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ABSTRACT 

Biological aging is the gradual, progressive decline in system integrity that occurs with 
advancing chronological age, causing morbidity and disability. Measurements of the pace of 
aging are needed to serve as surrogate endpoints in trials of therapies designed to prevent 
disease by slowing biological aging. We report a blood DNA-methylation measure that is 
sensitive to variation in the pace of biological aging among individuals born the same year. We 
first modeled longitudinal change in 18 biomarkers tracking organ-system integrity across 12 
years of follow-up in the Dunedin birth cohort. Rates of change in each biomarker were 
composited to form a measure of aging-related decline, termed Pace of Aging. Elastic-net 
regression was used to develop a DNA-methylation predictor of Pace of Aging, called 
DunedinPoAm for Dunedin (P)ace (o)f (A)ging (m)ethylation. Validation analyses showed 
DunedinPoAm was associated with functional decline in the Dunedin Study and more advanced 
biological age in the Understanding Society Study, predicted chronic disease and mortality in 
the Normative Aging Study, was accelerated by early-life adversity in the E-risk Study, and 
DunedinPoAm prediction was disrupted by caloric restriction in the CALERIE trial. DunedinPoAm 
generally outperformed epigenetic clocks. Findings provide proof-of-principle for DunedinPoAm 
as a single-time-point measure of a person’s pace of biological aging.  
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INTRODUCTION  

Aging of the global population is producing forecasts of rising burden of disease and 

disability (Harper, 2014). Because this burden arises from multiple age-related diseases, 

treatments for single diseases will not address the burden challenge (Goldman et al., 2013). 

Geroscience research suggests an appealing alternative: treatments to slow aging itself could 

prevent or delay the multiple diseases that increase with advancing age, perhaps with a single 

therapeutic approach (Gladyshev, 2016; Kaeberlein, 2013). Aging can be understood as a 

gradual and progressive deterioration in biological system integrity (Kirkwood, 2005). This 

deterioration is thought to arise from an accumulation of cellular-level changes. These changes, 

in turn, increase vulnerability to diseases affecting many different organ systems (Kennedy et 

al., 2014; López-Otín et al., 2013). Animal studies suggest treatments that slow the 

accumulation of cellular-level changes can extend healthy lifespan (Campisi et al., 2019; 

Kaeberlein et al., 2015). However, human trials of these treatments are challenging because 

humans live much longer than model animals, making it time-consuming and costly to follow up 

human trial participants to test treatment effects on healthy lifespan. This challenge will be 

exacerbated in trials that will give treatments to young or middle-aged adults, with the aim to 

prevent the decline in system integrity that antedates disease onset by years. Involving young 

and midlife adults in healthspan-extension trials has been approved for development by the 

National Advisory Council on Aging (2019 CTAP report to NACA). In midlife trials of treatments 

to slow aging, called geroprotectors (Moskalev et al., 2016), traditional endpoints such as 

disease diagnosis or death are too far in the future to serve as outcomes. Translation of 

geroprotector treatments to humans could be aided by measures that quantify the pace of 

deterioration in biological system integrity in human aging. Such measures could be used as 

surrogate endpoints for healthy lifespan extension (Justice et al., 2016, 2018; Moskalev et al., 

2016), even with young-to-midlife adult trial participants. A useful measure should be non-

invasive, inexpensive, reliable, and highly sensitive to biological change.  

Recent efforts to develop such measures have focused on blood DNA methylation as a 

biological substrate highly sensitive to changes in chronological age (Fahy et al., 2019; Horvath 
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and Raj, 2018). Methylation-clock algorithms have been developed to identify methylation 

patterns that characterize individuals of different chronological ages. However, a limitation is 

that individuals born in different years have grown up under different historical conditions 

(Schaie, 1967). For example, people born 70 years ago experienced more exposure to childhood 

diseases, tobacco smoke, airborne lead, and less exposure to antibiotics and other medications, 

and lower quality nutrition, all of which leave signatures on DNA methylation (Bell et al., 2019). 

As a result, the clocks confound methylation patterns arising from early-life exposures to 

methylation-altering factors with methylation patterns related to biological aging during 

adulthood. An alternative approach is to study individuals who were all born the same year, 

and find methylation patterns that differentiate those who have been aging biologically faster 

or slower than their same-age peers. The current article reports four steps in our work toward 

developing a blood DNA methylation measure to represent individual variation in the pace of 

biological aging.   

In Step 1, which we previously reported (Belsky et al., 2015), we collected a panel of 18 

blood chemistry and organ-system function biomarkers at three successive waves of the 

Dunedin Longitudinal Study of a 1972-73 population-representative one-year birth cohort 

(N=1037). We used repeated-measures data collected when Study members were aged 26, 32, 

and 38 years old to quantify rates of biological change. We modelled the rate of change in each 

biomarker and calculated how each Study member’s personal rate-of-change on that biomarker 

differed from the cohort norm. We then combined the 18 personal rates of change across the 

panel of biomarkers to compute a composite for each Study member that we called the Pace of 

Aging. Pace of Aging represents a personal rate of multi-organ-system decline over a dozen 

years. Pace of Aging was normally distributed, and showed marked variation among Study 

members who were all the same chronological age, confirming that individual differences in 

biological aging do emerge already by age 38, years before chronic disease onset.  

 In Step 2, which we previously reported, we validated the Pace of Aging against known 

criteria. As compared to other Study members who were the same chronological age but had 

slower Pace of Aging, Study members with faster Pace of Aging performed more poorly on tests 

of physical function; showed signs of cognitive decline on a panel of dementia-relevant 
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neuropsychological tests from an early-life baseline; were rated as looking older based on facial 

photographs; and reported themselves to be in worse health (Belsky et al., 2015). 

Subsequently, we reported that faster Pace of Aging is associated with early-life factors 

important for aging: familial longevity, low childhood social class, and adverse childhood 

experiences (Belsky et al., 2017a), and that faster Pace of Aging is associated with older scores 

on Brain Age, a machine-learning-derived measure of structural MRI differences characteristic 

of different age groups (Elliott et al., 2019). Notably, Pace of Aging was not well-correlated with 

published epigenetic age clocks, which were designed to measure how old a person is rather 

than how fast they are aging biologically (Belsky et al., 2018).   

In Step 3, which we report here, we distill the Pace of Aging into a measurement that 

can be obtained from a single blood sample. Here we focused on blood DNA methylation as an 

accessible molecular measurement that is sensitive to changes in physiology occurring in 

multiple organ systems (Birney et al., 2016; Bolund et al., 2017; Chambers et al., 2015; Chu et 

al., 2017; Hedman Åsa K. et al., 2017; Ma et al., 2019; Mill and Heijmans, 2013; Morris et al., 

2017; Wahl et al., 2017). We used data about the Pace of Aging from age 26 to 38 years in the 

Dunedin Study along with whole-genome methylation data at age 38 years. Elastic-net 

regression was applied to derive an algorithm that captured DNA methylation patterns linked 

with variation among individuals in their Pace of Aging. The algorithm is hereafter termed 

“DunedinPoAm”.  

DunedinPoAm is qualitatively different from previously published DNA methylation 

measures of aging that were developed by comparing older individuals to younger ones. Those 

measures, often referred to as “clocks,” are state measures. They estimate how much aging has 

occurred in an individual up to the point of measurement. DunedinPoAm is a rate measure. It is 

based on comparison of longitudinal change over time in 18 biomarkers of organ-system 

integrity among individuals who are all the same chronological age. DunedinPoAm estimates 

how fast aging is occurring during the years leading up to the time of measurement. Rather 

than a clock that records how much time has passed, DunedinPoAm is designed to function as a 

speedometer, recording how fast the subject is aging. In Step 4, which we report here, we 

validated the DunedinPoAm in 5 ways. First, using the Dunedin Study, we tested if Study 
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member’s DunedinPoAm measured when they were aged 38 years could predict deficits in 

physical and cognitive functioning seven years later, when the cohort was aged 45 years. 

Second, we applied the DunedinPoAm algorithm to DNA methylation data from a second, cross-

sectional, study of adults to evaluate patterning of DunedinPoAm by chronological age and sex 

and to test correlations of DunedinPoAm with self-reported health and proposed measures of 

biological age, including three epigenetic clocks. Third, we applied the DunedinPoAm algorithm 

to DNA methylation data from a third, longitudinal study of older men to test associations with 

chronic-disease morbidity and mortality. Fourth, we applied the DunedinPoAm algorithm to 

DNA methylation data from a fourth, longitudinal, study of young people to test if 

DunedinPoAm was accelerated by exposure to poverty and victimization, factors which are 

known to shorten healthy lifespan. Finally, to ascertain the potential usefulness of 

DunedinPoAm as a measure for trials of geroprotector treatments, we applied the algorithm to 

DNA methylation data from a randomized trial of caloric restriction, CALERIE (Ravussin et al., 

2015). Earlier we reported from this trial that the intervention (two years of prescribed 25% 

caloric restriction) slowed the rate of biological aging as measured by a blood-chemistry 

biological-age composite measure (Belsky et al., 2017b). Here, using newly generated 

methylation data from blood drawn at the CALERIE baseline assessment, we tested if (a) 

DunedinPoAm from blood drawn before caloric restriction could predict the future rate of 

biological aging of participants during the two-year trial, and (b) if this prediction was disrupted 

in participants who underwent caloric restriction, but not among control participants. We 

report promising results from this four-step research program, while appreciating that 

additional measurement development will be needed to support applied use of DunedinPoAm. 

A graphical illustration of our study designed is presented in Figure 1. 

 

METHODS 

Data Sources   

Data were used from five studies: Dunedin Study, Understanding Society Study, the 

Normative Aging Study (NAS), Environmental Risk (E-Risk) Longitudinal Twin Study, and CALERIE 
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Trial. The four datasets and measures analyzed within each of them are described in 

Supplemental Materials Section 1.  

DNA Methylation Data  

DNA methylation was measured from Illumina 450k Arrays in the Dunedin Study, 

Normative Aging Study, and E-Risk Study and from Illumina EPIC 850k Arrays in the 

Understanding Society study and the CALERIE Trial. DNA was derived from whole blood samples 

in all studies. Dunedin Study blood draws were conducted at the cohort’s age-38 assessment 

during 2010-12. Understanding Society blood draws were conducted in 2012. Normative Aging 

Study blood draws were conducted during 1999-2013. E-Risk blood draws were conducted at 

the cohort’s age-18 assessment during 2012-13. CALERIE blood draws were conducted at the 

trial baseline assessment in 2007. Dunedin and CALERIE methylation assays were run by the 

Molecular Genomics Shared Resource at Duke Molecular Physiology Institute, Duke University 

(USA). Understanding Society and E-Risk assays were run by the Complex Disease Epigenetics 

Group at the University of Exeter Medical School (UK) (www.epigenomicslab.com). Normative 

Aging Study methylation assays were run by the Genome Research Core of the University of 

Illinois at Chicago. Processing protocols for the methylation data from all studies have been 

described previously (Dai et al., 2017; Hannon et al., 2018; Marzi et al., 2018; Panni Tommaso 

et al., 2016).  (CALERIE data were processed according to the same protocols used for the 

Dunedin Study.)  

Methylation Clocks. We computed the methylation clocks proposed by Horvath, 

Hannum, and Levine using the methylation data provided by the individual studies and 

published algorithms (Hannum et al., 2013; Horvath, 2013; Levine et al., 2018). 
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The Dunedin Pace of Aging methylation algorithm (DunedinPoAm) was developed using 

elastic-net regression analysis carried out in the Dunedin Study, as described in detail in the 

Results. The criterion variable was Pace of Aging. Development of the Pace of Aging is described 

in detail elsewhere (Belsky et al., 2015). Briefly, we conducted mixed-effects growth modeling 

of longitudinal change in 18 biomarkers measuring integrity of the cardiovascular, metabolic, 

renal, hepatic, pulmonary, periodontal, and immune systems (biomarkers are listed in the 

Supplemental Materials Section 1, description of the Dunedin Study data). For each biomarker, 

we estimated random slopes quantifying each participant’s own rate of change in that 

biomarker. We then composited slopes across the 18 biomarkers to calculate a participant’s 

Pace of Aging. Pace of Aging was scaled in units representing the mean trend in the cohort, i.e. 

the average physiological change occurring during one calendar year (N=954, M=1, SD=0.38). Of 

the N=819 Dunedin Study members with methylation data at age 38, N=810 had measured 

Pace of Aging (M=0.98, SD=0.09). This group formed the analysis sample to develop 

DunedinPoAm.   

 To compute DunedinPoAm in the Understanding Society, Normative Aging Study, E-Risk, 

and CALERIE Trial datasets, we applied the scoring algorithm estimated from elastic net 

regression in the Dunedin Study. CpG weights for the scoring algorithm are provided in 

Supplemental Table 1.  

Statistical Analysis  

We conducted analysis of Dunedin, Understanding Society, NAS, E-Risk, and CALERIE 

data using regression models. We analyzed continuous outcome data using linear regression. 

We analyzed count outcome data using Poisson regression. We analyzed time-to-event 
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outcome data using Cox proportional hazard regression. For analysis of repeated-measures 

longitudinal DNA methylation data in the Normative Aging Study, we used generalized 

estimating equations to account for non-independence of repeated observations of individuals 

(Ballinger, 2004), following the method in previous analysis of those data (Gao et al., 2018), and 

econometric fixed-effects regression (Wooldridge, 2012) to test within-person change over 

time. For analysis in E-Risk, which include data on twin siblings, we clustered standard errors at 

the family level to account for non-independence of data. For analysis of longitudinal change in 

clinical-biomarker biological age in CALERIE, we used mixed-effects growth models (Singer and 

Willett, 2003) following the method in our original analysis of those data (Belsky et al., 2017b). 

For regression analysis, methylation measures were adjusted for batch effects by regressing the 

measure on batch controls and predicting residual values. Dunedin Study, Understanding 

Society, E-Risk, and CALERIE analyses included covariate adjustment for sex (the Normative 

Aging Study included only men). Understanding Society, Normative Aging Study, and CALERIE 

analyses included covariate adjustment for chronological age. (Dunedin and E-Risk are birth-

cohort studies and participants are all the same chronological age.) Sensitivity analyses testing 

covariate adjustment for estimated leukocyte distributions and smoking are reported in 

Supplemental Tables 3-7.  

 

RESULTS 

Capturing Pace of Aging in a single blood test  

We derived the DunedinPoAm algorithm using data from Dunedin Study members for 

whom age-38 DNA methylation data were available (N=810). We applied elastic-net regression 

(Zou and Hastie, 2005) using Pace of Aging between ages 26 to 38 years as the criterion.  We 
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included all methylation probes that appear on both the Illumina 450k and EPIC arrays as 

potential predictor variables. We selected this overlapping set of probes for our analysis to 

facilitate application of the derived algorithm by other research teams using either chip. We 

fixed the alpha parameter to 0.5, following the approach reported by Horvath (Horvath, 2013). 

This analysis selected a set of 46 CpG sites (Supplemental Table 1, Supplemental Materials 

Section 2). The 46-CpG elastic-net-derived DunedinPoAm algorithm, applied in the age-38 

Dunedin DNA methylation data, was associated with the longitudinal 26-38 Pace of Aging 

measure (Pearson r=0.56, Supplemental Figure 1). This is likely an overestimate of the true out-

of-sample correlation because the analysis is based on the same data used to develop the 

DunedinPoAm algorithm; bootstrap-cross-validation analysis estimated the out-of-sample 

correlation to be r=0.33; Supplemental Materials Section 3).  

 

DunedinPoAm in midlife predicted future functional limitations  

Physical Functioning. As a primary criterion validity analysis of DunedinPoAm, we tested 

prospective associations of Dunedin Study members’ age-38 DunedinPoAm values with their 

performance seven years later, when they were aged 45 years, on tests of balance, walking 

speed, chair stands, grip strength, motor coordination, and Study-member reports about 

physical limitations. Performance scores were reversed so that positive correlations indicated 

an association between faster DunedinPoAm and worse physical performance. Study members 

with faster DunedinPoAm at age 38 performed more poorly at age 45 on all physical 

performance tests, with the exception of grip strength, and reported more functional 

limitations (standardized effect-sizes for tests of balance, walking speed, chair stands, and 

physical limitations r=0.15-0.29, p<0.001 for all; grip strength r=0.05, 95% CI [-0.02-0.12], 

p=0.162). Effect-sizes are graphed in the dark blue bars in Figure 2, Panel A.  

Physical Decline. For balance, grip strength, motor coordination, and functional 

limitations, the Dunedin study administered the same assessments at the age-38 and age-45 

assessments. We used these data to measure change in physical function across the 7-year 

interval. We computed change scores by subtracting the age-45 score from the age-38 score. 

Change scores for balance and physical limitations indicated worsening of physical functioning 
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across the 7-year interval (in terms of age-38 standard-deviation units (SDs): balance declined 

by 0.26 SDs 95% CI [0.19-0.33], motor coordination declined by 0.16 [0.10-0.22] SDs, and 

physical limitations increased by 0.26 [0.18-0.33] SDs). In contrast, grip strength increased 

slightly (0.05 [0.00-0.11] SDs). Study members with faster age-38 DunedinPoAm experienced 

greater decline in balance at age 45 (r=0.11 [0.04-0.19], p=0.008) and a greater increase in 

physical limitations (r=0.10 [0.02-0.18], p=0.012). The association with change in motor 

coordination was consistent in direction, but was not statistically different from zero at the 

alpha=0.05 threshold (r=0.06 [-0.14-0.01], p=0.109). There was no association between 

DunedinPoAm and change in grip strength (r=0.00 [-0.07-0.08], p=0.897). Effect-sizes are 

graphed in the top row of Figure 2, Panel B.  

Cognitive Functioning. We evaluated cognitive functioning from tests of perceptual 

reasoning, working memory, and processing speed, which are known to show aging related 

declines already by the fifth decade of life (Hartshorne and Germine, 2015; Park et al., 2002). 

Study members with faster age-38 DunedinPoAm performed more poorly on all age-45 

cognitive tests (r=0.14-0.28, p<0.001 for all). Effect-sizes are graphed in the light-blue bars of 

Figure 2, Panel A.  

Cognitive Decline. Cognitive functioning in early life is a potent risk factor for chronic 

disease and dementia in later life and for accelerated aging in midlife (Belsky et al., 2017a; 

Deary and Batty, 2006). Therefore, to evaluate whether associations between DunedinPoAm 

and cognitive test performance at age 45 might reflect reverse causation instead of early 

cognitive decline, we next conducted analysis of cognitive decline between adolescence and 

midlife. We evaluated cognitive decline by comparing Study-members’ cognitive-test 

performance at age 45 to their cognitive-test performance three decades earlier when they 

were ages 7-13 years. Cognitive performance was measured from composite scores on the 

Wechsler Intelligence Scales (the Wechsler Adult Intelligence Scales Version IV at the age-45 

assessment and the Wechsler Intelligence Scales for Children Version R at the earlier 

timepoints). On average, Study members showed a decline of 2.00 IQ points (95% CI [1.31-

2.70]) across the follow-up interval. We conducted two analyses to test if participants with 

faster DunedinPoAm experienced more cognitive decline. First, we computed difference scores 
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(age-45 IQ – childhood baseline IQ) and regressed these difference scores on DunedinPoAm. 

Second, we conducted analysis of residualized change by regressing age-45 IQ on 

DunedinPoAm and childhood IQ. Both analyses found that Study members with faster 

DunedinPoAm experienced more decline (difference-score r=0.12, [0.05-0.19], p=0.001; 

residualized change r=0.20 [0.13-0.27]). The DunedinPoAm association with cognitive decline is 

graphed in the bottom-left cell of Figure 2, Panel B. 

Subjective Signs of Aging. We evaluated subjective signs of aging from Study members’ 

ratings of their current health status (excellent, very-good, good, fair, poor) and from ratings of 

perceived age made by undergraduate raters based on facial photographs. Study members with 

faster age-38 DunedinPoAm rated themselves to be in worse health at age 45 (r=0.27, 95% CI 

[0.20-0.34]). These Study members were also rated as looking older (r=0.35 [0.28-0.43]). Effect-

sizes are graphed in the orange bars in Figure 2, Panel A.  

Subjective Signs of Decline with Aging. We next analyzed change in subjective signs of 

aging. Across the 7-year follow-up interval, an increasing number of Study members rated 

themselves as being in fair or poor health (6% rated their health as fair or poor at age 38, as 

compared to 8% 7 years later at age 45). Those with faster age-38 DunedinPoAm were more 

likely to transition to the fair/poor categories (Incidence Rate Ratio (IRR)=1.79 95% CI [1.48-

2.18]). We tested if Study members with faster DunedinPoAm experienced more rapid facial 

aging by subtracting the age-45 score from the age 38-score and regressing this difference on 

DunedinPoAm. This analysis tested if Study members with faster DunedinPoAm experienced 

upward rank mobility within the cohort in terms of how old they looked. Study members with 

faster age-38 DunedinPoAm were rated as looking older relative to peers at age 45 than they 

had been at age 38 (r=0.10 [0.03-0.18]). Effect-sizes are graphed in the bottom-right two panels 

of Figure 2, Panel B. 

Comparing DunedinPoAm versus Pace of Aging. We compared DunedinPoAm effect-

sizes to effect-sizes for the original, 18-biomarker 3-time-point Pace of Aging. Across the 

domains of physical function, cognitive function, and subjective signs of aging, DunedinPoAm 

effect-sizes were similar to and sometimes larger than effect-sizes for the original Pace of Aging 

measure (Supplemental Table 2, Supplemental Figure 1).  
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Covariate adjustment to models for estimated cell counts (Houseman et al., 2012) and 

did not change results. Covariate adjustment for smoking history at age 38 years modestly 

attenuated some effect-sizes and attenuated DunedinPoAm associations with cognitive decline 

to near zero. Results for all models are reported in Supplemental Table 3.  

In comparison to DunedinPoAm, effect-sizes for associations with functional limitations 

were smaller for the Horvath, Hannum, and Levine epigenetic clocks and, in the cases of the 

Horvath and Hannum clocks, were not statistically different from zero at the alpha=0.05 

threshold for most outcomes. Effect-sizes are reported in Supplemental Table 3 and plotted in 

Supplemental Figure 1.   

 

Evaluating DunedinPoAm and other methylation clocks in the Understanding Society study  

To test variation in DunedinPoAm and to compare it with published methylation 

measures of biological aging, we conducted analysis using data on N=1,175 participants aged 

28-95 years (M=58, SD=15; 42% male) in the UK Understanding Society cohort. In this mixed-

age sample, the mean DunedinPoAm was 1.03 years of biological aging per each calendar year 

(SD=0.07).  

We first tested if higher DunedinPoAm levels, which indicate faster aging, were 

correlated with older chronological age. Mortality rates increase with advancing chronological 

age, although there may be some slowing at the oldest ages (Barbi et al., 2018). This suggests 

the hypothesis that the rate of aging increases across much of the adult lifespan. Consistent 

with this hypothesis, Understanding Society participants who were of older chronological age 

tended to have faster DunedinPoAm (r=0.11, [0.06-0.17], p<0.001; Figure 3 Panel A). We also 

compared DunedinPoAm with three methylation measures of biological age: the epigenetic 

clocks proposed by Horvath, Hannum, and Levine (Hannum et al., 2013; Horvath, 2013; Levine 

et al., 2018). These epigenetic clocks were highly correlated with chronological age in the 

Understanding Society sample (Horvath Clock r=0.91, Hannum Clock r=0.92, Levine Clock 

r=0.88).  

Next, to test if DunedinPoAm captured similar information about aging to published 

epigenetic clocks, we regressed each of the published clocks on chronological age and predicted 
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residual values, following the procedure used by the developers of the clocks. These residuals 

are referred to in the literature as measures of “epigenetic age acceleration.” None of the 46 

CpGs included in the DunedinPoAm algorithm overlapped with CpGs in these epigenetic clocks. 

Nevertheless, DunedinPoAm was moderately correlated with epigenetic age acceleration 

measured from the clocks proposed by Hannum (r=0.24) and Levine (r=0.30). DunedinPoAm 

was less-well correlated with acceleration measured from the Horvath clock (r=0.06). 

Associations among DunedinPoAm and the epigenetic clocks in the Understanding Society 

sample are shown in Figure 3 Panel B.  

Finally, we tested correlations of DunedinPoAm with (a) a measure of biological age 

derived from blood chemistry and blood pressure data, and (b) a measure of self-rated health. 

We computed biological age from Understanding Society blood chemistry and blood pressure 

data following the Klemera and Doubal method (KDM) (Klemera and Doubal, 2006) and the 

procedure described by Levine (Levine, 2013). KDM Biological Age details are reported in the 

Supplemental Methods. Participants with faster DunedinPoAm had more advanced KDM 

Biological Age (r=0.20 95% CI [0.15-0.26], p<0.001;) and worse self-rated health (r=-0.22 [-0.28,-

0.16], p<0.001;). Covariate adjustment to models for estimated cell counts (Houseman et al., 

2012) and smoking status did not change results. Results for all models are reported in 

Supplemental Table 4.   

In comparison to DunedinPoAm, effect-sizes for associations with self-rated health and 

KDM Biological Age were smaller for the epigenetic clocks and, in the cases of the Horvath and 

Hannum clocks, were not statistically different from zero at the alpha=0.05 threshold (Figure 3 

Panels C and D). Effect-sizes are reported in Supplemental Table 4 and plotted Supplemental 

Figure 3.   

 

DunedinPoAm was associated with chronic disease morbidity and increased risk of mortality 

among older men in the Normative Aging Study (NAS) 

 To test if faster DunedinPoAm was associated with morbidity and mortality, we analyzed 

data from N=771 older men in the Veterans Health Administration Normative Aging Study (NAS; 

at baseline, mean chronological age=77, SD=7).  
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We first tested if higher DunedinPoAm levels, which indicate faster aging, were 

associated with increased risk of mortality. During follow-up from 1999-2013, 46% of NAS 

participants died over a mean follow-up of 7 years (SD=7). Those with faster DunedinPoAm at 

baseline were at increased risk of death (Hazard Ratio (HR)=1.29 [1.16-1.45], p<0.001; Figure 4).   

We next tested if NAS participants with faster DunedinPoAm experienced higher levels 

of chronic disease morbidity, measured as the count of diagnosed diseases (hypertension, type-

2 diabetes, cardiovascular disease, chronic obstructive pulmonary disease, chronic kidney 

disease, and cancer). During follow-up across 4 assessments during 1999-2013 (n=1,448 

observations of the N=771 participants), n=175 NAS participants were diagnosed with a new 

chronic disease. Those with faster baseline DunedinPoAm were at increased risk of new 

diagnosis (HR=1.19 [1.03-1.38], p<0.019). In repeated-measures analysis of prevalent chronic 

disease, faster DunedinPoAm was associated with having a higher level of chronic disease 

morbidity (IRR=1.15 [1.11-1.20], p<0.001).  

Finally, we utilized the repeated-measures data to test if NAS participants’ 

DunedinPoAms increased as they aged. We tested within-person change in DuneidnPoAm over 

time (n=1,253 observations of N=536 participants with 2-4 timepoints of DNA methylation 

data). Consistent with Understanding Society analysis showing faster DunedinPoAm in older as 

compared to younger adults, NAS participants’ DunedinPoAms increased across repeated 

assessments. For every five years of follow-up, participants’ DunedinPoAms increased by 0.012 

(SE=0.002) units, or about 0.2 standard deviations.  

Covariate adjustment to models for estimated cell counts (Houseman et al., 2012) and 

smoking status did not change results, with the exception that the effect-size for DunedinPoAm 

was attenuated below the alpha=0.05 threshold of statistical significance in smoking-adjusted 

analysis of chronic disease incidence. Results for all models are reported in Supplemental Table 

5.  

In comparison to DunedinPoAm, effect-sizes for associations with mortality and chronic 

disease were smaller for the epigenetic clocks and were not statistically different from zero in 

many of the models (Supplemental Table 5 and Supplemental Figure 4).  
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Childhood exposure to poverty and victimization were associated with faster DunedinPoAm 

in young adults in the E-Risk Study 

To test if DunedinPoAm indicated faster aging in young people with histories of 

exposure thought to shorten healthy lifespan, we analyzed data from N=1,658 members of the 

E-Risk Longitudinal Study. The E-Risk Study follows a 1994-95 birth cohort of same-sex twins. 

Blood DNA methylation data were collected when participants were aged 18 years. We 

analyzed two exposures associated with shorter healthy lifespan, childhood low socioeconomic 

status and childhood victimization. Socioeconomic status was measured from data on their 

parents’ education, occupation, and income (Trzesniewski et al., 2006). Victimization was 

measured from exposure dossiers compiled from interviews with the children’s mothers and 

home-visit assessments conducted when the children were aged 5, 7, 10, and 12 (Fisher et al., 

2015). The dossiers recorded children’s exposure to domestic violence, peer bullying, physical 

and sexual harm by an adult, and neglect. 72% of the analysis sample had no victimization 

exposure, 21% had one type of victimization exposure, 4% had two types of exposure, and 2% 

had three or more types of exposure.  

E-Risk adolescents who grew up in lower socioeconomic-status families exhibited faster 

DunedinPoAm (Cohen’s d for comparison of low to moderate SES =0.21 [0.06-0.35]; Cohen’s d 

for comparison of low to high SES =0.44 [0.31-0.56]; Pearson r=0.19 [0.13-0.24]). In parallel, E-

Risk adolescents with exposure to more types of victimization exhibited faster DunedinPoAm 

(Cohen’s d for comparison of never victimized to one type of victimization =0.28 [0.15-0.41]; 

Cohen’s d for comparison of never victimized to two types of victimization =0.48 [0.23-0.72]; 

Cohen’s d for comparison of never victimized to three or more types of victimization =0.53 

[0.25-0.81]; Pearson r=0.15 [0.10-0.20]). Covariate adjustment to models for estimated cell 

counts (Houseman et al., 2012) did not change results. Adjustment for smoking status 

attenuated effect-sizes by about half, but most associations remained statistically different 

from zero at the alpha=0.05 level.  Results for all models are reported in Supplemental Table 6.  

Differences in DunedinPoAm across strata of childhood socioeconomic status and victimization 

are graphed in Figure 5.  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2020. ; https://doi.org/10.1101/2020.02.05.927434doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.05.927434
http://creativecommons.org/licenses/by/4.0/


Belsky DunedinPoAm 3-17-20 

 18 

In comparison to DunedinPoAm, effect-sizes for associations with childhood 

socioeconomic circumstances and victimization were smaller for the epigenetic clocks and, in 

the cases of the Horvath and Hannum clocks, were not statistically different from zero at the 

alpha=0.05 threshold. Effect-sizes are reported in Supplemental Table 6 and plotted in 

Supplemental Figure 5.   

 

DunedinPoAm measured at baseline in the CALERIE randomized trial predicted future rate of 

aging measured from clinical-biomarker data  

The CALERIE Trial is the first randomized trial of long-term caloric restriction in non-

obese adult humans. CALERIE randomized N=220 adults on a 2:1 ratio to treatment of 25% 

caloric restriction (CR-treatment) or control ad-libitum (AL-control, as usual) diet for two years 

(Ravussin et al., 2015). We previously reported that CALERIE participants who were randomized 

to CR-treatment experienced a slower rate of biological aging as compared to participants in 

the AL-control arm based on longitudinal change analysis of clinical-biomarker data from the 

baseline, 12-month, and 24-month follow-up assessments (Belsky et al., 2017b). Among control 

participants, the rate of increase in biological age measured using the Klemera-Doubal method 

(KDM) Biological Age algorithm was 0.71 years of biological age per 12-month follow-up 

interval. (This slower-than-expected rate of aging could reflect differences between CALERIE 

Trial participants, who were selected for being in good health, and the nationally representative 

NHANES sample in which the KDM algorithm was developed (Belsky et al., 2017b).) In contrast, 

among treatment participants, the rate of increase was only 0.11 years of biological age per 12-

month follow-up interval (difference b=-0.60 [-0.99, -0.21]). We subsequently generated DNA 

methylation data from blood DNA that was collected at the baseline assessment of the CALERIE 

trial for a sub-sample (N=68 AL-control participants and 118 CR-treatment participants). We 

used these methylation data to calculate participants’ DunedinPoAm values at study baseline. 

We then tested if baseline DunedinPoAm could predict participants’ future rate of biological 

aging as they progressed through the trial.   

 We first replicated our original analysis within the methylation sub-sample. Results were 

the same as in the full sample (Supplemental Table 7). Next, we compared DunedinPoAm 
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between CR-treatment and AL-control participants. As expected, there was no group difference 

at baseline (AL M=1.00, SD=0.05; CR M=1.01, SD=0.06, p-value for difference =0.440). Finally, 

we tested if participants’ baseline DunedinPoAm was associated with their rate of biological 

aging over the 24 months of follow-up, and if this association was modified by randomization to 

caloric restriction as compared to ad libitum diet. For AL-control participants, faster baseline 

DunedinPoAm predicted faster biological aging over the 24-month follow-up, although in this 

small group this association was not statistically significant at the alpha=0.05 level (b=0.22 [-

0.05, 0.49], p=0.104). For CR-treatment participants, the association of baseline DunedinPoAm 

with future rate of aging was sharply reduced, (b=-0.08 [-0.24, 0.09], p=0.351), although the 

difference between the rate of aging in the AL-control and CR-treatment groups did not reach 

the alpha=0.05 threshold for statistical significance (interaction-term testing difference in 

slopes b=-0.30 [-0.61, 0.01], p-value=0.060). Slopes of change in KDM Biological Age for 

participants in the AL-control and CR-treatment groups are plotted for fast baseline 

DunedinPoAm (1 SD above the mean) and slow baseline DunedinPoAm (1 SD below the mean) 

in Figure 6. CALERIE DNA methylation data are not yet available to test if the intervention 

altered post-treatment DunedinPoAm.     

 
DISCUSSION 
 
Breakthrough discoveries in the new field of geroscience suggest opportunities to extend 

healthy lifespan through interventions that slow biological processes of aging (Campisi et al., 

2019). To advance translation of these interventions, measures are needed that can detect 

changes in a person’s rate of biological aging (Moffitt et al., 2016). We previously showed that 

the rate of biological aging can be measured by tracking change over time in multiple indicators 

of organ-system integrity (Belsky et al., 2015). Here, we report data illustrating the potential to 

streamline measurement of Pace of Aging to an exportable, inexpensive and non-invasive blood 

test, and thereby ease implementation of Pace of Aging measurement in studies of 

interventions to slow processes of biological aging.  

We conducted machine-learning analysis of the original Pace of Aging measure using 

elastic-net regression and whole-genome blood DNA methylation data. We trained the 
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algorithm to predict how fast a person was aging. We called the resulting algorithm 

“DunedinPoAm” for “(m)ethylation (P)ace (o)f (A)ging”. There were four overall findings: 

First, while DunedinPoAm was not a perfect proxy of Pace of Aging, it nevertheless 

captured critical information about Dunedin Study members’ healthspan-related 

characteristics. Across the domains of physical function, cognitive function, and subjective signs 

of aging, Study members with faster DunedinPoAm at age 38 were worse off seven years later 

at age 45 and, in repeated-measures analysis of change, they showed signs of more rapid 

decline. Effect-sizes were equal to or greater than those for the 18-biomarker 3-time point 

measure of Pace of Aging. This result suggests that the DNA-methylation elastic-net regression 

used to develop DunedinPoAm may have distilled the aging signal from the original Pace of 

Aging measure and excluded some noise.  In sum, DunedinPoAm showed promise as an easy-

to-implement alternative to Pace of Aging. Emerging technologies for deep-learning analysis 

(Zhavoronkov et al., 2019) may improve methylation measurement of Pace of Aging. 

Alternatively, integration of methylation data with additional molecular datasets (Hasin et al., 

2017; Zierer et al., 2015) may be needed to achieve precise measurement of Pace of Aging from 

a single time-point blood sample.   

Second, DunedinPoAm analysis of the Understanding Society and Normative Aging 

Study samples provided proof-of-concept for using DunedinPoAm to quantify biological aging. 

Age differences in DunedinPoAm parallel population demographic patterns of mortality risk. In 

the Understanding Society sample, older adults had faster DunedinPoAm as compared to 

younger ones. In the Normative Aging Study sample, participants’ DunedinPoAm values 

increased as they aged. These observations are consistent with the well-documented 

acceleration of mortality risk with advancing chronological age (Robine, 2011). However, it sets 

DunedinPoAm apart from other indices of biological aging, which are not known to register this 

acceleration (Finch and Crimmins, 2016; Li et al., 2020). DunedinPoAm may therefore provide a 

novel tool for testing how the rate of aging changes across the life course and whether, as 

demographic data documenting so-called “mortality plateaus” suggest, processes of aging slow 

down at the oldest chronological ages (Barbi et al., 2018).   
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 DunedinPoAm is related to but distinct from alternative approaches to quantification of 

biological aging. DunedinPoAm was moderately correlated with aging rates measured by the 

epigenetic clocks proposed by Hannum et al. and Levine et al. (Hannum et al., 2013; Levine et 

al., 2018) as well as KDM Biological Age derived from clinical biomarker data (Klemera and 

Doubal, 2006; Levine, 2013), and with self-rated health. Consistent with findings for the 

measured Pace of Aging (Belsky et al., 2018), DunedinPoAm was only weakly correlated with 

the multi-tissue clock proposed by Horvath. DunedinPoAmwas more strongly correlated with a 

clinical-biomarker measure of biological age, with self-rated health, with functional test-

performance and decline, and with morbidity and mortality as compared to the epigenetic 

clocks.  

Third, DunedinPoAm is already variable by young adulthood and is accelerated in young 

people at risk for eventual shortened healthspan. E-Risk young adults who grew up in 

socioeconomically disadvantaged families or who were exposed to victimization early in life 

already showed accelerated DunedinPoAm by age 18, consistent with epidemiological 

observations of shorter healthy lifespan for individuals with these exposures (Adler and 

Rehkopf, 2008; Danese and McEwen, 2012). We previously found that Dunedin Study members 

with histories of early-life adversity showed accelerated Pace of Aging in their 30s (Belsky et al., 

2017a). DunedinPoAm analysis of the E-Risk cohort suggests effects may be already manifest at 

least a decade earlier. DunedinPoAm may therefore provide a useful index that can be applied 

to evaluate prevention programs to buffer at-risk youth against health damaging effects of 

challenging circumstances.  

Fourth, DunedinPoAm analysis of the CALERIE trial provided proof-of-concept for using 

DunedinPoAm to quantify biological aging in geroprotector intervention studies. DunedinPoAm 

measures the rate of aging over the recent past. Control-arm participants’ baseline 

DunedinPoAm correlated positively with their clinical-biomarker pace of aging over the two 

years of the trial, consistent with the hypothesis that their rate of aging was not altered. In 

contrast, there was no relationship between DunedinPoAm and clinical-biomarker pace of aging 

for caloric-restriction-arm participants, consistent with the hypothesis that caloric restriction 

altered participants’ rate of aging. Ultimately, data on DunedinPoAm for all CALERIE 
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participants (and participants in other geroprotector trails) at trial baseline and follow-up will 

be needed to establish utility of DunedinPoAm as a surrogate endpoint. In the mean-time, 

these data establish potential to use DunedinPoAm as a pre-treatment covariate in 

geroprotector trials to boost statistical power (Kahan et al., 2014) or to screen participants for 

enrollment, e.g. to identify those who are aging more rapidly and may therefore show larger 

effects of treatment. 

We acknowledge limitations. Foremost, DunedinPoAm is a first step toward a single-

assay cross-sectional measurement of Pace of Aging. The relatively modest size of the Dunedin 

cohort and the lack of other cohorts that have the requisite 3 or more waves of repeated 

biomarkers to measure the Pace of Aging limited sample size for our machine-learning analysis 

to develop methylation algorithms. As Pace of Aging is measured in additional cohorts, more 

refined analysis to develop DunedinPoAm-type algorithms will become possible. In addition, 

our work thus far has not addressed population diversity in biological aging. The Dunedin 

cohort in which DunedinPoAm was developed and the Understanding Society and E-Risk 

cohorts and CALERIE trial sample in which it was tested were mostly of white European-

descent. Follow-up of DunedinPoAm in more diverse samples is needed to establish cross-

population validity. Finally, because methylation data are not yet available from CALERIE follow-

up assessments, we could not test if intervention modified DunedinPoAm at outcome. 

Ultimately, to establish DunedinPoAm as a surrogate endpoint for healthspan, it will be 

necessary to establish not only robust association with healthy lifespan phenotypes and 

modifiability by intervention, but also the extent to which changes in DunedinPoAm induced by 

intervention correspond to changes in healthy-lifespan phenotypes (Prentice, 1989).   

Within the bounds of these limitations, our analysis establishes proof-of-concept for 

DunedinPoAm as a single-time-point measure that quantifies Pace of Aging from a blood test. It 

can be implemented in Illumina 450k and EPIC array data, making it immediately available for 

testing in a wide range of existing datasets as a complement to existing methylation measures 

of aging. Critically, DunedinPoAm offers a unique measurement for intervention trials and 

natural experiment studies investigating how the rate of aging may be changed by behavioral or 

drug therapy, or by environmental modification. DunedinPoAm may be especially valuable to 
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studies that collect data outside of clinical settings and lack blood chemistry, hematology, and 

other data needed to measure aging-related changes to physiology.  
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Figure 1. Schematic of design and follow-up of DunedinPoAm. DunedinPoAm is designed to 
quantify the rate of decline in system integrity experienced by an individual over the recent 
past; it functions like speedometer for the rate of aging. We developed DunedinPoAm from 
analysis of longitudinal change in 18 biomarkers of organ system integrity in the Dunedin 
Longitudinal Study birth cohort. Biomarkers were measured in 1998, 2004, and 2010, when all 
cohort members were aged 26, 32, and 38 years. We composited rates of change across the 18 
biomarkers to produce a single measure of aging-related decline in system integrity, termed 
Pace of Aging. We then used elastic-net regression to develop a DNA-methylation predictor of 
Pace of Aging, called DunedinPoAm for Dunedin (P)ace (o)f (A)ging (m)ethylation. DNA 
methylation data for this analysis came from the age-38 assessment in 2010. We further 
evaluated the performance of DunedinPoAm using data from (a) the age-45 assessments of 
Dunedin Study members in 2018, (b) the Understanding Society Study, (c) the Normative Aging 
Study, (d) the E-risk Study, and (e) the CALERIE trial.  
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Figure 2. Faster age-38 DunedinPoAm is associated with poorer physical and cognitive 
functioning and subjective signs of aging at age 45 years, and with physical, cognitive, and 
subjective decline in the Dunedin Study. Panel A graphs effect-sizes for age-38 DunedinPoAm 
associations with age-45 measures of physical and cognitive functioning and subjective signs of 
aging in the Dunedin Study. Effect-sizes are standardized regression coefficients interpretable 
as Pearson r. Models included covariate adjustment for sex. Panel B graphs associations 
between DunedinPoAm and change in physical functioning between age 38 and age 45 (top 
row), change in cognitive functioning between age 13 and age 45 (bottom row, left-side cell), 
and incident fair/poor health and accelerated facial aging between ages 38 and 45 (bottom 
row, center and right-side cells). Graphs for changes in balance, grip-strength, physical 
limitations, cognition, and facial aging are binned scatterplots. Plotted points reflect average x- 
and y-coordinates for “bins” of approximately ten Study members. Fitted slopes show the 
association estimated from the raw, un-binned data. The y-axis scale on graphs of balance, grip-
strength, and physical limitations shows change scores (age 45 – age 38) scaled in terms of age-
38 standard deviation units. The y-axis scale on the graph of cognitive change shows the 
difference in IQ score (age 45 – baseline). The graph of change in facial aging shows the change 
in z-score between measurement intervals (age 45 – age 38). Effect-sizes reported on the 
graphs are standardized regression coefficients interpretable as Pearson r. Models included 
covariate adjustment for sex. The graph for self-rated health plots the predicted probability 
(fitted slope) and 95% confidence interval (shaded area) of incident fair/poor health at age 45. 
The effect-size reported on the graph is the incidence-rate ratio (IRR) associated with a 1-SD 
increase in DunedinPoAm estimated from Poisson regression. The model included covariate 
adjustment for sex.  
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Figure 3. Associations among DunedinPoAm, and chronological age in the Understanding 
Society Study. Panel A shows a scatterplot and fitted slopes illustrating the association between 
chronological age (x-axis) and DunedinPoAm (y-axis) in women and men in the Understanding 
Society sample. Data for women are plotted with yellow dots (orange slope) and for men with 
blue crosses (navy slope). The figure illustrates a positive association between chronological age 
and DunedinPoAm (Pearson r=0.11 95% CI [0.06-0.17]). Panel B shows a matrix of association 
plots among DunedinPoAm and age-acceleration residuals of the Horvath, Hannum, and Levine 
epigenetic clocks. The diagonal cells of the matrix list the DNA methylation measures. The lower 
half of the matrix shows scatter plots of associations. For each scatter-plot cell, the x-axis 
corresponds to the variable named along the matrix diagonal to the right of the plot and the y-
axis corresponds to the variable named along the matrix diagonal above the plot. The upper 
half of the matrix lists Pearson correlations between the DNA methylation measures. For each 
correlation cell, the value reflects the correlation of the variables named along the matrix 
diagonal to the left of the cell and below the cell. Panel C graphs binned scatterplots of 
associations of DunedinPoAm and epigenetic clocks with KDM Biological Age advancement (the 
difference between KDM Biological Age and chronological age). Each plotted point shows 
average x- and y- coordinates for “bins” of approximately 50 participants. Regression slopes are 
graphed from the raw, un-binned data. Panel D plots average values of the DNA methylation 
variables by Understanding Society participants’ self-rated health status. Error bars show 95% 
confidence intervals.  
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Figure 4. Association of DunedinPoAm with mortality in the Normative Aging Study. The 
figure plots predicted survival curves for participants with fast DunedinPoAm (1 SD or more 
above the mean; red shading) and slow DunedinPoAm (1 SD or more below the mean; blue 
shading). Survival curves were estimated based on Cox proportional hazard regressions of 
survival time on DunedinPoAm. Models included covariate adjustment for chronological age.  
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Figure 5. DunedinPoAm levels by strata of childhood socioeconomic status (SES) and 
victimization in the E-Risk Study. Panel A (left side) plots means and 95% CIs for DunedinPoAm 
measured at age 18 among E-Risk participants who grew up low, middle, and high 
socioeconomic status households. Panel B (right side) plots means and 95% CIs for 
DunedinPoAm measured at age 18 among E-Risk participants who experienced 0, 1, 2, or 3 or 
more types of victimization through age 12 years.  
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Figure 6. Change in KDM Biological Age over 24-month follow-up by treatment condition and 
baseline DunedinPoAm in the CALERIE Trial. Fast DunedinPoAm is defined as 1 SD above the 
sample mean. Slow DunedinPoAm is defined as 1 SD below the cohort mean. Slopes are 
predicted values from mixed effects regression including a 3-way interaction between trial 
condition, time, and continuous DunedinPoAm at baseline. The figure shows that in the Ad 
Libitum (AL) arm of the trial, participants with fast DunedinPoAm at baseline experience 
substantially more change in KDM Biological Age from baseline to follow-up as compared to AL 
participants with slow DunedinPoAm. In contrast, there was little difference between 
participants with fast as compared to slow DunedinPoAm in the Caloric Restriction (CR) arm of 
the trial.  
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 SUPPLEMENTAL MATERIALS  
 
1. Data. 
 
The Dunedin Study is a longitudinal investigation of health and behavior in a complete birth 
cohort.  Study members (N=1,037; 91% of eligible births; 52% male) were all individuals born 
between April 1972 and March 1973 in Dunedin, New Zealand (NZ), who were eligible based on 
residence in the province and who participated in the first assessment at age 3.  The cohort 
represents the full range of socioeconomic status on NZ’s South Island and matches the NZ 
National Health and Nutrition Survey on key health indicators (e.g., BMI, smoking, GP visits) 
(Poulton et al., 2015). The cohort is primarily white (93%) (Poulton et al., 2015). Assessments 
were carried out at birth and ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, 38 and, most recently, 45 
years, when 94% of the 997 study members still alive took part. At each assessment, each study 
member is brought to the research unit for a full day of interviews and examinations. Study 
data may be accessed through agreement with the Study investigators 
(https://moffittcaspi.trinity.duke.edu/research-topics/dunedin).  
 Dunedin Study analysis to develop the Pace of Aging algorithm included 18 biomarkers 
measured at the age 26, 32, and 38 assessments: (in order of listing in Figure 3 of (Belsky et al., 
2015)) glycated hemoglobin, cardiorespiratory fitness, waist-hip ratio, FEV1/FVC ratio, FEV1, 
mean arterial pressure, body mass index, leukocyte telomere length, creatinine clearance, 
blood urea nitrogen, lipoprotein (a), triglycerides, gum health, total cholesterol, white blood 
cell count, high-sensitivity C-reactive protein, HDL cholesterol, ApoB100/ApoA1 ratio.  
 
Supplemental Table 1. Physical and cognitive functioning and subjective signs of aging 
measures in the Dunedin Study 

Physical Functioning (N=800 with DunedinPoAm data) 
Balance Balance was measured using the Unipedal Stance Test as the maximum time 

achieved across three trials of the test with eyes closed (Bohannon et al., 1984; 
Springer et al., 2007; Vereeck et al., 2008). 

Gait Speed Gait speed (meters per second) was assessed with the 6-m-long GAITRite 
Electronic Walkway (CIR Systems, Inc) with 2-m acceleration and 2-m 
deceleration before and after the walkway, respectively. Gait speed was 
assessed under 3 walking conditions: usual gait speed (walk at normal pace 
from a standing start, measured as a mean of 2 walks) and 2 challenge 
paradigms, dual-task gait speed (walk at normal pace while reciting alternate 
letters of the alphabet out loud, starting with the letter “A,” measured as a 
mean of 2 walks) and maximum gait speed (walk as fast as safely possible, 
measured as a mean of 3 walks). We calculated the mean of the 3 individual 
walk conditions to generate our primary measure of composite gait speed 
(Rasmussen et al., 2019). 

Steps in 
Place 

The 2-min step test was measured as the number of times a participant lifted 
their right knee to mid-thigh height (measured as the height half-way between 
the knee cap and the iliac crest) in 2 minutes at a self-directed pace (Jones and 
Rikli, 2002; Rikli and Jones, 1999). 
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Chair Stands Chair rises were measured as the number of stands a participant completed in 
30 seconds from a seated position (Jones et al., 1999; Jones and Rikli, 2002). 

Grip 
Strength 

Handgrip strength was measured for the dominant hand (elbow held at 90°, 
upper arm held tight against the trunk) as the maximum value achieved across 
three trials using a Jamar digital dynamometer (Mathiowetz et al., 1985; 
Rantanen T et al., 1999). 

Motor 
Coordination 

At ages 38 and 45, we measured motor functioning as the time to completion 
of the Grooved Pegboard Test with the dominant hand. 

Physical 
Limitations 

Physical limitations were measured with the 10-item RAND 36-Item Health 
Survey 1.0 physical functioning scale (Ware and Sherbourne, 1992). Participant 
responses (“limited a lot”, “limited a little”, “not limited at all”) assessed their 
difficulty with completing various activities, e.g., climbing several flights of 
stairs, walking more than 1 km, participating in strenuous sports, etc. Scores 
were reversed to reflect physical limitations so that a high score indicates more 
limitations.  

Decline in 
Physical 
Functioning 

Tests of balance and grip strength and interviews about physical limitations 
were completed at both the age-38 and age-45 Dunedin Study assessments. 
We measured decline across the 7-year measurement interval by subtracting 
the age-38 test score from the age-45 test score.  

Cognitive Functioning (N=795 with mPoA data) 
Cognitive 
Functioning 

The Wechsler Adult Intelligence Scale-IV (WAIS-IV) (Wechsler, 2008) was 
administered to the participants at age 45 years, yielding the IQ. In addition to 
full scale IQ, the WAIS-IV measures four specific domains of cognitive function: 
Processing Speed, Working Memory, Perceptual Reasoning, and Verbal 
Comprehension. 

Cognitive 
Decline 

IQ is a highly reliable measure of general intellectual functioning that captures 
overall ability across differentiable cognitive functions. We measured IQ from 
the individually administered Wechsler Intelligence Scale for Children-Revised 
(WISC-R; averaged across ages 7, 9, 11, and 13)(Wechsler, 2003) and the 
Wechsler Adult Intelligence Scale-IV (WAIS-IV; age 45) (Wechsler, 2008). We 
measured IQ decline by comparing scores from the WISC-R and the WAIS-IV. 

Subjective Signs of Aging (N=802 with mPoA data) 
Self-rated 
Health 

Study members rated their health on a scale of 1-5 (poor, fair, good, very good, 
or excellent). 

Facial Aging Facial Aging is the subjective perception of aged appearance based on a facial 
photograph and is proposed as a clinically-useful marker of mortality risk  
(Christensen et al., 2009). Facial Aging measurement in the Dunedin Study was 
based on ratings by an independent panel of 8 raters of each participant’s 
facial photograph (Belsky et al., 2015; Shalev et al., 2014). Facial Aging was 
based on two measurements of perceived age. First, Age Range was assessed 
by an independent panel of 4 raters, who were presented with standardized 
(non-smiling) facial photographs of participants and were kept blind to their 
actual age. Raters used a Likert scale to categorize each participant into a 5-
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year age range (i.e., from 20-24 years old up to 70+ years old) (interrater 
reliability = .77). Scores for each participant were averaged across all raters. 
Second, Relative Age was assessed by a different panel of 4 raters, who were 
told that all photos were of people aged 45 years old. Raters then used a 7-
item Likert scale to assign a “relative age” to each participant (1=“young 
looking”, 7=“old looking”) (interrater reliability = .79). The measure of 
perceived age at 45 years, Facial Age, was derived by standardizing and 
averaging Age Range and Relative Age scores. 

Subjective 
Decline  

Self-rated Health and Facial Aging were measured at both the age-38 and age-
45 assessments. We measured decline in self-rated health as incident fair/poor 
health reported at the age-45 assessment. We measured acceleration in Facial 
Aging by computing the difference in Facial Aging Z-scores between the age-45 
and age-38 assessments.  

 
 
 
 
Understanding Society is an ongoing panel study of the United Kingdom population 
(https://www.understandingsociety.ac.uk/). During 2010-12, participants were invited to take 
part in a nurse’s exam involving a blood draw. Of the roughly 20,000 participants who provided 
clinical data in this exam, methylation data have been generated for just under 1,200. We 
analyzed data from 1,175 participants with available methylation and blood chemistry data. 
Documentation of the methylation (University of Essex, n.d.) and blood chemistry (University of 
Essex, n.d.) data resource is available online 
(https://www.understandingsociety.ac.uk/sites/default/files/downloads/documentation/healt
h/user-guides/7251-UnderstandingSociety-Biomarker-UserGuide-2014.pdf). 

Klemera-Doubal method (KDM) Biological Age. We measured KDM Biological age from 
blood chemistry, systolic blood pressure, and lung-function data using the algorithm proposed 
by Klemera and Doubal (Klemera and Doubal, 2006) trained in data from the NHANES following 
the method originally described by Levine (Levine, 2013) and using the dataset compiled by 
Hastings (Hastings et al., 2019). We included 8 of Levine’s original 10 biomarkers in the 
algorithm: albumin, alkaline phosphatase (log), blood urea nitrogen, creatinine (log), C-reactive 
protein (log), HbA1C, systolic blood pressure, and forced expiratory volume in 1 second (FEV1). 
We omitted total cholesterol because of evidence this biomarker shows different directions of 
association with aging in younger and older adults (Arbeev et al., 2016). Cytomegalovirus 
optical density was not available in the Understanding Society database. 

Self-rated Health. Understanding Society participants rated their health as excellent, 
very-good, good, fair, or poor. We standardized this measure to have Mean=0, Standard 
Deviation=1 for analysis.  

 
The Normative Aging Study (NAS) is an ongoing longitudinal study on aging established by the 
US Department of Veterans Affairs in 1963. Details of the study have been published previously 
(Bell et al., 1972). Briefly, the NAS is a closed cohort of 2,280 male veterans from the Greater 
Boston area enrolled after an initial health screening to determine that they were free of 
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known chronic medical conditions. Participants have been re-evaluated every 3–5 years on a 
continuous rolling basis using detailed on-site physical examinations and questionnaires. DNA 
from blood samples was collected from 771 participants beginning in 1999. We analyzed blood 
DNA methylation data from up to four repeated assessments conducted through 2013 (Gao et 
al., 2019a; Panni Tommaso et al., 2016). Of the 771 participants with DNA methylation data, 
n=536 (46%) had data from 2 repeated assessments and n=178 (23%) had data from three or 
four repeated assessments. We restricted the current analysis to participants with at least one 
DNA methylation data point. The NAS was approved by the Department of Veterans Affairs 
Boston Healthcare System and written informed consent was obtained from each subject 
before participation.  
 Mortality. Regular mailings to study participants have been used to acquire vital-status 
information and official death certificates were obtained from the appropriate state health 
department to be reviewed by a physician. Participant deaths are routinely updated by the 
research team and the last available update was on 31 December 2013.. During follow-up, 
n=355 (46%) of the 771 NAS participants died.  

Chronic Disease Morbidity. We measured chronic disease morbidity from participants 
medical histories and prior diagnoses (Gao et al., 2019b, 2019c; Lepeule et al., 2018; Nyhan et 
al., 2018). We counted the number of chronic diseases to compose an ordinal index with 
categories of 0, 1, 2, 3, or 4+ of the following comorbidities: hypertension, type-2 diabetes, 
cardiovascular disease, chronic obstructive pulmonary disease, chronic kidney disease, and 
cancer. 
 
The Environmental Risk Longitudinal Twin Study tracks the development of a birth cohort of 
2,232 British participants. The sample was drawn from a larger birth register of twins born in 
England and Wales in 1994-1995. Full details about the sample are reported elsewhere (Moffitt 
and E-risk Team, 2002). Briefly, the E-Risk sample was constructed in 1999-2000, when 1,116 
families (93% of those eligible) with same-sex 5-year-old twins participated in home-visit 
assessments. This sample comprised 56% monozygotic (MZ) and 44% dizygotic (DZ) twin pairs; 
sex was evenly distributed within zygosity (49% male). Families were recruited to represent the 
UK population of families with newborns in the 1990s, on the basis of residential location 
throughout England and Wales and mother’s age. Teenaged mothers with twins were over-
selected to replace high-risk families who were selectively lost to the register through non-
response. Older mothers having twins via assisted reproduction were under-selected to avoid 
an excess of well-educated older mothers. The study sample represents the full range of 
socioeconomic conditions in the UK, as reflected in the families’ distribution on a 
neighborhood-level socioeconomic index (ACORN [A Classification of Residential 
Neighborhoods], developed by CACI Inc. for commercial use): 25.6% of E-Risk families lived in 
“wealthy achiever” neighborhoods compared to 25.3% nationwide; 5.3% vs. 11.6% lived in 
“urban prosperity” neighborhoods; 29.6% vs. 26.9% lived in “comfortably off” neighborhoods; 
13.4% vs. 13.9% lived in “moderate means” neighborhoods, and 26.1% vs. 20.7% lived in “hard-
pressed” neighborhoods. E-Risk underrepresents “urban prosperity” neighborhoods because 
such households are likely to be childless. 

Home-visits assessments took place when participants were aged 5, 7, 10, 12 and, most 
recently, 18 years, when 93% of the participants took part. At ages 5, 7, 10, and 12 years, 
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assessments were carried out with participants as well as their mothers (or primary caretakers); 
the home visit at age 18 included interviews only with participants. Each twin was assessed by a 
different interviewer. These data are supplemented by searches of official records and by 
questionnaires that are mailed, as developmentally appropriate, to teachers, and co-informants 
nominated by participants themselves. The Joint South London and Maudsley and the Institute 
of Psychiatry Research Ethics Committee approved each phase of the study. Parents gave 
informed consent and twins gave assent between 5-12 years and then informed consent at age 
18. Study data may be accessed through agreement with the Study investigators 
(https://moffittcaspi.trinity.duke.edu/research-topics/erisk). 

Childhood Socioeconomic Status (SES) was defined through a standardized composite of 
parental income, education, and occupation (Trzesniewski et al., 2006). The three SES indicators 
were highly correlated (r=0.57–0.67) and loaded significantly onto one factor. The population-
wide distribution of the resulting factor was divided in tertiles for analyses. 

 
Childhood Victimization. As previously described (Danese et al., 2016), we assessed 

exposure to six types of childhood victimization between birth to age 12: exposure to domestic 
violence between the mother and her partner, frequent bullying by peers, physical and sexual 
harm by an adult, and neglect.  
 
 
CALERIE. The CALERIE trial is described in detail elsewhere (Ravussin et al., 2015). Briefly, 
N=220 normal-weight (22.0 ≤ BMI < 28 kg/m2) participants (70% female, 77% white) aged 21-50 
years at baseline were randomized to caloric restriction or ad libitum conditions with a 2:1 ratio 
(n=145 to caloric restriction, n=75 to ad libitum). “Ad libitum” (normal) caloric intake was 
determined from two consecutive 14-day assessments of total daily energy expenditure using 
doubly labeled water (Redman et al., 2014). Average percent caloric restriction over six-month 
intervals was retrospectively calculated by the intake-balance method with simultaneous 
measurements of total daily energy expenditure using doubly labeled water and changes in 
body composition (Racette et al., 2012; Wong et al., 2014). Over the course of the trial, 
participants in the caloric-restriction arm averaged 12% reduction in caloric intake (about half 
the prescribed reduction). Participants in the ad libitum condition reduced caloric intake by <2% 
(Ravussin et al., 2015). CALERIE data are available at https://calerie.duke.edu/samples-data-
access-and-analysis.  

Klemera-Doubal method (KDM) Biological Age. KDM Biological age was measured 
according to the procedure described in our previous article (Belsky et al., 2017). Briefly, we 
computed KDM Biological Age from CALERIE blood chemistry and blood pressure data using the 
algorithm proposed by Klemera and Doubal (Klemera and Doubal, 2006) trained in data from 
the NHANES following the method originally described by Levine (Levine, 2013) and NHANES 
data from years matched to the timing of the CALERIE Trial. We included 8 of Levine’s original 
10 biomarkers in the algorithm: albumin, alkaline phosphatase (log), blood urea nitrogen, 
creatinine (log), C-reactive protein (log), HbA1C, systolic blood pressure, and total cholesterol. 
Cytomegalovirus optical density and lung function were not measured in CALERIE. We 
supplemented the algorithm with data on uric acid and white blood cell count. 
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2. Sensitivity analyses.  
 
We tested sensitivity of mPoA to alternative methods of normalizing DNA methylation data. We 
normalized data using the ‘methylumi’ and ‘minfi’ packages and computed correlations 
between mPoA measures derived from these two datasets. The correlation was r=0.94.  

The elastic net model selected 46 CpGs to compose the mPoA. One of these CpGs, 
cg11897887, has been identified as an mQTL (Volkov et al., 2016).  To evaluate sensitivity of 
results to the exclusion of this SNP, we computed a version of the mPoA excluding this CpG and 
repeated analysis. This version of the score was correlated with the full mPoA at r=1. Results 
were the same in analyses with both versions (available from the authors upon request).  
 Another CpG selected in the elastic net, cg05575921, is located within the gene AHRR, 
previously identified as a methylation site modified by tobacco exposure and associated with 
lung cancer and other chronic disease, e.g. (Fasanelli et al., 2015; Reynolds et al., 2015). We 
tested sensitivity of results to the exclusion of this probe using the method described above. 
This version of the score was correlated with the full mPoA at r=0.94. Again, results were the 
same in analyses with both versions (available from the authors upon request). 
 
3. Bootstrap repetition analysis to estimate out-of-sample correlation between mPoA and 
longitudinal Pace of Aging.  
 
The Dunedin Study is the only dataset to include measured 12-year longitudinal Pace of Aging. 
To estimate the out-of-sample correlation between mPoA and the original Pace of Aging 
measure, we conducted 90/10 crossfold validation analysis. We randomly selected 90% of the 
cohort to serve as the “training” sample in which the mPoA algorithm was developed. We used 
the remaining 10% to form a “test” sample to estimate the correlation between mPoA and Pace 
of Aging. We repeated this analysis across 100 bootstrap repetitions. In each repetition, we 
randomly sampled 90% of the cohort to use in the training analysis and reserved the remaining 
10% for testing.  
 The mPoA algorithms developed across the 100 bootstrap repetitions included different 
sets of CpGs (range of 21-209 CpGs selected, M=54, SD=27 CpGs). However, the resulting 
algorithms were highly correlated (mean pairwise r=0.90, SD=0.14). The average correlation 
between the 90%-trained mPoA and longitudinal Pace of Aging in the 10% test samples was 
(r=0.33, SD=0.10). Details are reported in Supplemental Figure 2. 
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Supplemental Table 1. Probes and associated weights composing the DunedinPoAm 
algorithm. The DunedinPoAm algorithm is a linear combination of 46 CpG methylation beta 
values weighted by coefficients estimated in the elastic net regression and added to the model 
intercept value of -0.06. (For sensitivity analyses addressing normalization method, and specific 
probes, see Supplement section 3.) 
 
 
Contact the corresponding author for details of the DNA methylation algorithm used to 
calculated DunedinPoAm: daniel.belsky@columbia.edu 
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Supplemental Table 2. Comparison of age-38 DundedinPoAm and age 26-38 Pace of Aging 
effect-sizes for analysis of healthspan-related characteristics. The table shows effect-sizes for 
analysis of healthspan-related characteristics at age 45 years. mPoA was measured from blood 
DNA methylation collected when Study members were aged 38 years. Pace of Aging was 
measured from longitudinal change in 18 biomarkers across measurements made at ages 26, 
32, and 38 years. Sample restricted to N=810 Study members with data on mPoA and Pace of 
Aging. Effect-sizes correspond to the analysis reported in Supplemental Figure 1B and are 
reported in terms of standard deviation differences in the age-45 outcome associated with a 1 
standard deviation increase in mPoA (i.e. effect-sizes are interpretable as Pearson r). All models 
were adjusted for sex. 
 

 
 
 
  

DunedinPoAm Effect-Sizes Pace of Aging Effect-Sizes
r 95% CI p-value r 95% CI p-value

Balance -0.29 [-0.36, -0.23] 5.13E-18 -0.21 [-0.27, -0.15] 9.32E-11
Gait Speed -0.27 [-0.33, -0.20] 2.15E-14 -0.18 [-0.25, -0.11] 4.77E-07
Steps in Place -0.22 [-0.29, -0.15] 1.70E-09 -0.16 [-0.23, -0.08] 3.98E-05
Chair Stands -0.19 [-0.26, -0.12] 8.96E-08 -0.18 [-0.25, -0.11] 5.01E-07
Grip Strength -0.05 [-0.12, 0.02] 0.138 -0.07 [-0.14, 0.00] 0.060
Motor Coordination -0.20 [-0.27, -0.13] 5.06E-08 -0.18 [-0.25, -0.11] 7.10E-07
Physical Limitations 0.21 [0.12, 0.30] 3.08E-06 0.15 [0.07, 0.22] 1.77E-04
Perceptual Reasoning -0.29 [-0.35, -0.22] 2.51E-17 -0.19 [-0.26, -0.11] 6.60E-07
Working Memory -0.21 [-0.28, -0.15] 4.35E-10 -0.16 [-0.23, -0.10] 1.49E-06
Processing Speed -0.15 [-0.22, -0.09] 6.86E-06 -0.16 [-0.23, -0.08] 3.46E-05
Self-rated Health -0.28 [-0.35, -0.20] 1.86E-13 -0.24 [-0.31, -0.16] 6.55E-10
Facial Aging 0.35 [0.28, 0.43] 9.94E-19 0.26 [0.19, 0.34] 1.34E-11
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Supplemental Table 3. Effect-sizes for associations of age-38 DundedinPoAm and epigenetic 
clocks with healthspan-related characteristics at age 45 and change in healthspan 
characteristics from age 38-45. Panel A of the table shows effect-sizes for analysis of 
healthspan-related characteristics at age 45 years. Panel B of the table shows effect-sizes for 
analysis of change in healthspan-related characteristics from 38 to 45. Methylation 
measurements were derived from blood DNA methylation collected when Study members were 
aged 38 years. Prior to analysis, Horvath, Hannum, and Levine Clock values were residualized 
for chronological age. Effect-sizes are reported in terms of standard deviation differences in the 
outcome associated with a 1 standard deviation increase in methylation measures (i.e. effect-
sizes are interpretable as Pearson r). All models were adjusted for sex.  
 
Panel A. Analysis of healthspan-related characteristics at age 45 years 

 
 
  

DunedinPoAm Horvath Clock Hannum Clock Levine Clock
r 95% CI p-value r 95% CI p-value r 95% CI p-value r 95% CI p-value

Balance -0.29 [-0.36, -0.23] 4.92E-18 -0.05 [-0.12, 0.02] 0.136 -0.07 [-0.14, 0.00] 0.066 -0.09 [-0.16, -0.01] 0.019
Gait Speed -0.26 [-0.32, -0.19] 5.93E-13 -0.05 [-0.13, 0.02] 0.152 -0.11 [-0.19, -0.03] 0.004 -0.06 [-0.13, 0.01] 0.076
Steps in Place -0.22 [-0.29, -0.15] 1.02E-09 0.03 [-0.04, 0.10] 0.446 -0.01 [-0.07, 0.05] 0.756 -0.05 [-0.12, 0.03] 0.203
Chair Stands -0.19 [-0.26, -0.12] 5.55E-08 -0.05 [-0.12, 0.03] 0.199 -0.10 [-0.17, -0.04] 0.003 -0.08 [-0.16, -0.01] 0.031
Grip Strength -0.05 [-0.12, 0.02] 0.162 -0.02 [-0.09, 0.05] 0.536 -0.05 [-0.12, 0.02] 0.161 0.03 [-0.04, 0.09] 0.445
Motor Coordination -0.15 [-0.21, -0.10] 6.41E-08 -0.01 [-0.06, 0.05] 0.829 -0.05 [-0.11, 0.02] 0.147 -0.03 [-0.09, 0.04] 0.451
Physical Limitations 0.20 [0.11, 0.28] 1.30E-05 -0.04 [-0.11, 0.03] 0.252 0.02 [-0.04, 0.08] 0.553 0.02 [-0.04, 0.08] 0.485
Perceptual Reasoning -0.28 [-0.35, -0.22] 2.38E-17 -0.02 [-0.08, 0.05] 0.611 -0.13 [-0.19, -0.07] 8.25E-05 -0.05 [-0.11, 0.02] 0.162
Working Memory -0.20 [-0.27, -0.14] 8.26E-10 -0.07 [-0.14, 0.00] 0.061 -0.12 [-0.19, -0.06] 3.16E-04 -0.07 [-0.13, 0.00] 0.042
Processing Speed -0.14 [-0.21, -0.08] 1.44E-05 -0.05 [-0.12, 0.01] 0.123 -0.06 [-0.13, 0.00] 0.060 -0.05 [-0.11, 0.02] 0.187
Self-rated Health -0.27 [-0.34, -0.20] 6.83E-13 -0.04 [-0.11, 0.04] 0.327 -0.05 [-0.11, 0.02] 0.172 -0.13 [-0.20, -0.06] 1.98E-04
Facial Aging 0.35 [0.28, 0.43] 3.74E-19 -0.04 [-0.11, 0.03] 0.218 0.08 [0.02, 0.15] 0.016 0.09 [0.02, 0.16] 0.009

Adjusted for Estimated Cell Counts at Age 38

Balance -0.31 [-0.38, -0.24] 6.03E-17 -0.05 [-0.13, 0.02] 0.132 -0.04 [-0.14, 0.05] 0.363 -0.06 [-0.14, 0.03] 0.173
Gait Speed -0.25 [-0.32, -0.17] 3.50E-10 -0.05 [-0.12, 0.02] 0.177 -0.08 [-0.18, 0.01] 0.075 -0.03 [-0.11, 0.05] 0.460
Steps in Place -0.26 [-0.34, -0.18] 7.89E-10 0.03 [-0.04, 0.11] 0.395 -0.03 [-0.12, 0.07] 0.578 -0.06 [-0.14, 0.02] 0.166
Chair Stands -0.21 [-0.29, -0.13] 2.69E-07 -0.04 [-0.12, 0.03] 0.262 -0.14 [-0.23, -0.05] 0.003 -0.08 [-0.17, 0.01] 0.068
Grip Strength -0.06 [-0.14, 0.02] 1.17E-01 -0.02 [-0.09, 0.05] 0.556 -0.08 [-0.17, 0.01] 0.093 0.04 [-0.04, 0.12] 0.292
Motor Coordination -0.17 [-0.22, -0.11] 6.19E-08 -0.02 [-0.07, 0.04] 0.542 -0.02 [-0.10, 0.06] 0.657 0.00 [-0.07, 0.07] 0.936
Physical Limitations 0.21 [0.12, 0.30] 8.79E-06 -0.05 [-0.12, 0.03] 0.213 -0.01 [-0.10, 0.08] 0.874 0.01 [-0.06, 0.08] 0.815
Perceptual Reasoning -0.28 [-0.35, -0.21] 1.60E-14 -0.02 [-0.09, 0.05] 0.565 -0.09 [-0.18, 0.00] 0.045 0.01 [-0.06, 0.09] 0.748
Working Memory -0.17 [-0.24, -0.10] 5.61E-06 -0.07 [-0.14, 0.00] 0.067 -0.09 [-0.19, 0.00] 0.048 -0.02 [-0.10, 0.05] 0.553
Processing Speed -0.17 [-0.24, -0.10] 4.63E-06 -0.06 [-0.13, 0.00] 0.067 -0.11 [-0.20, -0.02] 0.013 -0.06 [-0.14, 0.02] 0.122
Self-rated Health -0.29 [-0.37, -0.21] 1.99E-12 -0.05 [-0.12, 0.02] 0.199 -0.03 [-0.12, 0.06] 0.475 -0.14 [-0.22, -0.06] 3.09E-04
Facial Aging 0.36 [0.28, 0.45] 5.03E-16 -0.04 [-0.11, 0.03] 0.258 0.03 [-0.06, 0.13] 0.497 0.07 [-0.01, 0.15] 0.077

Adjusted for Pack Years at Age 38

Balance -0.24 [-0.32, -0.15] 4.41E-08 -0.08 [-0.15, -0.02] 0.015 -0.06 [-0.13, 0.00] 0.062 -0.07 [-0.14, 0.00] 0.068
Gait Speed -0.19 [-0.28, -0.10] 3.24E-05 -0.08 [-0.15, -0.01] 0.022 -0.11 [-0.19, -0.04] 0.002 -0.04 [-0.11, 0.03] 0.241
Steps in Place -0.14 [-0.24, -0.05] 0.004 0.00 [-0.07, 0.07] 0.935 -0.01 [-0.07, 0.05] 0.773 -0.03 [-0.10, 0.05] 0.468
Chair Stands -0.14 [-0.24, -0.05] 0.002 -0.07 [-0.14, 0.01] 0.076 -0.10 [-0.17, -0.04] 0.003 -0.07 [-0.14, 0.01] 0.076
Grip Strength -0.06 [-0.15, 0.03] 0.175 -0.02 [-0.09, 0.04] 0.483 -0.05 [-0.12, 0.02] 0.142 0.03 [-0.04, 0.10] 0.399
Motor Coordination -0.10 [-0.17, -0.03] 0.004 -0.02 [-0.08, 0.03] 0.362 -0.05 [-0.11, 0.01] 0.125 -0.01 [-0.08, 0.05] 0.740
Physical Limitations 0.15 [0.05, 0.26] 0.005 -0.02 [-0.09, 0.05] 0.580 0.02 [-0.04, 0.08] 0.469 0.00 [-0.06, 0.07] 0.880
Perceptual Reasoning -0.21 [-0.30, -0.13] 6.17E-07 -0.05 [-0.11, 0.02] 0.136 -0.13 [-0.20, -0.07] 2.58E-05 -0.02 [-0.09, 0.04] 0.469
Working Memory -0.15 [-0.23, -0.07] 3.12E-04 -0.09 [-0.16, -0.02] 0.009 -0.13 [-0.19, -0.06] 2.73E-04 -0.05 [-0.11, 0.01] 0.111
Processing Speed -0.06 [-0.14, 0.02] 0.171 -0.08 [-0.14, -0.01] 0.025 -0.07 [-0.13, 0.00] 0.047 -0.03 [-0.09, 0.04] 0.409
Self-rated Health -0.18 [-0.28, -0.09] 1.20E-04 -0.07 [-0.14, 0.00] 0.054 -0.05 [-0.12, 0.02] 0.132 -0.10 [-0.17, -0.04] 0.002
Facial Aging 0.24 [0.14, 0.33] 1.37E-06 0.00 [-0.07, 0.06] 0.984 0.09 [0.02, 0.16] 0.010 0.06 [-0.01, 0.12] 0.085
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Panel B. Analysis of change in healthspan-related characteristics from age 38-45 years 
 

 
  

DunedinPoAm Horvath Clock Hannum Clock Levine Clock
r 95% CI p-value r 95% CI p-value r 95% CI p-value r 95% CI p-value

Balance -0.11 [-0.19, -0.04] 2.76E-03 0.02 [-0.06, 0.09] 0.654 0.00 [-0.08, 0.08] 0.968 0.03 [-0.04, 0.09] 0.478
Grip Strength 0.00 [-0.07, 0.08] 0.932 0.00 [-0.07, 0.07] 0.991 -0.01 [-0.09, 0.08] 0.853 0.04 [-0.03, 0.11] 0.279
Motor Coodination -0.05 [-0.13, 0.02] 0.147 -0.01 [-0.08, 0.06] 0.802 -0.03 [-0.11, 0.06] 0.539 -0.04 [-0.12, 0.04] 0.381
Physical Limitations 0.10 [0.02, 0.18] 0.016 -0.07 [-0.14, 0.01] 0.102 -0.03 [-0.10, 0.03] 0.335 -0.05 [-0.12, 0.02] 0.129
Cognitive Decline -0.12 [-0.19, -0.05] 7.94E-04 -0.03 [-0.10, 0.03] 0.324 -0.06 [-0.14, 0.01] 0.101 -0.06 [-0.13, 0.01] 0.090
Incident Fair/Poor Health 1.75 [1.43, 2.14] 3.97E-08 0.96 [0.72, 1.27] 0.758 1.07 [0.84, 1.36] 0.577 1.35 [1.08, 1.68] 0.009
Facial Aging 0.10 [0.03, 0.18] 0.005 -0.04 [-0.11, 0.03] 0.279 -0.01 [-0.08, 0.06] 0.762 0.05 [-0.02, 0.11] 0.146

Adjusted for Estimated Cell Counts at Age 38

Balance -0.13 [-0.21, -0.05] 0.002 0.02 [-0.05, 0.10] 0.555 -0.01 [-0.11, 0.09] 0.872 0.03 [-0.05, 0.11] 0.429
Grip Strength 0.01 [-0.08, 0.09] 0.834 0.01 [-0.06, 0.08] 0.787 0.00 [-0.10, 0.11] 0.936 0.07 [-0.02, 0.15] 0.126
Motor Coodination -0.04 [-0.12, 0.05] 0.364 -0.01 [-0.08, 0.06] 0.830 0.02 [-0.09, 0.13] 0.689 -0.01 [-0.09, 0.08] 0.871
Physical Limitations 0.10 [0.01, 0.20] 0.030 -0.07 [-0.15, 0.00] 0.063 -0.06 [-0.15, 0.04] 0.227 -0.08 [-0.16, 0.00] 0.046
Cognitive Decline -0.10 [-0.18, -0.02] 0.015 -0.04 [-0.11, 0.03] 0.307 -0.02 [-0.11, 0.08] 0.707 -0.03 [-0.12, 0.05] 0.422
Incident Fair/Poor Health 2.02 [1.57, 2.59] 3.03E-08 0.97 [0.73, 1.28] 0.829 1.09 [0.78, 1.52] 0.625 1.49 [1.16, 1.92] 0.002
Facial Aging 0.09 [0.01, 0.17] 0.023 -0.04 [-0.11, 0.03] 0.270 -0.06 [-0.15, 0.04] 0.251 0.03 [-0.05, 0.10] 0.501

Adjusted for Pack Years at Age 38

Balance -0.13 [-0.22, -0.04] 0.005 0.01 [-0.06, 0.08] 0.790 0.00 [-0.08, 0.08] 0.972 0.03 [-0.04, 0.10] 0.388
Grip Strength -0.01 [-0.11, 0.08] 0.760 0.00 [-0.06, 0.07] 0.937 -0.01 [-0.09, 0.08] 0.841 0.04 [-0.03, 0.11] 0.292
Motor Coodination -0.03 [-0.12, 0.07] 0.554 -0.02 [-0.09, 0.05] 0.640 -0.03 [-0.11, 0.06] 0.528 -0.03 [-0.11, 0.05] 0.464
Physical Limitations 0.10 [0.00, 0.20] 0.047 -0.06 [-0.14, 0.02] 0.159 -0.03 [-0.09, 0.03] 0.362 -0.06 [-0.13, 0.01] 0.093
Cognitive Decline -0.02 [-0.12, 0.07] 0.627 -0.06 [-0.12, 0.01] 0.089 -0.06 [-0.14, 0.01] 0.104 -0.05 [-0.12, 0.02] 0.199
Incident Fair/Poor Health 1.48 [1.09, 2.00] 0.011 1.05 [0.80, 1.36] 0.743 1.07 [0.85, 1.35] 0.544 1.28 [1.01, 1.61] 0.040
Facial Aging 0.09 [0.00, 0.18] 0.060 -0.03 [-0.10, 0.04] 0.419 -0.01 [-0.08, 0.06] 0.777 0.04 [-0.02, 0.10] 0.227
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Supplemental Table 4. Effect-sizes for associations of DunedinPoAm and epigenetic clocks 
with KDM Biological Age, and self-rated health in the Understanding Society Study. The table 
reports standardized regression coefficients and their standard errors from linear regression 
models in which the predictor was the methylation measure listed in the far-left column and 
the dependent variable was either KDM Biological Age (left side coefficients) or self-rated 
health (right side coefficients). All models included sex and chronological age as covariates. 
Model 2 included covariates for cell counts estimated from the methylation data. Model 3 
included covariates adjusting for smoking status. Model 4 included nonsmokers only. Prior to 
analysis, Horvath, Hannum, and Levine Clock values were residualized for chronological age. All 
methylation variables were residualized for plate number.  
 

   

KDM Biological Age Self-rated Health
b 95% CI p-value b 95% CI p-value

M1. Models adjusted for age and sex
mPoA 0.200 [0.15, 0.26] 1.67E-12 -0.217 [-0.27, -0.16] 1.04E-13
Horvath Clock 0.050 [-0.01, 0.11] 0.090 -0.003 [-0.06, 0.05] 0.921
Hannum Clock 0.051 [-0.02, 0.12] 0.130 -0.042 [-0.10, 0.01] 0.143
Levine Clock 0.150 [0.09, 0.21] 8.26E-07 -0.088 [-0.14, -0.03] 0.001
N 1164 1175

M2. Models adjusted for age, sex, and estimated cell counts
mPoA 0.186 [0.13, 0.25] 2.37E-09 -0.183 [-0.25, -0.12] 1.91E-08
Horvath Clock 0.061 [0.00, 0.12] 0.045 -0.006 [-0.06, 0.05] 0.839
Hannum Clock 0.034 [-0.05, 0.12] 0.425 -0.006 [-0.08, 0.07] 0.867
Levine Clock 0.151 [0.09, 0.22] 5.53E-06 -0.070 [-0.13, -0.01] 0.016
N 1164 1175

M3. Models adjusted for age, sex, and smoking
mPoA 0.207 [0.13, 0.28] 2.78E-08 -0.155 [-0.22, -0.09] 7.44E-06
Horvath Clock 0.044 [-0.01, 0.10] 0.134 0.004 [-0.05, 0.06] 0.881
Hannum Clock 0.046 [-0.02, 0.11] 0.167 -0.036 [-0.09, 0.02] 0.196
Levine Clock 0.135 [0.07, 0.19] 1.15E-05 -0.067 [-0.12, -0.02] 0.011
N 1160 1171

M4. Models adjusted for age, sex; non-smokers
mPoA 0.252 [0.14, 0.36] 1.05E-05 -0.141 [-0.25, -0.03] 0.014
Horvath Clock 0.051 [-0.03, 0.13] 0.219 -0.061 [-0.14, 0.02] 0.141
Hannum Clock 0.082 [-0.01, 0.18] 0.092 -0.043 [-0.13, 0.05] 0.343
Levine Clock 0.101 [0.02, 0.18] 0.012 -0.079 [-0.15, 0.00] 0.043
N 495 498
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Supplemental Table 5. Effect-sizes for associations of DunedinPoAm and epigenetic clocks 
with morbidity and mortality in the Normative Aging Study. Time-to-event analyses of 
mortality and chronic disease incidence (Panels A and B) were conducted using Cox 
proportional hazard models to estimate hazard ratios (HRs) in N=771 participants. Repeated-
measures analysis (Panel C) was conducted using Poisson regression within a generalized 
estimating equations framework to account for the nonindependence of repeated observations 
of individuals (N=1,488 observations of 771 individuals). All models included covariate 
adjustment for chronological age. Smoking status was measured from the American Thoracic 
Society Questionnaire (Ferris, 1978) completed by participants at each assessment wave. We 
classified participants as being current, former, or never smokers (Gao et al., 2019a). Pack years 
is the total number of cigarettes smoked across the participants lifetime in units equivalent to 
the number of cigarettes smoked during a year of smoking 1 pack (20 cigarettes) per day. Age 
acceleration residuals for epigenetic clocks were calculated by regressing epigenetic age on 
chronological age and predicting residual values. All methylation measures were standardized 
to M=0 SD=1 for analysis. Effect-sizes thus reflect risk associated with a 1-SD increase in the 
methylation measure.  
 

 
  

Panel A. Effect-sizes for time-to-event analysis of mortality

Base Model
Adjusted for Estimated 
Leukocyte Distribution Adjusted for Smoking Status Adjusted for Pack Years

HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value
DunedinPoAm 1.29 [1.16-1.45] <0.001 1.28 [1.13-1.44] <0.001 1.32 [1.17-1.48] <0.001 1.26 [1.12-1.12] 0.001

Age Accleration Residuals
Horvath Clock 1.07 [0.94-1.22] 0.308 1.08 [0.94-1.24] 0.284 1.07 [0.94-1.23] 0.321 1.07 [0.94-1.22] 0.319
Hannum Clock 1.05 [0.90-1.23] 0.525 1.04 [0.89-1.22] 0.598 1.04 [0.89-1.22] 0.599 1.02 [0.87-1.19] 0.827
Phenotypic Aging Clock 1.18 [1.05-1.34] 0.008 1.19 [1.05-1.35] 0.008 1.18 [1.04-1.34] 0.011 1.15 [1.02-1.31] 0.026

Panel B. Effect-sizes for time-to-event analysis of incident chronic disease

Base Model
Adjusted for Estimated 
Leukocyte Distribution Adjusted for Smoking Status Adjusted for Pack Years

HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value
DunedinPoAm 1.19 1.03 - 1.38 0.019 1.18 1.01 - 1.38 0.035 1.12 0.95 - 1.31 0.169 1.15 0.99 - 1.34 0.076

Age Accleration Residuals
Horvath Clock 1.02 0.86 - 1.20 0.851 0.98 0.82 - 1.17 0.857 1.01 0.86 - 1.20 0.857 1.03 0.87 - 1.22 0.7349
Hannum Clock 1.17 0.99 - 1.39 0.066 1.16 0.97 - 1.39 0.094 1.18 0.99 - 1.40 0.062 1.17 0.99 - 1.39 0.0658
Phenotypic Aging Clock 1.10 0.93 - 1.31 0.273 1.11 0.93 - 1.33 0.262 1.07 0.90 - 1.27 0.456 1.09 0.92 - 1.29 0.3409

Panel C. Effect-sizes for repeated-measures analysis of prevalent chronic disease 

Base Model
Adjusted for Estimated 
Leukocyte Distribution Adjusted for Smoking Status Adjusted for Pack Years

IRR 95% CI p-value IRR 95% CI p-value IRR 95% CI p-value IRR 95% CI p-value
DunedinPoAm 1.15 [1.11-1.20] <0.001 1.15 [1.10-1.19] <0.001 1.16 [1.12-1.21] <0.001 1.12 [1.08-1.17] <0.001

Age Accleration Residuals
Horvath Clock 1.07 [1.03-1.12] 0.002 1.08 [1.03-1.13] 0.001 1.08 [1.03-1.13] 0.001 1.07 [1.03-1.12] 0.002
Hannum Clock 1.04 [1.00-1.09] 0.074 1.03 [0.98-1.08] 0.189 1.04 [1.00-1.09] 0.065 1.04 [0.99-1.09] 0.090
Phenotypic Aging Clock 1.13 [1.08-1.18] <0.001 1.13 [1.08-1.18] <0.001 1.13 [1.08-1.18] <0.001 1.12 [1.07-1.16] <0.001
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Supplemental Table 6. Effect-sizes for associations of socioeconomic status (SES) and 
victimization exposure with DunedinPoAm and epigenetic clocks at age 18 in the E-Risk Study. 
The table shows effect-sizes reported as standardized regression coefficients (b) and 95% 
confidence intervals (CIs) from models in which childhood family socioeconomic status (SES) 
and victimization were predictor variables and the dependent variables were the DNA 
methylation measures. Model 1 included covariate adjustment for sex. Model 2 additionally 
included covariates for estimated cell counts. (Chronological age was the same for all twins in 
the birth cohort.) Models 3 and 4 adjusted for smoking status. Only 33% of the analysis sample 
had ever smoked. Model 3 included covariates adjusting for smoking status at age 18 (never, 
former, current). Model 4 included nonsmokers only. Methylation measurements were derived 
from blood DNA methylation collected when Study members were aged 18 years and were 
residualized for plate number prior to analysis. All E-Risk participants are the same 
chronological age. Epigenetic clock measures were differenced from this chronological age prior 
to analysis. Effect-sizes are reported in terms of standard deviation differences in the outcome 
associated with a 1 standard deviation increase in methylation measures. All models were 
adjusted for sex. Standard errors were clustered at the family level to account for non-
independence of twin data.  
 

 
 
 
 
  

DunedinPoAm Horvath Clock Hannum Clock Levine Clock
b 95% CI p-value b 95% CI p-value b 95% CI p-value b 95% CI p-value

M1. Base Model
Childhood SES -0.18 [-0.23, -0.13] 4.70E-11 -0.01 [-0.07, 0.04] 0.633 0.01 [-0.05, 0.07] 0.720 -0.08 [-0.13, -0.02] 0.007
Victimization 0.13 [0.08, 0.18] 1.42E-06 0.00 [-0.06, 0.05] 0.924 -0.02 [-0.07, 0.04] 0.577 0.01 [-0.04, 0.07] 0.617

M2. Adjusted for estimated cell counts
Childhood SES -0.17 [-0.21, -0.12] 9.45E-14 -0.02 [-0.07, 0.03] 0.428 0.01 [-0.02, 0.04] 0.559 -0.07 [-0.12, -0.03] 0.002
Victimization 0.12 [0.07, 0.16] 7.30E-07 0.00 [-0.05, 0.05] 0.900 -0.02 [-0.05, 0.01] 0.236 0.01 [-0.04, 0.05] 0.760

M3. Adjusted for smoking status at age 18
Childhood SES -0.09 [-0.14, -0.04] 3.77E-04 -0.03 [-0.09, 0.02] 0.272 0.00 [-0.06, 0.06] 1.00 -0.07 [-0.13, -0.02] 0.010
Victimization 0.04 [-0.01, 0.09] 0.083 0.01 [-0.04, 0.07] 0.607 -0.01 [-0.06, 0.05] 0.836 0.01 [-0.05, 0.06] 0.770

M4. Non-smokers only
Childhood SES -0.08 [-0.13, -0.03] 0.003 -0.04 [-0.10, 0.02] 0.190 -0.02 [-0.08, 0.05] 0.663 -0.07 [-0.14, -0.01] 0.023
Victimization 0.07 [0.01, 0.12] 0.018 -0.02 [-0.09, 0.04] 0.517 -0.02 [-0.09, 0.06] 0.678 0.00 [-0.07, 0.07] 0.961
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Supplemental Table 7. Characteristics of participants in the CALERIE Trial and subsample with 
baseline methylation data. The top panel of the table shows demographic characteristics and 
measured rate of aging for participants in the Ad Libitum (usual diet) and Caloric Restriction 
arms of the CALERIE Trial. The middle panel shows the same data for the subset of participants 
for whom methylation data were available from the baseline CALERIE assessment. The bottom 
panel shows effect-sizes for associations of methylation measures with the rate of change in 
KDM Biological Age during follow-up. Effect-sizes are stratified marginal effects computed from 
regressions of predicted slopes of change in KDM Biological Age on treatment condition, 
baseline values of the methylation measures, and the interaction of treatment condition and 
the methylation measures. Effect-sizes for association of baseline DunedinPoAm with rate of 
change in KDM Biological Age over follow-up are plotted separately by treatment condition (CR 
for caloric restriction and AL for Ad Libitum control). Effect-sizes reflect the predicted increase 
in the rate of annual change in KDM Biological Age over the 2 years of follow-up associated with 
a 1 SD increase in the methylation measure. For example, for DunedinPoaM, a value of 0.2 for 
participants in the AL control condition indicates that having DunedinPoAm 1 SD higher at 
baseline is associated with an increase in the aging rate of 0.2 years of physiological change per 
12 months of follow-up. Models included covariate adjustment for sex and chronological age at 
baseline. 
 

 
 
Effect-sizes for associations of DunedinPoAm and epigenetic clocks with future rate of change 
in KDM Biological Age in Ad Libitum (AL) control group and Caloric Restriction (CR) 
intervention group participants. 

  

CALERIE Trial
Ad Libitum (n=75) Caloric Restriction (n=145)
M SD M SD

Age 37.86 6.94 37.89 7.32
Male (%) 0.29 0.46 0.31 0.46
KDM Biological Age 36.31 6.98 36.59 6.92
Annual Change in KDM 
Biological Age 0.72 0.95 0.11 0.96

Sub-sample with baseline methylation data
Ad Libitum (n=68) Caloric Restriction (n=118)
M SD M SD

Age 38.16 7.07 38.37 7.30
Male (%) 0.31 0.47 0.31 0.47
KDM Biological Age 36.46 6.99 37.19 6.73
Annual Change in KDM 
Biological Age 0.73 0.95 0.12 1.03
mPoA 1.00 0.05 1.01 0.06

DunedinPoAm Horvath Clock Hannum Clock Levine Clock
b 95% CI p-value b 95% CI p-value b 95% CI p-value b 95% CI p-value

AL Control Group 0.22 [-0.05, 0.49] 0.105 -0.23 [-0.45, 0.00] 0.049 -0.16 [-0.45, 0.13] 0.283 -0.03 [-0.22, 0.17] 0.772
CR Intervention Group -0.08 [-0.24, 0.09] 0.351 0.07 [-0.12, 0.27] 0.443 -0.11 [-0.28, 0.05] 0.183 0.02 [-0.16, 0.21] 0.796

Adjusted for estimated cell counts
AL Control Group 0.23 [-0.05, 0.52] 0.105 -0.22 [-0.47, 0.02] 0.074 -0.22 [-0.58, 0.14] 0.225 0.01 [-0.22, 0.25] 0.919
CR Intervention Group -0.08 [-0.27, 0.11] 0.424 0.09 [-0.11, 0.29] 0.381 -0.20 [-0.47, 0.07] 0.154 0.08 [-0.15, 0.30] 0.496
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Supplemental Figure 1. Association of DunedinPoAm with Pace of Aging in the Dunedin Study 
and Comparison of Effect-sizes for DunedinPoAm, Pace of Aging, and epigenetic clocks. Panel 
A shows a scatterplot and fitted regression slope for the association between DunedinPoAm 
trained in the full Dunedin sample and the Pace of Aging measure that was used as the criterion 
in the training analysis. The correlation of r=0.56 is a within-training sample estimate of 
association and therefore reflects the upper-bound of possible true association between 
DunedinPoAm and Pace of Aging. The figure shows data for the N=810 Dunedin Study members 
included in the training analysis. Panel B graphs effect-sizes for associations of age-38 
DunedinPoAm and 12-year longitudinal Pace of Aging with measures of physical and cognitive 
functioning and subjective signs of aging measured at the Dunedin Study age-45 assessment. 
Panels C and D plot effect-sizes for DunedinPoAm and the epigenetic clocks proposed by 
Horvath, Hannum, and Levine for analysis of age-45 outcomes (Panel C) and change from age 
38 to 45 (Panel D). Effect-sizes are standardized regression coefficients (interpretable as 
Pearson r). Effect-sizes are computed for “epigenetic-age acceleration” values of the clocks (i.e. 
epigenetic ages residualized for chronological age). Error bars show 95% CIs. For all outcomes, 
effect-sizes are largest for DunedinPoAm.  
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Supplemental Figure 2. Bootstrap repetition analysis to estimate out-of-sample correlation 
between mPoA and longitudinal Pace of Aging. The figure shows results from our Bootstrap 
crossfold validation analysis to evaluate mPoA within the Dunedin Study. Panel A (top left) 
shows the distribution of elastic-net regression Lambda values estimated across the 100 
bootstrap training samples. Panel B (top right) shows the distribution of the number of probes 
selected by the elastic net regression to compose mPoA across the 100 bootstrap training 
samples. Panel C (bottom left) graphs two densities illustrating analysis of intercorrelations 
among the different mPoA algorithms estimated across the bootstrap repetitions. The first 
density (thin gray line, left side Y axis) shows the distribution of sample sizes for calculation of 
correlations between pairs of mPoA algorithms. There were 68 pairs of mPoA algorithms for 
which there were no overlapping samples (i.e. sample size=0). The second density (thick blue 
line, right side Y axis) shows the distribution of pairwise correlations. Nearly all of the 
correlations were r>0.95. Panel D (bottom right) shows the distribution of correlations between 
mPoA and Pace of Aging in the 100 bootstrap test samples.  
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Supplemental Figure 3. Effect-sizes for associations of DunedinPoAm and epigenetic clocks 
with KDM Biological Age and self-rated health in Understanding Society. Effect-sizes are 
standardized regression coefficients (interpretable as Pearson r). Effect-sizes are computed for 
“epigenetic-age acceleration” values of the clocks (i.e. epigenetic ages residualized for 
chronological age). The dependent variable in analysis of KDM Biological Age was the difference 
between KDM Biological Age and chronological age. Self-rated health scores were reversed for 
analysis so that higher values correspond to ratings of poorer health. All models were adjusted 
for chronological age and sex.  
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Supplemental Figure 4. Effect-sizes for association of DunedinPoAm and epigenetic clocks 
with mortality and morbidity in the Normative Aging Study. Time-to-event analysis of 
mortality and chronic disease incidence were conducted using Cox proportional hazard models 
to estimate hazard ratios (HRs) in N=771 participants. Repeated-measures analysis of chronic 
disease prevalence was conducted using Poisson regression to estimate incidence rate ratios 
(IRRs) within a generalized estimating equations framework to account for the 
nonindependence of repeated observations of individuals (N=1,488 observations of 771 
individuals). All models included covariate adjustment for chronological age. Age acceleration 
residuals for epigenetic clocks were calculated by regressing epigenetic age on chronological 
age and predicting residual values. All methylation measures were standardized to M=0 SD=1 
for analysis. Effect-sizes thus reflect risk associated with a 1-SD increase in the methylation 
measure. 
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Supplemental Figure 5. Effect-sizes for associations of childhood socioeconomic status and 
victimization exposure with DunedinPoAm and epigenetic clocks. Effect-sizes are standardized 
regression coefficients and 95% confidence intervals from models in which childhood family 
socioeconomic status (SES) and victimization were predictor variables and the dependent 
variables were the methylation measures. All E-Risk participants were the same chronological 
age (18 years) at the time of blood collection. Epigenetic clock measures were differenced from 
this chronological age prior to analysis. Effect-sizes are reported in terms of standard deviation 
differences in the methylation measures associated with a 1 standard deviation increase in the 
predictor measure. All models were adjusted for sex. Standard errors were clustered at the 
family level to account for non-independence of twin data.  
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Supplemental Figure 6. Effect-sizes for associations of DunedinPoAm and epigenetic clocks 
with future rate of change in KDM Biological Age in Ad Libitum (AL) control group and Caloric 
Restriction (CR) intervention group participants in the CALERIE Trial. Effect-sizes are stratified 
marginal effects computed from regressions of predicted slopes of change in KDM Biological 
Age on treatment condition, baseline values of the methylation measures, and the interaction 
of treatment condition and the methylation measures. Effect-sizes for association of baseline 
DunedinPoAm with rate of change in KDM Biological Age over follow-up are plotted separately 
by treatment condition (AL for Ad Libitum control, plotted as solid-colored circles, CR for caloric 
restriction, plotted as hollow circles). Effect-sizes reflect the predicted increase in the rate of 
annual change in KDM Biological Age over the 2 years of follow-up associated with a 1 SD 
increase in the methylation measure. For example, for DunedinPoaM, a value of 0.2 for 
participants in the AL control condition indicates that having DunedinPoAm 1 SD higher at 
baseline is associated with an increase in the aging rate of 0.2 years of physiological change per 
12 months of follow-up. Models included covariate adjustment for sex and chronological age at 
baseline.  
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