 

population, the magnitude of differences among individuals would be expected to be smaller. 

Compounding this expectation, is the reality that questionnaire instruments such as the Adult Self 

Report are largely designed to differentiate individuals based on the severity of psychiatric 

symptoms, which makes them relatively limited in the assessment of differences among 

neurotypical adults. One other limitation to note is that while we demonstrated the feasibility of 

improving prediction accuracy by combining multiple gradients, our effort to identify those 

gradients most likely to be contribute meaningfully was found to be suboptimal for externalizing 

symptoms. While this may have actually reflected limitations in the composition or size of the 

training set, further examination of methods for combining gradients to optimize prediction is 

clearly merited.  

 

Finally, it is worth noting the need for a clearer conceptual positioning of connectivity gradients 

with respect to conventional network detection approaches. The networks, which are commonly 

revealed by independent component analysis (ICA) or clustering techniques, have constituted a 

dominant unit of brain organization until recently. Both approaches aim to describe the same high-

dimensional brain connectivity space, yet with different perspectives. For example, while ICA-

based functional networks can be conceptualized as spatially distinct sources within the 

connectivity matrix, PCA-derived gradients show rather smoother transition of brain areas along 

the continuous dimension capturing topographic connectivity relationships. Mathematically, PCA 
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finds multiple orthogonal directions that can explain maximal variance of Gaussian data, whereas 

ICA seeks independent axes which direction indicates the ‘sources’ of original non-Gaussian data. 

Because of such conceptual and mathematical differences between the two methods, the spatial 

correlation of their components (PCA-derived gradients vs. non-thresholded ICA maps) are only 

moderate (0.3-0.5 on average), even if they are extracted from the same subject, compared to those 

between PCA, DE and LE (SUPPLEMENTARY FIGURE 6). The challenge moving forward is in the 

judicious application of these interrelated but distinct perspectives to capturing the relevant 

features of brain organization; in the end, it may be the combination of both perspectives that is 

needed to provide more comprehensive solutions for biomarker discovery. 

 

Recommendations 

The results of the present work serve as a starting point for those interested in pursuing biomarker 

discovery using connectivity gradients. From this perspective, in the absence of further testing, we 

would recommend usage of the following parameters in studies using gradient based approaches: 

1. Consider the thresholding of a functional connectivity matrix. 

2. Limit analysis to the most reliable gradients. 

3. ICC may be arbitrary for selecting gradients; discriminability is more determined and thus 

preferable. 

4. More data the better for voxel-wise ICC and whole-brain discriminability, and the standard 5-

10 minutes are suboptimal. 

 

Conclusions 

The present work aimed to establish a set of benchmark parameters for the use of low dimensional 

representation of functional connectivity in the domain of biomarker discovery. We evaluated 

parameters to maximize reliability of this approach while retaining its ability to predict individuals. 

Our results highlight the importance of carefully considering the choice of algorithms, the degree 

of thresholding and the length of scan since each of these choices impacts on the ability of gradient 

representations of the cortex as a tool for biomarker discovery. We hope that these findings will 

help provide a foundation with which researchers can efficiently use gradient framework in their 

research. Finally, it is worth noting that our findings emphasize the importance of considering the 

amount of data employed for the calculation of features and its implications for reliability — the 
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latter of which is a primary determinant of sample size needs for detection of targeted effects, as 

well as the feasibility of making individual level predictions. 
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