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Abstract

The glycoprotein spike (S) on the surface of SARS-CoV-2 is a determinant for viral
invasion and host immune response. Herein, we characterized the site-specific
N-glycosylation of S protein at the level of intact glycopeptides. All 22 potential
N-glycosites were identified in the S-protein protomer and were found to be preserved
among the 753 SARS-CoV-2 genome sequences. The glycosite occupancy by different
glycoforms exhibited remarkable heterogeneity in human cell-expressed protein
subunits, including up to 157 N-glycans, mainly of the complex type. In contrast, the
insect cell-expressed S protein contained 38 N-glycans, primarily of the high-mannose
type. Our results revealed that the glycan types were highly determined by the
differential processing of N-glycans among human and insect cells. This
N-glycosylation landscape and the differential N-glycan patterns among distinct host
cells are expected to shed light on the infection mechanism and present a positive view

for the development of vaccines and targeted drugs.
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Introduction

The spread of a novel severe acute respiratory syndrome coronavirus (SARS-CoV-2)
has caused a pandemic of coronavirus disease 2019 (COVID-19) worldwide.
Distinguished from severe acute respiratory syndrome coronavirus (SARS-CoV) and
Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 transmits
more rapidly and efficiently from infected individuals, even those without symptoms,
to healthy humans, frequently leading to severe or lethal respiratory symptoms(1, 2).
The World Health Organization has declared the spread of SARS-CoV-2 a Public
Health Emergency of International Concern. As of April 16, 2020, the virus has led to
over two million confirmed cases. From SARS-CoV to SARS-CoV-2, the periodic
outbreak of highly pathogenic coronavirus infections in humans urgently calls for
strong prevention and intervention measures. However, there are no approved

vaccines or effective antiviral drugs for either SARS-CoV or SARS-CoV-2.

Human coronaviruses, including HCoV 229E, NL63, OC43, and HKUI, are
responsible for 10-30% of all upper respiratory tract infections in adults.
SARS-CoV-2 can actively replicate in the throat; however, this virus predominately
infects the lower respiratory tract via the envelope Spike (S) protein(2, 3). Due to its
high exposure on the viral surface, the S protein can prime a protective humoral and
cellular immune response, thus commonly serving as the main target for antibodies,
entry inhibitors and vaccines(4-6). It has been found that human sera from recovered
COVID-19 patients can neutralize SARS-CoV-2 S protein-overexpressed
pseudovirions effectively(7). The use of convalescent sera in the clinic is actively
undergoing a comprehensive evaluation. However, the passive antibody therapy with
convalescent sera would be a stopgap measure and may not provide a protective

immunity owing to their limited cross reactions(7, 8). Therefore, specific neutralizing
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antibodies and vaccines against SARS-CoV-2 are in rapid development for providing

potent and long-lasting immune protection.

A mature SARS-CoV-2 has four structural proteins, including the S protein, envelope
(E) protein, membrane (M) protein, and nucleocapsid (N) protein(1l). Given its
indispensable role in viral entry and infectivity, the S protein is probably the most
promising immunogen, especially given the comprehensive understanding of the
structure and function provided by recent studies(4, 9-11). The S protein is comprised
of an ectodomain, a transmembrane anchor, and a short C-terminal intracellular
tail(12). The ectodomain consists of a receptor-binding S1 subunit and a
membrane-fusion S2 subunit. Following attachment to the host cell surface via S1, the
S protein is cleaved at multiple sites by host cellular proteases, consequently
mediating membrane fusion and making way for the viral genetic materials to enter
the host cell(4, 6, 13). The S protein can bind to the angiotensin-converting enzyme II
(ACE2) receptor on host cells(10, 14). The recognition of the S protein to the ACE2
receptor primarily involves extensive polar residue interactions between the
receptor-binding domain (RBD) and the peptidase domain of ACE2(10, 11). The S
protein RBD is located in the S1 subunit and undergoes a hinge-like dynamic
movement to capture the receptor through three grouped residue -clusters.
Consequently, the S protein of SARS-CoV-2 displays an up to 10-20-fold higher
affinity for the human ACE2 receptor than that of SARS-CoV, supporting the higher

transmissibility of this new virus(10, 11).

Apart from the structural information at the residue level, the trimeric S protein is
highly glycosylated, possessing 22 potentially N-linked glycosylation motifs

(N-X-S/T, X7#P) in each protomer. The N-glycans on the S protein play a pivotal role

in proper protein folding and protein priming by host proteases. Importantly,
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glycosylation is an underlying mechanism for coronavirus to evade both innate and
adaptive immune responses of their hosts, as the glycans might shield the amino acid
residues of viral epitopes from cell and antibody recognition(4, 5, 15). Cryo-EM has
revealed the N-glycosylation on 14-16 of 22 potential sites in the SARS-CoV-2 S
protein protomer(4, 10). However, these glycosites and their glycan occupancies need
to be experimentally identified in detail. Glycosylation analysis via glycopeptides can
provide insight into the N-glycan microheterogeneity of a specific site(16). Therefore,
further identification of site-specific N-glycosylation information of the SARS-CoV-2
S protein, including that regarding intact N-glycopeptides, glycosites, glycan
compositions, and the site-specific number of glycans, could be meaningful to obtain
a deeper understanding of the mechanism of the viral invasion and provide guidance

for vaccine design and antiviral therapeutics development(4, 17)

Herein, we characterized the site-specific N-glycosylation of recombinant
SARS-CoV-2 S proteins by analysis of the intact glycopeptides using tandem mass
spectrometry (MS/MS). Based on an integrated method, we identified 22 potential
N-glycosites and their corresponding N-glycans from the recombinant S protein. All
of these glycosites were found to be highly conserved among SARS-CoV-2 genome
sequences. The glycosite-specific occupancy by different glycoforms was resolved
and compared among S protein subunits expressed in human cells and insect cells.
These detailed glycosylation profiles decoded from MS/MS analysis are expected to

facilitate the development of vaccines and therapeutic drugs against SARS-CoV-2.

Results

Strategy for site-specific N-glycosylation characterization
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Previous studies have revealed that the glycosylated coronavirus S protein plays a
critical role in the induction of neutralizing antibodies and protective immunity.
However, the glycans on S protein might also surround the protein surface and form
an immunologically inert “self” glycan shield for virus evasion from the immune
system(5, 15, 18). Herein, we aimed to decode the detailed site-specific
N-glycosylation profile of the SARS-CoV-2 S protein. The S protein ectodomain
expressed by a baculovirus expression vector in insect cells was first used to analyze
the glycosylation landscape, since this expression system can express the S protein
without resulting in splicing via host proteases. Moreover, insect cells can mimic the
process of mammalian cell glycosylation(4, 19). The S protein of the human
coronavirus NL63 (HCoV-NL63) has been successfully expressed in insect cells for
the resolution of its protein structure and glycan shield(15). The recombinant
SARS-CoV-2 S ectodomain contains 1209 amino acids (residues 16—1,213) that are
translated from a complete genome sequence (GenBank: MN908947.3)(20) and
includes 22 putative N-glycosylation sequons (motif N-X-S/T, X#P). Theoretical
analysis of the enzymatic sites showed that trypsin alone did not produce peptides of
sufficiently appropriate length of peptides to cover all potential N-glycosites (Fig.
ST1A). The missing potential N-glycosites were found back by introducing the
endoproteinase Glu-C (Fig. S1B). Hence, we took advantage of this complementary
trypsin and Glu-C digestion approach by using either a single enzyme or dual ones
(Fig. S1C). Meanwhile, the recombinant SARS-CoV-2 S protein S1 subunit expressed
in human cells was obtained for analysis of the site-specific N-glycans, as the
N-glycan compositions in insect cells would be different from those in native human
host cells(19). The S1 subunit contains 681 amino acids (residues 16-685) and 13

potential N-glycosites. Trypsin alone or dual digestion could cover all potential
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N-glycosites (Fig. S1C). By doing so, each N-glycosylation sequon of the different
recombinant proteins was covered by glycopeptides of a suitable length for achieving

good ionization and fragmentation.

To raise the abundance of intact glycopeptides, zwitterionic hydrophilic interaction
liquid chromatography (Zic-HILIC) materials were used to enrich glycopeptides.
Concurrently, the enrichment of intact N-glycopeptides can reduce signal suppression
from unglycosylated peptides. However, there are no materials available that can
capture all glycopeptides without preference. For these reasons, site-specific
glycosylation was determined based on a combined analysis of the intact
N-glycopeptides before and after enrichment. Furthermore, the deglycosylated
peptides following enrichment were used to confirm or retrieve the N-glycosites by
removing potential interferences from glycans. In brief, the integration of
complementary digestion and N-glycoproteomic analysis at three levels (before and
after enrichment, and at the deglycopeptides levels) is a promising approach to
comprehensively and confidently profile the site-specific N-glycosylation of

recombinant SARS-CoV-2 S proteins (Fig. 1).

N-glycosite landscape of recombinant SARS-CoV-2 S proteins

The S protein contains 22 potential N-glycosites. Using our integrated analysis
method, 21 glycosites were assigned unambiguously with high-quality spectral
evidence (Fig. 2A and Table S1). One glycosite, N1134, was ambiguously assigned
with relatively lower spectral scores (score < 200) (Fig. S2). Nevertheless, the N1134
glycosite has been observed in the Cryo-EM structure of the SARS-CoV-2 S

protein(4). The relatively low spectral evidence of this glycosite indicates that a
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low-frequency glycosylation may occur, because our integrated methods, including
glycopeptide enrichment and deglycosylation, failed to improve the spectra. Apart
from the canonical N-glycosylation sequons, three non-canonical motifs of
N-glycosites (N164, N334, and N536) involving N-X-C sequons were not
glycosylated. Before enrichment, an average of 15 N-glycosites from trypsin-digested
peptides and 13 N-glycosites from Glu-C-digested peptides were assigned. In contrast,
hydrophilic enrichment resulted in a significant increase of these glycosites to 18 and
16, respectively (Table S1). To further assess the necessity for enrichment, we
compared the representative spectra of one intact N-glycopeptide (N149) before and
after enrichment. Without interference from the non-glycosylated peptides, the intact
N-glycopeptide had more fragmented ions assigned to N-glycosites after enrichment
(Fig. S3). Complementary digestion with trypsin and Glu-C promoted the confident
identification of four N-glycosites (N603, N616, N709 and N717) on two intact
N-glycopeptides (Table SI1 and Fig. S1C). The introduction of Glu-C digestion
resulted in the production of two short intact N-glycopeptides containing 23 and 36
amino acids, respectively. These peptides are more suitable for achieving better
ionization and fragmentation than the long peptide of 48 and 57 amino acids obtained
from trypsin digestion (Fig. S4). Deglycopeptides are suitable for verifying
glycosylation sites (Fig. S5). Unexpectedly, deglycopeptide peptides led to the loss of
a few glycosites, presumably because of peptide loss during deglycosylation
procedures. However, almost all glycosites were confidently confirmed using trypsin

and Glu-C dual digestion (Table S1).

For the recombinant protein S1 subunit expressed in human cells, all 13 N-glycosites
were assigned unambiguously (Table S2). Finally, we profiled all 22 potential
N-glycosites of S protein (Table S3 and S4). These sites were preferentially
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distributed in the S1 subunit of the N-terminus and the S2 subunit of the C-terminus,
including two sites in the RBD (Fig. 2A and 2B). To visualize the N-glycosylation on
the protein structure, all of the experimentally determined N-glycosites were
hand-marked on the surface of the trimeric S protein following refinement of the
recently reported SARS-CoV-2 S protein Cryo-EM structure (PDB: 6VSB) (Fig.

20)(10).

Based on these findings, we further analyzed the conservation of glycosites among
753 SARS-CoV-2 genome sequences from the Global Initiative on Sharing All
Influenza Data (GISAID) database. After the removal of redundant sequences of the S
protein at the amino acid residue level, we refined 145 S protein variants. A very low
frequency of alterations in 38 residue sites was found, uniformly spanning the full
length of the S protein among all S variants, except for the substitution G614D, which
was identified at a relatively high frequency in 47 variants (Table S5). However,
nearly all of the 22 N-glycosylated sequons were conserved in the S protein, except
for the loss of the N717 glycosite due to the T719A substitution in only one S variant.
Following further comparison with the closely related SARS-CoV S protein(5, 21), 18
of the 22 N-glycosites were identified as conserved in the SARS-CoV-2 S protein,
indicating the importance of glycosylation of the wvirus. Four newly arisen
N-glycosites (N17, N74, N149, and N657) are located in the SARS-CoV-2 S protein
S1 subunit away from the RBD. Moreover, four previously confirmed N-glycosites
(N29, N73, N109, and N357) in the SARS-CoV S protein were missing in
SARS-CoV-2 S, one of which (N357) lies in the RBD (Fig. S6). Additionally, two
N-glycosites (N1158 and N1173) identified in SARS-CoV-2 S in this study were not
detected in SARS-CoV S (N1140 and N1155) in previous studies(5, 21). Our results
suggest that the preferential change of the glycosylation landscape of the S1 subunit

9
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tends to change the distribution of glycan shield, especially in the N terminal half of

S1 (Fig. S6).

Site-specific N-glycan occupancy of recombinant SARS-CoV-2 S proteins

Intact N-glycopeptide analysis can provide N-glycoproteomic information, including
the composition and number of N-glycans decorating a specific N-glycopeptide or
N-glycosite. The potential N-glycopeptides in the S protein sequence are shown in Fig.
S1. A comparison of the intact N-glycopeptides’ spectra to the total spectra showed
that the average enrichment efficiency of the Zic-HILIC materials reached up to 97%.
Ultimately, hundreds of non-redundant intact N-glycopeptides were identified from
the recombinant S ectodomain (Table S3) and S1 subunit (Table S4). Representative
and high-quality spectra of intact N-glycopeptides are shown in Fig. S7. Following
glycopeptide enrichment, the number of intact N-glycopeptides and N-glycans

significantly increased (P<0.05) (Fig. 3A and Fig. 3B).

Regarding the N-glycan composition, S protein expressed in insect cells had smaller
and fewer complex N-glycans attached to intact N-glycopeptides than S1 subunit
produced in human cells. Both recombinant products contained the common
N-acetylglucosamine (HexNAc) as a canonical N-glycan characteristic (Fig. 3C and
3D). S protein expressed in insect cells were decorated with 38 N-glycans, with the
majority preferentially containing oligomannose (Hex) and fucose (Fuc) (Fig. 3C and
Table S3). By contrast, the S1 subunit expressed in human cells were attached to up to
157 N-glycans, mainly containing extra N-acetylglucosamine (HexNAc) and
galactose (Hex), variably terminating with sialic acid (NeuAc) (Fig. 3D and Table S4).

Returning to the glycosite level, most of the N-glycosites in the S protein were

10


https://doi.org/10.1101/2020.03.28.013276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.013276; this version posted April 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

modified with 17-35 types of N-glycans and classified into a high proportion of
high-mannose N-glycans (~65%) and a lower proportion (~23%) of hybrid N-glycans.
Almost all N-glycosites contained no more than 10% of complex N-glycans (Fig. 3E).
For the S1 subunit expressed in human cells, the occupancy of N-glycans on each
N-glycosite was quite nonuniform. Surprisingly, six N-glycosites (N122, N165, N282,
N331, N343, and N657) were decorated with markedly heterogeneous N-glycans of
up to 139 types. The average occupancies of all glycosites presented as an
overwhelming proportion (~75%) of complex N-glycans and a small proportion of
hybrid (~13%) or high-mannose (~12%) N-glycans (Fig. 3F). The glycan occupancy
on two N-glycosites (N331 and N343) of RBD were identified (Fig. 3E and 3F). The
high occupancy of RBD glycosites by various N-glycan compositions implies that
N-glycosylation might be associated with the recognition of RBD to ACE2 receptor,
since the interaction between RBD and ACE2 mainly depends on polar residue
interactions(11). Our results suggest that S proteins expressed in different cells display
distinct N-glycosylation patterns. In particular, the glycosylation of the S protein in
human cells exhibits remarkable heterogeneity on N-glycosites. However, the
N-glycan types on each glycosite is primarily determined by the host cells rather than

the location of different glycosites (Fig. 3E-3F, Fig. S8).

Site-specific N-glycan occupancy of recombinant SARS-CoV-2 S protein RBD

To confirm site-specific N-glycan occupancy and exploit the potential impact on
N-glycosylation by different protein sizes, recombinant RBDs (residues 319-541)
from both human and insect cells were further analyzed (Table S6). The representative
glycan compositions and deduced structures are shown on each site (Fig. 4A).

Intriguingly, the number of glycan compositions and their types on each glycosite (Fig.
11
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4B and 4C) are very close to those found in the S ectodomain and S1 subunit (Fig. 3E
and Fig. 3F). The human cell-produced RBDs displayed more N-glycan compositions
and complex glycan types, compared to insect cell-expressed proteins (Fig. 4B and
4C). Moreover, more than 80% of glycan compositions are identical at each site
among different lengths of insect cell-expressed proteins (Fig. 4D). Similarly, over 75%
of the glycan compositions at each site were found to be shared by human
cell-produced products (Fig. 4E). The N-glycosylation of RBDs was verified by
SDS-PAGE (Fig.S9). These results suggest that the N-glycan compositions are
conserved among different sizes of RBD proteins. Taken together, our data reveal the
regular heterogeneity of N-glycan compositions at each site of the S protein subunits,
primarily depending on host cells and glycosites. Intriguingly, the N-glycan types on
S protein subunits are predominantly determined by host cells, regardless of the

location of glycosites.

Discussion

The global outbreak and rapid spread of COVID-19 caused by SARS-CoV-2 urgently
call for specific prevention and intervention measures(22). The development of
preventative vaccines and neutralizing antibodies remains a chief goal in the efforts to
control viral spread and stockpile candidates for future use. However, this work
greatly relies on the understanding of the antigen structure and state of glycosylation
for the rational determination of accessible epitopes. The S protein is posited to be the
main or even the only antigen on viral surfaces for priming the immune system to
produce an effective response (15, 18). Previous studies have revealed the structural
information of the SARS-CoV-2 S protein and found the coverage of N-glycans (4,

10). In this study, we profiled the site-specific N-glycosylation of the recombinant
12
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SARS-CoV-2 S protein. All potential N-glycosites on the S protein were identified
experimentally. The N-glycan compositions and types on S protein subunits were
revealed among different host cells. Our data provide a large-scale N-glycosylation
information of the S protein and present a promising prospect for developing a

vaccine and therapeutic antibodies.

N-glycosylation is a common feature of the viral envelope proteins, including those of
HIV-1, Lassa virus, hepatitis C virus, Epstein—Barr virus and influenza A virus.
Glycosylation promotes proper glycoprotein folding; however, the glycans obstruct
receptor binding and proteolytic processing during antigen presentation(15, 17, 23).
Characterization of the landscape of N-glycans on the SARS-CoV-2 S protein is
crucial for promoting immunogen design and prevention of the potential viral evasion
of intervention measures(5, 15, 24). Precise characterization of intact N-glycopeptides
can reveal the occupancy of each glycosite by different glycoforms(25, 26). In this
study, all 22 N-glycosites of the S protein were identified (Fig. 2A and 2B). By
comparison, the alteration of N-glycosites among SARS-CoV-2 and SARS-CoV S
proteins focused on glycosites in the S1 subunit (Fig. S6). The N-glycosites located in
the S2 subunit are completely conserved, and seven out of nine sites, along with
glycans have been disclosed by previous studies(4, 5). Moreover, we found that
N-glycosites in the S protein were highly preserved among 145 SARS-CoV-2 S
protein variants (Table S5), which is advantageous for circumventing potential viral
immune evasion from the vaccines and neutralizing antibodies currently being

developed.

Glycosylation of proteins is intricately processed by various enzymes coordinated in
the endoplasmic reticulum and Golgi apparatus. The glycan composition and structure

decoration at specific sites occurred in a non-templated manner governed by host cells,

13
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thus frequently resulting in a heterogeneous glycan occupancy on each glycosite(27).
Glycosylation processing in insect and human cells can yield a common intermediate
N-glycan, which will further elongate in human cells but is only trimmed in insect
cells to form end products(19). Consequently, the S protein expressed in human cells
displayed a larger size and a much higher proportion of complex N-glycans than that
expressed in insect cells, owing to the additional elongation of the glycan backbone
with multiple oligosaccharides (Fig. 3C-3F). Our findings are in line with those of
previous studies, that demonstrated the predominant complex of N-glycans attached
to MERS-CoV and SARS-CoV proteins (4, 5, 28). Moreover, two recent preprint
studies have revealed that the complex N-glycans dominate the glycosites on human
cell-expressed SARS-CoV-2 S protein(29, 30). In contrast, S protein expression in
insect cells led to a high ratio of high-mannose N-glycans (Fig. 3C and 3E), which has
also been found in the insect cell-produced HCoV-NL63 S protein, despite expression

in a different insect cell, the Drosophila S2 cell, in the previous study(15).

Notably, a low ratio (~12%) of high-mannose glycans ubiquitously exist on human
cell-expressed S protein (Fig. 3F). The HIV envelope glycoprotein gp120 is heavily
decorated with the immature intermediate, high-mannose glycans. The high-density
glycans surrounding HIV glycoproteins limit the accessibility of glycan biosynthetic
processing enzymes, terminating the synthesis of more complex end products(17, 24).
By contrast, the high ratio of complex N-glycans in the SARS-CoV-2 S protein were
successfully processed on most glycosites by the enzymes, without extensive
obstruction by the on-going synthesis of glycan shields (Fig. 3F and Fig. 4C).
Therefore, we posit that the glycan coverage on the SARS-CoV-2 S protein could
leave relatively accessible antigens and epitopes, although the complex N-glycans
might mask some surface immunogens. These features may provide a promising
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landscape on the SARS-CoV-2 S protein for immune recognition. This potential is
bolstered by the findings that the convalescent sera from COVID-19 patients contains
antibodies against the SARS-CoV-2 S protein(7). A previous study on SARS-CoV has
revealed that the oligomannose on the S protein can be recognized by
mannose-binding lectin (MBL) and may interfere with viral entry into host cells by
inhibition of S protein function(31). Besides the direct neutralization effect, MBL, as
a serum complement protein, can initiate the complement cascade. Complement hyper
activation in lung tissues of COVID-19 patients has been revealed by a recent preprint
study(32). However, it remains unknown whether MBL can bind to oligomannose on
SARS-CoV-2 S protein to impact the viral spread or initiate complement activation in
patients. Glycans also play crucial and multifaceted roles in B cell and T cell
differentiation via cell-surface or secreted proteins, including selectins, galectins, and
siglecs, which can further connect SARS-CoV-2 to immune response and immune
regulation(27). In particular, the complex N-glycans are ligands for galectins, which
are able to engage different glycoproteins to regulate immune cell infiltration and
activation upon virus infection(33, 34). These mechanisms underlying SARS-CoV-2
infection and spread are worth further clarification based on a detailed analysis of

clinical characteristics in humoral and cellular immunity.

The remarkable heterogeneity of N-glycosylation in the S protein subunit expressed in
human cells was revealed in our study (Fig. 3F). By contrast, the N-glycosylation of
the S protein subunit in insect cells showed less heterogeneity and complexity than
that of human cell-derived proteins (Fig. 3E). Moreover, the site-specific glycan
occupancy tended to be identical in the same host cell, regardless of protein length
(Fig. 4D and 4E). These results indicate the N-glycan compositions and types on S
protein largely attribute to different host cells with the differential processing
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pathways of glycosylation. We can expect that the native N-glycosylation profile of
the SARS-CoV-2 S protein in humans tends to be consistent with that of the
recombinant protein expressed in human cells, unless the virus buds off early in the
glycosylation processing pathway and produces immature glycans(19, 27, 35).
Intriguingly, the immature N-glycans such as high-mannose are regarded as “non-self”
glycans (35, 36). Therefore, the insect cell-expressed recombinant antigens decorated
with paucimannose and high mannose are more immunogenic in mice than those
produced in human cells(37, 38). In contrast, the vaccine antigens produced from
mammalian cells do not always induce a strong humoral immune response in mice,
because of the complex-type N-glycans(39). To prime strong humoral immunity upon
vaccination against SARS-CoV-2, insect cell-produced antigens with less complex
N-glycans could be one of the candidates for the development of vaccines and
neutralizing antibodies. Apart from amino acid epitopes, the glycopeptide can be
presented by major histocompatibility complex (MHC) and recognized by a CD4+
T-cell population to help B cells produce antibodies against glycans. The
glycoconjugate has been used to boost the immune response against infections(23, 24).
The insect cell-produced S protein subunits could prime protective immunity against
the “non-self” oligomannose N-glycans, in case of the immature N-glycans linked to
the native envelope proteins of SARS-CoV-2, which seems to occur in the
SARS-CoV replication(35). In contrast, the human cell-expressed S protein subunits
as vaccines mimic the “self” glycans in human, which are not expected to boost
immune response to the glycoantigens. However, the remaining accessible and
non-glycosylated regions can serve as the antigens and epitopes. The rational design
of antigens to prime potent and broad immune responses against accessible epitopes

on SARS-CoV S protein is essential and promising.

16


https://doi.org/10.1101/2020.03.28.013276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.013276; this version posted April 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The RBD-containing subunit is an ideal immunogen since antibodies against the
receptor-binding motif within RBD could directly block the engagement of S protein
to the receptor and inhibit viral infections of host cells. Vaccination with SARS-CoV
RBD has been demonstrated to induce potent and long-term immunity in animal
models(40). Meanwhile, the subunit vaccines are posited to minimize the potentially
undesired immunopotentiation of the full-length S protein, which might induce severe
acute injury in the lungs(41). Intriguingly, SARS-CoV-2 is missing one N-glycosite in
RBD compared to SARS-CoV. The remaining two N-glycosites were outside of the
motifs essential for direct interaction with the ACE2 receptor(11l) (Fig. 2C). The
glycan compositions of RBD are highly identical in the same host cell, regardless of
the length of the RBD-containing proteins (Fig. 4B-4E). These features of the RBD,
along with its highly exposed structure, endow more antigens and accessible epitopes
for vaccine design and immune recognition. The RBD-containing proteins, especially
the insect cell-expressed products, could become promising candidates for
SARS-CoV-2 vaccine development. However, drug discovery related to glycosylation

inhibition is supposed to be performed based on human cell-expressed products.

In this study, we decoded a global and site-specific profile of N-glycosylation on
SARS-CoV-2 S proteins expressed from insect and human cells, revealing a regular
heterogeneity in N-glycan composition and site occupancy. All glycosites were
conserved among the 753 public SARS-CoV-2 genome sequences. In conclusion, our
data indicate that differential N-glycan occupancies among distinct host cells might
help elucidate the infection mechanism and develop an effective vaccine and targeted
drugs. Nevertheless, the implication of S protein site-specific N-glycosylation in

immunogenicity, receptor binding, and viral infectivity should be investigated further.
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Materials and Methods
Materials and chemicals

Dithiothreitol (DTT), iodoacetamide (IAA), formic acid (FA), trifluoroacetic acid
(TFA), TRIS base, and urea were purchased from Sigma (St. Louis, MO, USA).
Acetonitrile (ACN) was purchased from Merck (Darmstadt, Germany). The
zwitterionic hydrophilic interaction liquid chromatography (Zic-HILIC) materials
were obtained from Fresh Bioscience (Shanghai, China). Commercially available
recombinant SARS-CoV-2 S protein (S1+S2 ECD and RBD, His tag) expressed in
insect cells (High Five) via baculovirus and S protein (S1 and RBD, His tag)
expressed in human embryonic kidney cells (HEK293) were purchased from Sino
Biological (Beijing, China). Sequencing-grade trypsin and Glu-C were obtained from
Enzyme & Spectrum (Beijing, China). The quantitative colorimetric peptide assay kit
was purchased from Thermo Fisher Scientific (Waltham, MA, USA). Deionized water
was prepared using a Milli-Q system (Millipore, Bedford, MA, USA). All other
chemicals and reagents of the best available grade were purchased from

Sigma-Aldrich or Thermo Fisher Scientific.
Protein digestion

The recombinant S proteins were proteolyzed using an in-solution protease digestion
protocol. In brief, 50 pg of protein in a tube was denatured for 10 min at 95 °C. After
reduction by DTT (20 mM) for 45 min at 56 °C and alkylating with IAA (50 mM) for
1 h at 25 °C in the dark, 2 pg of protease (trypsin or/and Glu-C) was added to the tube
and incubated for 16 h at 37 °C. After desalting using a pipette tip packed with a C18
membrane, the peptide concentration was determined using a peptide assay kit based

on the absorbance measured at 480 nm. The peptide mixtures (intact N-glycopeptides
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before enrichment) were freeze-dried for further analysis.
Enrichment of intact N-glycopeptides

Intact N-glycopeptides were enriched with Zic-HILIC (Fresh Bioscience, Shanghai,
China). Specifically, 20 pg of peptides were resuspended in 100 puL of 80% ACN/0.2%
TFA solution, and 2 mg of processed Zic-HILIC was added to the peptide solution
and rotated for 2 h at 37 °C. Finally, the mixture was transferred to a 200-puL pipette
tip packed with a C8 membrane and washed twice with 80% ACN/0.2% TFA. After
enrichment, intact N-glycopeptides were eluted three times with 70 puL of 0.1% TFA

and dried using a SpeedVac for further analysis.
Deglycosylation

Enriched intact N-glycopeptides were digested using 1 U PNGase F dissolved in 50
uL of 50 mM NH4HCO:s3 for 2 h at 37 °C. The reaction was terminated by the addition
of 0.1% formic acid (FA). The deglycosylated peptides were dried using a SpeedVac

for further analysis.
Liquid chromatography-MS/MS analysis

All samples were analyzed using SCE-higher-energy collisional dissociation
(HCD)-MS/MS with an Orbitrap Fusion Lumos mass spectrometer (Thermo Fisher
Scientific). In brief, intact N-glycopeptides before or after enrichment and
deglycosylated peptides were dissolved in 0.1% FA and separated on a column
(ReproSil-Pur C18-AQ, 1.9 um, 75 um inner diameter, length 20 cm; Dr Maisch) over
a 78-min gradient (buffer A, 0.1% FA in water; buffer B, 0.1% FA in 80% ACN) at a
flow rate of 300 nL/min. MS1 was analyzed using a scan range (m/z) of 800—2000
(intact N-glycopeptides before or after enrichment) or 350-1550 (deglycosylated

peptides) at an Orbitrap resolution of 120,000. The RF lens, AGC target, maximum
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injection time, and exclusion duration were 30%, 2.0 e*, 100 ms, and 15 s,
respectively. MS2 was analyzed with an isolation window (m/z) of 2 at an Orbitrap
resolution of 15,000. The AGC target, maximum injection time, and the HCD type
were standard, 250 ms, and 30%, respectively. The stepped collision mode was turned

on with an energy difference of +10%.

Data Analysis

The raw data files were searched against the SARS-CoV-2 S protein sequence using
Byonic software (version 3.6.0, Protein Metrics, Inc.), with the mass tolerance for
precursors and fragment ions set at =10 ppm and +20 ppm, respectively. Two missed
cleavage sites were allowed for trypsin or/and Glu-C digestion. The fixed
modification was carbamidomethyl (C), and variable modifications included
oxidation (M), acetyl (protein N-term), and deamidation (N). In addition, 38 insect
N-glycans or 182 human N-glycans were specified as N-glycan modifications for
intact N-glycopeptides before or after enrichment. We then checked the protein
database options, including the decoy database. All other parameters were set at the
default values, and protein groups were filtered to a 1% false discovery rate based on
the number of hits obtained for searches against these databases. Stricter quality
control methods for intact N-glycopeptides and peptide identification were
implemented, requiring a score of no less than 200 and identification of at least six

amino acids.

Furthermore, all of these peptide spectrum matches (PSMs) and
glycopeptide-spectrum matches (GPSMs) were examined manually and filtered using
the following standard criteria: PSMs were accepted if there were at least 3 b/y ions in
the peptide backbone, and GPSMs were accepted if there were at least two glycan

oxonium ions and at least 3 b/y ions in the peptide backbone. N-glycosite
20
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conservation analysis was performed using R software packages. Model building
based on the Cryo-EM structure (PDB: 6VSB) of SARS-CoV-2 S protein was

performed using PyMOL.
Statistical analysis

The number of intact N-glycopeptides and N-glycans identified from triplicate
experimental replicates was analyzed by Student's t-test for statistical comparison
between the two groups, before and after enrichment. Data were presented as means +

SD. A P-value < 0.05 was considered significant.
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Figures and Legends
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Figure 1. Workflow for site-specific N-glycosylation characterization of recombinant
SARS-CoV-2 S proteins using two complementary proteases for digestion and an

integrated N-glycoproteomic analysis.

25


https://doi.org/10.1101/2020.03.28.013276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.013276; this version posted April 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

SARS-CoV-2 spike protein (S1+82 ECD, His tag) (1209 amino acids)
PSS RBD
N17 NE1TN74 N122 N149 N165  N234 N282 N331N343 IN603 N616 NB57
8§1/82 w His tag
N709 N717 NB801 N1074 N1098 N1134 N1158 N1173 N1194
SARS-CoV-2 spike protein (81 Subunit, His tag) (681 amino acids)
PSS RBD

N17 NB1N74 N122 N149 N165  N234 N282 N331N343

Figure 2. N-glycosites characterization of SARS-CoV-2 S proteins. (A and B)
N-glycosites of the recombinant SARS-CoV-2 S protein or subunits expressed in insect cells
(A) and human cells (B). PSS: putative signal sequence; RBD: receptor-binding domain;
S1/S2: S1/82 protease cleavage site; Oval: potential N-glycosite; Yellow oval: ambiguously
assigned N-glycosite; Red oval: unambiguously assigned N-glycosite; Blue arrow:
unambiguously assigned N-glycosite using trypsin digestion; Green arrow: unambiguously
assigned N-glycosite using Glu-C digestion; Yellow arrow: unambiguously assigned
N-glycosite using the combination of trypsin and Glu-C digestion. The unambiguously
glycosite was determined by at least twice identification within each digestion list in Table S1
and Table S2. (C) N-glycosites were demonstrated in the three-dimensional structure of the

SARS-CoV-2 S protein trimers (PDB code: 6VSB). RBDs, yellow; N-glycosites, blue.
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Figure 3. Site-specific N-glycosylation of recombinant SARS-CoV-2 S proteins. (A and B)
The number of intact N-glycopeptides and N-glycans in recombinant SARS-CoV-2 S proteins
expressed in insect cells (A) or human cells (B). (C and D) The numbers of the N-glycosites
containing one representative N-glycan and its deduced structure from the recombinant
SARS-CoV-2 S protein or subunit expressed in insect cells (C) and human cells (D). (E and F)
Different types and numbers of N-glycan compositions on each N-glycosite of the

recombinant SARS-CoV-2 S protein or subunit expressed in insect cells (E) or human cells
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27


https://doi.org/10.1101/2020.03.28.013276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.28.013276; this version posted April 19, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

A RBD expressed in human or insect cells mN-acetyl glycosamine
galactose
N331 N343 ©
Trypsin Glu-C Tryplsin @ sialic acid
v A fucose
.RFPNITNLCPFGEVFNATR...
@mannose
" : " : : : “ [ |N-acetyl galactosamine
T T o ars o e
2} 3] [
B (N} (R [N ] C
.
®m high-mannose (2 HexNAc) ®@ hybrid (3 HexNAc) W complex (>3 HexNAc) m others (1 HexNAc)

160 . 160
120

z z
6 5 120
P’} P’ ]
@ c @ £
28 a0 28 0
ES EX
£o 2o
o 40 e 40
=l -

0 0

N331 N343 Neal e
N-glycosite ~glycos
D N3.31 N3.43 E N331 N343
RBD S protein RBD 51 protein
3 34 1 5 31 1 91 18 22 84 18
RBD S protein RBD S1 protein

N-glycan N-glycan N-glycan N-glycan

Figure 4. Site-specific N-glycosylation profile of RBDs expressed in human and insect
cells. (A) The glycosites and deduced representative N-glycans on N331 and N343 of RBD.
(B and C) Different types and numbers of N-glycans on N331 and N343 of RBD expressed in
insect cells (B) or human cells (C). (D) Comparison of N-glycans on N331 and N343 between
RBD and S ectodomain expressed in insect cells. (E) Comparison of N-glycans on N331 and

N343 between RBD and S1 subunit expressed in human cells.
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Supplementary Figure S1. The theoretical of intact N-glycopeptides of S protein derived
from the digestion using trypsin (A) or Glu-C (B) alone or in combination (C). Red letter:
N-glycosites; Green letter: trypsin cutting sites; Blue letter: Glu-C cutting sites; Underline:
theoretical N-glycopeptides without missing cleavage sites.
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letter: trypsin cutting sites; Blue letter: Glu-C cutting sites; Underline: theoretical N-glycopeptides
without missing cleavage sites.
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Supplementary Figure S1. The theoretical of intact N-glycopeptides of S protein derived from the
digestion using trypsin (A) or Glu-C (B) alone or in combination (C). Red letter: N-glycosites; Green
letter: trypsin cutting sites; Blue letter: Glu-C cutting sites; Underline: theoretical N-glycopeptides

without missing cleavage sites.

A Theoretical N-glycopeptides of S protein digested using trypsin

VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTL
DSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKI
YSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLAQPRTFLLKYNENGTITDAVDCALDPLSET
KCTLKSFTVEKGIYQTSNFRVQPTESIVREPNITNLCPFGEVFENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTN
VYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNC
YFPLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQT
LEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQ
TNSPRRARSVASQSIIAYTMSLGAENSVAY SNNSIAIPTNFTISVTTEILPVSMTKTSYDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQ
DKNTQEVFAQVKQIYKTPPIKDEGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIA
QYTSALLAGTITSGWTFGAGAALQIPFAMQMAY RFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQL
SSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVY
FLHVTYVPAQEKNFTTAPAICHDGKAHFPREGYFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYF
KNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQY IKWPAHHHHHHHHHH

B Theoretical N-glycopeptides of S protein digested using Glu-C

VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTL
DSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVY YHKNNKSWMESEFRVYSSANNCTFE YVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKI
YSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSET
KCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTN
VYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNC
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LEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSY ECDIPIGAGICASYQTQ
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DKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDEMIA
QYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQL
SSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVY
FLHVTYVPAQEKNFTTAPAICHDGKAHFPRE GVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPE L DSFKEELDKYF
KNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPAHHHHHHHHHH

C

VNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTL
DSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKI
YSKHTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSET
KCTLKSFTVEKGIYQTSNFRVQPTESIVREPNITNLCPFGEVENATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTN
VYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLY RLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFN
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TLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQ
TQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQY GSFCTQLNRALTGIAV
EQDKNTQEVFAQVKQIYKTPPIKDEGGENFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLLTDE
MIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAY RFNGIGVTQNVLY ENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTL
VKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLATYVTQQLIRAAEIRASANLAATKMSECYLGQSKRVDFCGKGYHLMSFPQSA
PHGVVFLHVTYVPAQEKNFETTAPAICHDGKAHFPREGVEVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLQPELDSFKE
ELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWPAHHHHHHHHHH

Theoretical N-glycopeptides of S protein digested using trypsin and Glu-C
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Supplementary Figure S2. The spectrum of intact N-glycopeptides with the ambiguously assigned

N-glycosite (N1134).
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Supplementary Figure S3. Comparison of the spectra of the intact N-glycopeptide (N149) before (A)

and after (B) enrichment.
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Supplementary Figure S4. Comparison of the spectra of intact N-glycopeptides (N709 and N717)

after trypsin digestion (A) and Glu-C digestion (B).
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Supplementary Figure S5. Comparison of the spectra of intact N-glycopeptides (N709 and N717) (A)

and deglycopeptides (B).
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Supplementary Figure S6. Comparison of the N-glycosites on the SARS-CoV-2 and SARS-CoV

spike proteins.
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Supplementary Figure S7. Representative and high-quality spectra of intact N-glycopeptides and

deglycosylated peptides.

Spectra of intact N-glycopeptides from recombinant SARS-CoV-2 spike proteins
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Supplementary Figure S8. Microheterogeneity and macroheterogeneity of the N-linked

glycopeptides of the S protein.
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Supplementary Figure S9. SDS-PAGE analysis of RBDs expressed in insect and human cells.
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