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Abstract

Brain optimally utilizes resources to resist mental fatigue during the prolonged period of
cognitive activity. Neural mechanisms underlying long-term cognitive performance
remain unknown. We show that during the 40-minutes visual stimuli classification task,
subjects improve behavioral performance in terms of response time and correctness. We
observe that the prestimulus θ and α power grows during the experiment manifesting
the mental fatigue. The prestimulus β power, in its turn, increases locally in the region,
engaged in the ongoing stimulus processing, that may reflect the neuronal adaptation.
Our results evidence that the neuronal adaptation is enhanced in the course of the
experiment reducing the cognitive demands required to activate the stimulus-related
brain regions.

Introduction 1

Since the brain resource is limited, human exhibits mental fatigue during the prolonged 2

periods of cognitive activity. The mental fatigue negatively correlates with human 3

attention and results in the decrease of the behavioral performance [1]. The bulk of 4

literature describes the cortical activity underlying mental fatigue and attention. Thus, 5

the mental fatigue is accompanied with the shift of EEG power toward the low-frequency 6

bands, e.g. δ (1− 4 Hz), θ (4− 8 Hz), and α (8− 13 Hz) [2, 3], while high-frequency 7

activity, e.g. β (15− 30 Hz) and γ (> 30 Hz) typically decreases in amplitude [4]. 8

Attention, in turn, is characterized by the low α- and high β-band spectral power. In 9

particular, low α- and high β-band power during the prestimulus period reflects 10

increased attention and predicts better performance in the ongoing task [5, 6]. 11

At the same time, cognitive performance is not necessary to decrease while 12

accomplishing prolonged resource-demanding tasks. For instance, the increased reward 13

makes the subject to improve behavioral performance even after the fatigue-induced 14

session [7, 8]. It evidences that the brain spends cognitive resources in the way to 15

reserve it for future use [9]. The Ref. [10] relates the strategy the brain utilizes the 16
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cognitive resources with a fatigue-induced performance decrement, but not with the 17

subjective fatigue. It manifests that the resource reallocation is controlled by the 18

endogenous cognitive mechanisms regardless of the subjective feelings. According to the 19

recent review [11], the neural activity underlying the cognitive resource rearrangement 20

and cognitive performance is yet to be determined. 21

In this work, we subject the group of volunteers to the prolonged (∼ 40 min) task. 22

The task requires the participants to quickly percept the successively presented bistable 23

visual stimuli and report one of their possible interpretations right after the presentation. 24

On the behavioral level, subjects improve their performance in the course of the task: 25

they reduce their response time along with the number of errors. We suppose that this 26

observation can be referred to as the training effect and suggest that within-experiment 27

training is one of the possible mechanisms of the optimal cognitive resource utilization. 28

The previous works reported that the training in the particular task allowed the 29

subjects to improve their behavioral performance. In the visual task, training improved 30

the efficiency of high-level visual processing, which therefore provided less ambiguous 31

sensory information to the decision-related brain networks [12]. While in Ref. [12] the 32

training period has lasted for three days; our results suggest that the training effect is 33

notable even within a 40-min session. 34

Tang and Posner [13] previously described the brain’s ability to enhance its cognitive 35

performance in the course of training. They distinguished two different types of training 36

- network training and state training [14]. The network training involves the practice of 37

a specific task (e.g., attention, working memory) and thus exercises the specific 38

task-related brain areas and networks [15]. The state training involves exercises, e.g., 39

meditation that might alter the brain state in general [16]. The network training, in its 40

turn, may use a fixed task difficulty where performance shows improvement over trials 41

or the adaptive training in which task difficulty adjusts as learning occurs [14]. Given 42

the above, we suppose that our current study deals with the brain network training 43

performed in the fixed difficulty fashion. 44

According to [14], the neuronal mechanisms underlying the training effect remain 45

poorly understood. Some studies report the increased activation of the task-related 46

brain networks in the course of training. In contrast, others observe the decrease of the 47

task-related activity of the corresponding brain structures [17]. It also appears that the 48

direction of the effect depends heavily on the type of training. For instance, the 49

increased task-related brain activity may reflect the need for increased effort to solve 50

more complicated tasks during adaptive training [18]. Thus, there is no complete 51

understanding of how brain activity changes during the training. 52

To address this issue, we consider the cortical activity on the EEG sensor level in θ 53

(4-8 Hz), α (8-12 Hz), and β (15-30 Hz) frequency bands in the course of the 54

experiment. We observe that the training changes the brain activity not only during the 55

stimulus processing stage but during the prestimulus period as well. The prestimulus θ 56

and α-band power grow in the course of the experiment that indicates the mental 57

fatigue caused by the increased time spent performing the task. The prestimulus 58

β-band power increases in the right hemisphere that may reflect the activation of the 59

attention network. Finally, we show that the prestimulus β-band power increases locally 60

in the region, engaged in the ongoing stimulus processing, that may reflect the neuronal 61

adaptation [19]. We hypothesize that the neuronal adaptation is enhanced in the course 62

of the experiment reducing the cognitive demands required to activate the 63

stimulus-related brain regions. 64
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Materials and methods 65

Participants 66

Twenty healthy subjects (11 males and 9 females) aged from 26 to 35 with normal or 67

corrected-to-normal visual acuity participated in the experiments. All of them provided 68

written informed consent in advance. All participants were familiar with the 69

experimental task and did not participate in similar experiments in the last six months. 70

The experimental studies were performed under the Declaration of Helsinki and 71

approved by the local Research Ethics Committee of the Innopolis University. 72

Visual stimuli 73

The ambiguous visual stimulus was the Necker cube [20,21]. A subject without any 74

perceptual abnormalities perceives the Necker cube as a 3D-object due to the specific 75

position of the cube’s edges. The Necker cube can be interpreted as left- or 76

right-oriented depending on the contrast of the inner edges. The contrast of the three 77

middle edges centered in the left middle corner was used as a control parameter 78

a ∈ [0, 1]. The values a = 1 and a = 0 correspond, respectively, to 0 (black) and 255 79

(white) pixels’ luminance of the inner lines using the 8-bit gray-scale palette. Therefore, 80

the control parameter was defined as a = g/255, where g is the brightness of the inner 81

lines. In our experiment, we used the Necker cube images with eight different ambiguity 82

levels (Fig. 1, A). Half of them (a ∈ {0.0, 0.15, 0.4, 0.45}) are considered as left-oriented 83

(LO) and another half (a ∈ {0.55, 0.6, 0.85, 1}) as right-oriented (RO). While for a ≈ 0 84

and a ≈ 1 (low ambiguous (LA) images) the cubes can easily be interpreted as left- and 85

right-oriented, for a ≈ 0.5 the identification of the cube orientation is a more difficult 86

task since we deal with highly ambiguous (HA) images [22,23]. The 14.2-cm Necker 87

cubes were drawn by black and gray lines on a white background at the center of a 24” 88

BenQ LCD monitor with a spatial resolution of 1920× 1080 pixels and a 60-Hz refresh 89

rate. The subjects located at a 70–80 cm distance from the monitor with a visual angle 90

of approximately 0.25 rad. 91

Experimental protocol 92

The whole experiment lasted ≈ 40 min for each participant, including short recordings 93

of the resting EEG state (≈ 150 s) before and after the main part of the experiment. 94

During experimental sessions, the Necker cubes with predefined values of a (chosen from 95

the set in Fig. 1, A) were randomly demonstrated 400 times, each cube with a 96

particular ambiguity was presented about 50 times. 97

The scheme of the experimental session is shown in Fig. 1, B. Each i-th stimulus was 98

presented for the time interval (τi), followed by the time interval (γi) of the abstract 99

image presentation (see Fig. 1, C). The participants were instructed to press the left or 100

the right key with respectively left or right hand to report their interpretation of the 101

orientation (left or right) of each cube. The consecutively presented images affect the 102

perception of previously demonstrated cubes. For example, if the subject observed 103

several left-oriented cubes in a row, then his/her perception was stabilized to the 104

left-oriented cube, even if the next cube was right-oriented. Such phenomenon is 105

referred to as a stabilization effect [24]. To reduce this effect, the duration of the 106

stimulus exhibition varied in the range of τ ∈ [1, 1.5] s. Moreover, a random variation of 107

the control parameter a also prevented the perception stabilization. Lastly, to draw 108

away the observer’s attention and make the perception of the next Necker cube 109

independent of the previous one, different abstract pictures were exhibited for about 110

γ ∈ [3, 5] s between subsequent demonstrations of the Necker cube images. For each 111
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Fig 1. Visual stimuli The set of visual stimuli, Necker cubes, with different degree of
ambiguity a including high-ambiguity (HA) and low-ambiguity (LA) stimuli. A:
left-oriented (LO) Necker cubes. B: right-oriented (RO) Necker cubes. C: Schematic
illustration of experimental sessions. τi is the duration of the i-th cube presentation, γi
is the interval between the i-th and (i+ 1)-th presentations. D: Response time (RT)
definition.

cube, we estimated a behavioral response by measuring the response time (RT), which 112

corresponded to the time passed from the stimulus presentation to the button pressing 113

(Fig. 1, D) and the error (if the subject’s interpretation differs from the actual cube 114

orientation). 115

EEG acquisition and preprocessing 116

We recorded the EEG signals using the monopolar registration method (a 10–10 system 117

proposed by the American Electroencephalographic Society [25]). We recorded 31 118

signals with two reference electrodes A1 and A2 on the earlobes and a ground electrode 119

N just above the forehead. We used the cup adhesive Ag/AgCl electrodes placed on the 120

“Tien–20” paste (Weaver and Company, Colorado, USA). Immediately before the 121

experiments started, we performed all necessary procedures to increase skin conductivity 122

and reduce its resistance using the abrasive “NuPrep” gel (Weaver and Company, 123

Colorado, USA). Usually, the impedance varied within a 2–5 kΩ interval during the 124

experiment. The electroencephalograph “Encephalan-EEG-19/26” (Medicom MTD 125

company, Taganrog, Russian Federation) with multiple EEG channels and a two-button 126

input device (keypad) performed amplification and analog-to-digital conversion of the 127

EEG signals. This device possessed the registration certificate of the Federal Service for 128

Supervision in Health Care No. FCP 2007/00124 of 07.11.2014 and the European 129

Certificate CE 538571 of the British Standards Institute (BSI). The raw EEG signals 130

were sampled at 250 Hz, filtered by a band-pass FIR filter with cut-off points at 1 Hz 131

(HP) and 100 Hz (LP) and by a 50-Hz notch filter by embedded a hardware-software 132

data acquisition complex. Eyes blinking and heartbeat artifact removal was performed 133

by Independent Component Analysis (ICA) using EEGLAB software [26]. The recorded 134

EEG signals presented in proper physical units (millivolts) were segmented into two sets 135

of 4-s trials, including 2-s prestimulus (baseline) activity and 2-s poststimulus activity. 136

Data were then inspected manually and corrected for remaining artifacts. 137
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Trials selection and experimental conditions 138

After the EEG preprocessing procedure, we excluded some trials due to high-amplitude 139

artifacts. To keep the number of EEG trials constant for each cube ambiguity, we 140

considered 320 trials out of the initial 400, including 40 trials for each ambiguity. To 141

define the experimental conditions, we divided the whole experimental session into six 142

non-overlapping fragments (Ti) of the equal length. For each fragment, we selected 40 143

trials with an equal proportion of RO and LO stimuli, as well as LA and HA stimuli. 144

Such a selection of the trials enables neglecting the effects caused by the cube 145

orientation and complexity. For each segment, we averaged RT across the 20 trials 146

corresponding to LA and HA stimuli and compared the mean RT values across the 147

conditions T1 . . . T6 in the group of subjects. 148

EEG time-frequency analysis 149

Time-frequency analysis of EEG trials was carried out using Morlet wavelet with the 150

number of cycles for each frequency f as f/2. The wavelet power E was calculated in 151

the 4− 30 Hz frequency band and averaged over the frequency bands of interest: θ 152

(4− 8 Hz), α (8− 12 Hz) and β (15− 30 Hz). The prestimulus oscillatory activity was 153

averaged over the time interval from -0.5 s to 0 s. The poststimulus oscillatory activity 154

was contrasted by the activity in the prestimulus period subtracting the mean of 155

baseline values followed by dividing by the mean of baseline values (‘percent ’ mode) and 156

considered in the time interval from 0 s to 0.5 s. The results of the time-frequency 157

analysis were averaged over trials for each subject belonging to each fragment (T1 158

. . .T6). 159

Following the Ref. [27], a group-level spatio-temporal non-parametric cluster-based 160

statistical test was used to address the statistical significance of the θ, α and β 161

oscillatory activity changes in the prestimulus and poststimulus states between the 162

different conditions Ti. Here, a pairwise comparison of samples between the conditions 163

was performed via paired sample t-test with a critical level of ppairwise set to 0.01. The 164

critical level for non-parametric cluster-based statistical test pcluster was set to 0.05. 165

The number of random permutations was 2000. The time-frequency analysis and 166

non-parameteric cluster-based statistical tests were performed using MNE package for 167

Python 3.7 [28]. To estimate the inter-hemispherical asymmetry of prestimulus 168

oscillatory activity in the θ, α and β bands between the conditions Ti, the EEG spectral 169

power of the corresponding frequency bands was averaged over the EEG sensors placed 170

in the left hemisphere (LH) {O1, P3, T5, CP3, TP7, C3 T3, FC3 FT7, F3, F7, FP1} 171

and the right hemisphere (RH) {O2, P4, T6, CP4, TP8, C4, T4, FC4, FT8, F4, F8, 172

FP2}. 173

Results 174

Behavioral results. We compared RT across the fragments Ti via a 175

repeated-measures ANOVA with two factors: ambiguity (LA and HA) and fragment 176

(T1 . . . T6). As a result, ANOVA with the Greenhouse Geisser correction revealed the 177

significant main effect for fragment (F2.31,44.05 = 9.63, p < 0.001) and ambiguity 178

(F1,19 = 59.66, p < 0.001), whereas the interaction effect fragment× ambiguity was 179

insignificant (F2.47,46.93 = 1.06, p = 0.366). We concluded that RT changed between the 180

fragments similarly regardless of the stimulus ambiguity. Therefore, for further analysis, 181

we combined LA and HA stimuli on each fragment. The post-doc analysis via the 182

Bonferroni-corrected paired-samples t-test revealed a monotonous decrease of RT across 183

the fragments T1 . . . T6 (Fig. 2, A) with the maximal statistically significant difference 184
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achieved between the beginning (T1) and the end (T6) of the experiment (M= 0.189, 185

SE= 0.043, t(19) = 4.318, p = 0.006). The detailed analysis of pairwise differences 186

revealed that 18/20 subjects shown an effect in the same direction as the group (Fig. 2, 187

B). 188

A similar tendency was observed for the error rate (ER) (Fig. 2, C). ANOVA with 189

the Greenhouse Geisser correction revealed a significant effect for the fragment 190

(F2.75,52.38 = 3.386, p = 0.028). The posthoc analysis with the paired samples t-test 191

displayed the maximal statistically significant difference between T1 and T6 (M= 1.74, 192

SE= 0.64, t(19) = 2.733, p = 0.013). The Bonferroni-corrected p-value was 0.198. The 193

distribution of pairwise differences reflected that 11/20 subjects followed the group 194

tendency and 5/20 subjects shown no effect (Fig. 2, D). 195

The obtained results demonstrated that both the RT and the ER decreased in the 196

course of the experiment. We supposed that the most significant difference in the 197

neuronal activity should be observed between the fragments T1 and T6. For these 198

conditions, we compared RT between the LO and RO cubes. The repeated-measures 199

ANOVA with the Greenhouse Geisser correction revealed a significant change in RT 200

between T1 and T6 (F1,19 = 20.714, p < 0.001). In contrast, RT changed insignificantly 201

between LO and RO cubes (F1,19 = 1.56, p = 0.227). Finally, we found that the 202

interaction effect was also insignificant (F1,19 = 0.084, p = 0.775). 203

This analysis evidenced that a change in RT between the T1 and T6 conditions was 204

independent of the cube ambiguity and orientation. Given above, cortical activity was 205

compared between T1 and T6 conditions based on 40 trials per condition, including the 206

equal proportion of the LA and HA stimuli as well as LO and RO stimuli. 207

Rest-state and prestimulus activity. First, we analyzed how the subject’s 208

condition changed in the course of the experiment. The human condition affects brain 209

activity regardless of the presented stimuli or the task. Therefore, we analyzed the EEG 210

spectral power in three conditions: rest-state (the phase of the experiment before the 211

first stimulus was presented), prestimulus state at the beginning of the experiment (T1) 212

and prestimulus state at the end of the experiment (T6). For each condition, we 213

considered the set of 40 EEG trials (0.5-s length). Fig. 3 illustrates the EEG spectral 214

power in the θ, α, and β bands in the left (LH) and right hemispheres (RH) for these 215

conditions. 216

In the θ-band (Fig. 3, A) the repeated measures ANOVA with the 217

Greenhouse-Geisser correction revealed insignificant main effect for the hemisphery 218

(F1.00,19.00 = 0.18, p = 0.676) and for the condition (F1.058,20.096 = 0.18, p = 0.124). The 219

interaction effect hemisphere×condition was also insignificant 220

(F1.067,20.268 = 0.823, p = 0.383). 221

In the α-band (Fig. 3, B), the repeated measures ANOVA with the 222

Greenhouse-Geisser correction revealed a significant main effect for the condition 223

(F1.46,27.84 = 9.713, p = 0.002) and the hemisphere (F1.00,19.00 = 4.944, p = 0.039). The 224

interaction effect condition×hemisphere was insignificant 225

(F1.27,24.146 = 1.378, p = 0.264). The post-hoc analysis with Bonferroni-corrected paired 226

samples t-test demonstrated that Eα(RH) exceeded Eα(LH) (M= 9.06× 103, 227

SE= 4.07× 103, p = 0.039). The distribution of the pairwize differences (Fig. 3, B) 228

evidenced that 14/20 subjects followed the group tendency at the rest-state, while 12/20 229

and 14/20 subjects followed the group tendency at T1 and T6 conditions, respectively. 230

Eα in the rest-state did not differ significantly from Eα(T1) (p = 1.0), while Eα(T6) 231

significantly exceeded both Eα(T1) (M= 15.9× 103, SE= 4.84× 103, p = 0.012) and Eα 232

during the rest-state (M= 12.8× 103, SE= 3.01× 103, p = 0.001). The pairwize 233

diffeences evidenced that 15/20 and 18/12 subjects followed the group effect when T6 234

was compared to the rest-state and T1 conditions. 235

We concluded that participants exhibited the right-lateralization of the α-band 236
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Fig 2. Behavioral performance in the course of the experiment A: The
response time (RT) for each fragment (T1 . . . T6) of the experimental session. The upper
panel demonstrates the group mean±SE, while the lower panel reflects the data of all
subjects. B: The error rate (ER) for each fragment of the experimental session
(mean±SE and the individual values). C: The change of RT between the last (T6) and
the first (T1) fragments. D: The change of ER between these fragments.

power during the rest-state and in the prestimulus state during the experiment. The 237

overall prestimulus α-band power at the beginning of the experiment did not differ from 238

the rest-state. The overall α-band power in the prestimulus period increased in the 239

course of the experiment. 240

In the β-band (Fig. 3, C), repeated measures ANOVA with Greenhouse-Geisser 241

correction revealed a significant main effect for the condition 242

(F1.531,29.094 = 4.654, p = 0.025), and insignificant main effect for the hemisphere 243

(F1.00,19.00 = 0.0, p = 0.988). The interaction effect condition×hemisphere was also 244

significant (F2,38 = 7.619, p = 0.002). The post-hoc analysis with Bonferroni-corrected 245

paired samples t-test demonstrated that Eβ in the rest-state did not differ significantly 246

from Eβ(T1) (p = 1.0), and Eβ(T6) did not significantly differ from both Eβ(T1) 247

(p = 0.136) and Eβ during the rest-state (p = 0.066). At the same time, analysis of the 248

pairwize differences (Fig. 3, C) revealed that 16/20 and 18/20 subjects exhibited higher 249

Eβ(T6) when compared to the Eβ at the rest-state and to the Eβ(T1), respectively. 250

The paired samples t-test revealed that Eβ(LH) and Eβ(RH) differed neither for the 251

rest-state (t(19) = 0.423, p = 0.677) nor for the prestimulus period at the beginning 252

(t(19) = 1.49, p = 0.151) and at the end (t(19) = −1.62, p = 0.121) of the experiment. 253
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Fig 3. Rest-state and prestimulus wavelet power A: θ-band power in the left
hemisphere (LH) and the right hemisphere (RH) during three conditions (rest-state,
prestimulus period at the beginning (T1) and prestimulus period at the end (T6) of the
experiment). The upper panel represents group mean±SE, and the lower panel shows
the data of all subjects. B: α-band power across the same conditions (mean±SE and the
individual values). Differences between the LH and RH α-band power for the rest-state,
T1 and T6 conditions. The differences of the α-band power in both hemispheres between
the different conditions. C: β-band power in the left hemisphere (LH) and the right
hemisphere (RH) for the rest-state, T1 and T6 conditions (mean±SE and the individual
values). The differences of the β-band power in both hemispheres between the different
conditions. The differences of the RH β-band power between the different conditions.
The differences of the LH β-band power between the different conditions. Differences
between the LH and RH β-band power for the rest-state, T1 and T6 conditions.

A paired-samples t-test was conducted to compare the β-band power in the right 254

hemisphere Eβ (RH) across the conditions. We revealed that Eβ (RH) at T1 did not 255

differ from the Eβ (RH) at the rest-state (t(19) = 0.562, p = 0.58). Eβ(RH) at T6 256

significantly exceeded Eβ(RH) at T1 (M= 8.17× 103, 257
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Fig 4. Prestimulus wavelet power distribution The t-value and the EEG channel
clusters representing significant changes in (A) θ-, (B) α- and (C) β-frequency band
spectral power at the end (T6) versus the beginning (T1) of the experiment
(ppairwise < 0.01, pcluster < 0.05)

SE= 2.81× 103, t(19) = 2.899, p = 0.009). Analysis of the pairwize differences 258

(Fig. 3, C) revealed that 18/20 subjects shown this effect. The difference of Eβ (RH) 259

between T6 and rest-state was also significant (M= 7.53× 103, 260

SE= 2.85× 103, t(19) = 2.639, p = 0.016). This effect was observed for 17/20 subjects. 261

A paired-samples t-test was conducted to compare the β-band power in the left 262

hemisphere, Eβ(LH), in the rest-state, T1 and T6 conditions. We revealed that Eβ (LH) 263

at T1 did not differ from the Eβ (LH) at the rest-state (t(19) = 1.273, p = 0.218). 264

Eβ(LH) at T6 did not differ from both Eβ(LH) at T1 (t(19) = 0.565, p = 0.579) and at 265

the rest-state (t(19) = 1.733, p = 0.099). 266

Finally, according to the paired-samples t-test, Eβ (RH) did not significantly differ 267

from Eβ (LH) at the rest-state (t(19) = −0.423, p = 0.677) as well as at T1 268

(t(19) = −1.495, p = 0.151) and T6 (t(19) = 1.624, p = 0.121) conditions. 269

The obtained results demonstrated that the β-band power did not change at the 270

beginning of the experiment when compared to the rest-state. In the course of the 271

experiment, we observed an increase in the prestimulus β-band spectral power in the 272

right hemisphere. 273

Fig. 4 shows the topograms of t-values reflecting the power changes in the θ-, α−, 274

and β-frequency bands in the T6 versus T1 conditions. 275

In the θ-band (Fig. 4, A), the cluster-based statistical analysis with permutations 276

revealed that the prestimulus state at the end of the experiment is characterized by the 277

increasing power over the EEG channel cluster in the parietal, sensorimotor, frontal and 278

temporal areas. 279

In the α-band (Fig. 4, B), a significant increase of α-band power at the end of the 280

experiment was observed for the channel clusters in the occipito-parietal area, frontal 281

area, and temporal areas. 282

In the β-band (Fig. 4, C), the prestimulus state at the end of the experiment was 283

characterized by a significant (p < 0.01) increase in the β-band spectral power for the 284

right-lateralized channel cluster including channels F4, FC4, C4, CP4, Cz. 285

Task-related activity. The task-related cortical activity on the EEG sensor level 286

was analyzed by comparing the topograms of the θ-, α- and β-band spectral power 287

between the beginning (T1) and the end (T6) of the experiment. The Fig. 5 illustrates 288

the channels clusters (circles) and the corresponding t-values (color scale) obtained 289

during the 0.5-s interval following the presentation of the visual stimulus. Each 290

topogram represented the spectral power averaged over a 0.1-s window mentioned in the 291

legend under the topograms. 292

One could see that the clusters had different spatio-temporal properties in the 293

different frequency bands. At the same time, no positive clusters appeared in these 294

bands, indicating the overall increase of the task-related neuronal activation at the 295
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Fig 5. Task-related spatio-temporal activity. The t-value and the EEG channel
clusters representing significant changes in the wavelet power in the (A) θ-, (B) α- and
(C) β-frequency bands at the end (T6) versus the beginning (T1) of the experiment
(ppairwise < 0.01, pcluster < 0.05)

beginning of the experiment. 296

In the θ-band (Fig. 5, a), the earlier processing stage (t < 0.1 s) was characterized by 297

the left-lateralized occipito-parietal cluster (O1 and P3 channels) and the mid-line 298

centro-parietal cluster (CPz and Cz channels). For (0.1 < t < 0.2 s), the only 299

left-lateralized occipito-parietal (O1 and P3) cluster was observed. The further 300

processing (t > 0.2 s) was associated with the increased t-value over the parietal and 301

temporal EEG sensors. For (0.2 < t < 0.3 s), there were two clusters (P3 and P8), while 302

for (0.3 < t < 0.4 s), the only one cluster (P8) remained. Finally, for (t > 0.4 s), no 303

clusters were found in the θ-frequency band. 304

The α-band power (Fig. 5, b) remained unchanged during the first 0.2 sec after the 305

stimulus presentation. Then, for 0.2− 0.3 s, we observed the bilateral negative cluster in 306

the occipital area, including O1 and O2 EEG channels and the right-lateralized 307

parieto-temporal cluster, including P4, P8, and TP8 EEG channels. For the 0.3− 0.4 s, 308

the size of the observed cluster decreased, and it became right-lateralized. Finally, the 309

further increase of the processing time led to the cluster disappearance. The obtained 310

results evidenced that at the end of the experiment, the task-related cortical activity 311

was characterized by the increased α-band power in the occipital and right temporal 312

areas during 0.2− 0.3 s after the stimulus presentation. 313

In the β-frequency band (Fig. 5, c), the negative cluster was observed for the first 314

0.3 s after the visual stimulus presentation. At the earlier sensory processing stage 315

(t < 0.1 s) it included the bilateral prefrontal cortical channels (Fp1, Fpz, Fp2), the 316

right-lateralized frontoparietal area (Fz, F4, F8, FCz, FC4, Cz, C4, CPz, CP4, Pz) and 317

the right temporal area (FT8, TP8). During the 0.1− 0.2 s, the observed cluster was 318

bilateral in the prefrontal cortex, but right-lateralized in the temporal region. For 319
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0.2− 0.3 s, the frontal cluster disappeared, and one could observe the remaining 320

right-lateralized cluster in the occipital, parietal, and temporal cortex. Finally, no 321

clusters were found for t > 0.3 s in the β-frequency band. 322

Discussion 323

Our results demonstrate that during a prolonged visual stimuli classification task, 324

subjects enhance their performance in terms of the reduced reaction time and decision 325

accuracy. This observation is not trivial since a prolonged cognitive activity may induce 326

mental fatigue and, therefore, cognitive decline. Thus, we suppose that the brain 327

implements a strategy for the optimal utilization of cognitive resources to resist mental 328

fatigue and increase behavioral performance. 329

At the beginning of the experiment, we observe enhanced spectral power in the θ, α, 330

and β frequency bands during the stimulus processing. The high β power has been 331

observed in the right temporoparietal cortex and bilaterally in the prefrontal cortex, 332

while high α and θ power – in the occipital and in both occipital and parietal areas, 333

respectively. 334

The neuronal activity in the temporoparietal regions subserves the processing and 335

storage of visuospatial information [29,30]. At the same time, the activation of the 336

prefrontal cortex indicates that the task accomplishing requires additional cognitive 337

resources. It is also confirmed by an increase of the task-related θ-band activity [31]. 338

The task-related occipital α-power is associated with selective attention during stimulus 339

processing. The low α-band power reflects the effective processing of attended 340

stimuli [32]. Having summarized, we suppose that at the beginning of the experiment, 341

stimulus processing engages the resources of the frontoparietal cortical network. 342

Moreover, the lower task-related α-band power in the occipital area at the end of the 343

experiment is possible to reflect the enhanced brain ability to respond to the attended 344

stimulus effectively. 345

The prestimulus activity in the θ, α, and β-bands changes in the course of the 346

experiment. The prestimulus α-band power is higher in the right hemisphere during the 347

rest-state and the prestimulus period. This lateralization doest not change in the course 348

of the experiment. At the same time, α-band power grows during the experiment over 349

the majority of the EEG sensors in both hemispheres. The θ- and β-band activity is 350

bilateral in the rest-state and prestimulus period. However, at the end of the 351

experiment, the β-band power increases in the right hemisphere, while the θ-band power 352

grows bilaterally in the frontal-central, parietal, and temporal regions. 353

The prestimulus activity in the α and β bands is usually analyzed to characterize 354

the subject’s attention. A wide body of literature shows that α and β-band activities 355

are relevant to attention in general and not restricted to the visual stimuli 356

processing [6, 33–35]. Attention modulates the prestimulus α- and β-band 357

power [6, 33,36] and affects the stimulus processing accuracy. Thus, low α- and high 358

β-band power during the prestimulus period is beneficial for sensory perception [5, 6]. 359

The prestimulus θ- and α-band activities can serve as the markers of mental fatigue, i.e., 360

the increased power in these bands reflects the subject’s mental fatigue and causes the 361

performance decrement [3]. Taken together, the low prestimulus θ- and α-band power 362

and the high β-power should predict the high performance and vice versa. On the 363

contrary, we report that the high prestimulus spectral power in the θ-, α- and β- 364

frequency bands accompany the performance increment. 365

According to [37], the lateralized α-band power reflects the attentional breadth 366

during the stimulus processing. The attentional breadth characterizes the subject’s 367

ability to focus attention either on the global level (e.g., the forest) or local elements 368

that make up the stimulus (e.g., the trees) [38]. Recent studies demonstrate that greater 369
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local attentional bias is observed after activating the left hemisphere, and a greater 370

global bias is observed after activating the right hemisphere [39]. The α-band power 371

over the right and left frontal-central sensors correlate with attentional breadth. The 372

greater left frontal α power corresponds to faster responses to local targets and greater 373

right frontal α power – to faster responses to global targets [40]. Previous findings 374

suggest that prestimulus and rest-state α power lateralization [41] also predict the 375

subject’s performance in a global-local attention task [37]. 376

We report the high α-band activity in the right hemisphere at rest as well as in the 377

prestimulus state. Moreover, the lateralization does not change in the course of the 378

experiment. Therefore, we can conclude that the subjects which initially have 379

right-lateralized alpha-band power exhibit the global attentional bias and do not change 380

it during the experiment. It coincides with the existing literature claiming that the 381

attentional bias remains stable for at least ten days in multiple global/local tasks [42]. 382

The increased prestimulus α power in the course of the experiment can be an 383

electrophysiological indicator of mental fatigue [43]. The prolonged task induces mental 384

fatigue, increasing reaction times, misses, and false alarms. As discussed above, high 385

α-band power predicts the low performance of the ongoing stimulus processing. Thus, it 386

can be supposed, that increased α-band power at the end of the experiment is 387

associated with mental fatigue, which should lead to the performance decline. The 388

increased θ-band power, together with α-band power, can also manifest the mental 389

fatigue. According to [3], the prestimulus θ-band power in the frontal area grows in the 390

course of the experiment and negatively correlates with the behavioral performance. 391

Another paper [44], relates mental fatigue with the increased θ-band power in the 392

frontal-central and parietal regions. 393

High prestimulus β-band power in the right hemisphere can be related to the 394

increasing human attention. There is a view that the human attentional brain network 395

is overall lateralized to the right hemisphere [45]. Some components of the attention 396

(e.g., alerting and disengaging functions) are bilateral [46], while others (e.g., orienting 397

and executive functions) are biased to the right hemisphere [47]. According to [48], the 398

executive functions subserve an interplay between alerting and orienting functions to 399

maintain the state of readiness and focus attention towards the relevant features of a 400

stimulus. 401

Taken together, the increased orienting and executive components of attention in the 402

course of the experiment can be the possible reasons for the increase in behavioral 403

performance. In this context, the performance can grow due to the enhanced 404

effectiveness of the relevant stimulus features selection. At the same time, high 405

prestimulus θ- and α- power contradict the definition of attentional state in general. 406

Therefore, we cannot conclude unequivocally that the brain increases its attentional 407

properties in the course of the experiment. 408

Finally, we introduce one more possible explanation for the increased performance in 409

the course of the experiment. We observe that the prestimulus β-band power at the end 410

of the experiment increases locally in the region, which is more engaged during the 411

stimulus processing. Hence, we suppose that the preactivation of the stimulus-related 412

cortical areas reduces the cognitive demands required for their activation during the 413

stimulus processing ( [49]). The preactivation of the stimulus-related neuronal 414

ensembles before the stimulus processing is also known as the neuronal adaptation (NA). 415

The NA is considered as the evidence for the predictive coding theory [50]. NA is 416

observed when the same visual stimulus is repeatedly presented with a brief interval and 417

causes the reduced neural response to repeated compared with unrepeated stimuli [19]. 418

The NA is supposed to arise from at least two types of neural activity. One explanation 419

is that only the part of the neuronal ensemble is sensitive to stimulus recognition. Thus, 420

the neurons that are not critical for recognizing the stimulus decrease their responses as 421
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the stimulus is repeatedly presented. In contrast, the neuronal populations carrying 422

essential information continue to give a robust response. As a result, the mean firing 423

rate becomes attenuated by stimulus repetition. This theory is supported by the first 424

studies of unit cell recordings [51]. The alternative explanation is the stimulus 425

repetition reduces the response in the temporal domain [19]. In this theory, the neural 426

processing network settles to a stable response more quickly in response to a repeated 427

than novel stimulus, because the network connections involved in producing the 428

response have been reinforced by a previous presentation of the same stimulus [52]. The 429

NA affects the neuronal response in the occipital [53], parietal [54], and frontal [55] 430

cortical populations in the single-unit data as well as on the sensor level. 431

Taking together, we suppose that the training effect in the course of the experiment 432

results in the preactivation of the stimulus-related regions in the β frequency band. The 433

very recent work [56] also relates the β-band spectral power to the training. The 434

authors report on the enhanced β-band power over the central, temporal and the 435

parietal sensors during an 80–400 ms window of the poststimulus onset (post- versus 436

pre-training trials), while we observe that the β-band spectral power decreases in the 437

same areas during the same time window. At first glance, this issue can be addressed to 438

different experimental paradigms. For example, [56] compared two experiments carried 439

out in different days, whereas in this work, we analyze a single experimental session 440

performed in one day. It follows that the different mechanisms stay behind the training 441

effect in these two paradigms. Besides, different stimuli are used, i.e., we consider visual 442

stimuli only, while [56] uses visual stimuli together with auditory stimuli. Moreover, 443

similar to our findings [56] report on a significant decrease in the β-band power 444

(post-training vs. pre-training trials) at certain conditions. The authors relate this effect 445

to the participant’s perceptual template formation after the training and consider these 446

results as the evidence for the predictive coding model. The predictive coding theory 447

suggests that the brain creates sensory templates [57], which causes increasing β-band 448

activity before the occurrence of an expected event that potentially reflects the 449

mobilization of neuronal populations to encode the expected sensory inputs [58,59]. 450

Supporting information 451

S1 Data. EEG and behavioral data. This structure contains 20 cells representing 452

data of 20 subjects. Each cell includes field Trial, which contains 80 EEG trials 453

recorded for 31 channels. The field Label contains the names of the channels. The first 454

40 trials are chosen from the beginning of the experiment and belong to the condition 455

T1. The rest 40 trials are chosen from the end of the experiment and belong to the 456

condition T6. Each trial has 4 s length, and the stimulus is presented in the middle of 457

the trial. The field PresentationMoment contains the moments of the stimuli 458

presentations and Ambiguity contains the stimulus ambiguity value. The field 459

ReactionTime contains the reaction time for each trial, and the field Button contains 460

the identification of the button pressed (1-for the left and 2-for the right). The field 461

Background contains the rest-state EEG signals recorded before the stimuli presentation. 462

EEG signals are sampled at 250 Hz, filtered by a band-pass FIR filter with cut-off 463

points at 1 Hz (HP) and 100 Hz (LP) and by a 50-Hz notch filter. Eyes blinking and 464

heartbeat artifact are removed with Independent Component Analysis (ICA) 465
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