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Next Generation Sequencing  
Modern day next generation sequencing platforms (Illumina) use a process known as 

sequencing by synthesis. In this process, a DNA library is prepared into a sequencing 

sample pool by fragmenting DNA into pieces no larger than 200 base pairs (bp). 

Custom identifying adapters are added to the ends of a DNA strand and the sample 

pool is flowed across the solid surface of the flowcell1. A flowcell can be described as 

a glass slide with channels through which polymerases, deoxynucleotide triphosphates 

(dNTPs) and buffers can be passed. Each nucleotide passing into a flowcell is 

annealed to a complementary fluorescently tagged dNTP that also serves as a 

reversible terminator for polymerisation1,2. The flowcells allow for clonal clustering of 

DNA molecules in a PCR process known as bridge amplification3,4. The clustering 

allows for greater fluorescence and improved image analysis. Each flowcell consists 
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of four lanes supplied by a single reservoir, allowing for simultaneous processing of 

millions of template DNA molecules.   

Unlike other sequencing devices, NextSeqs devices employed here use 2-

channel sequencing; only two types of fluorescent dyes are used, red and green5. “C” 

nucleotides are tagged with a red fluorophore, “T” with a green fluorophore and “A” 

nucleotides are tagged using both red and green fluorophores (imaging as yellow). The 

remaining “G” nucleotides are not tagged with a dye. Towards the end of each 

sequencing cycle a red and green image are taken and a cleaving enzyme released 

to remove the fluorophore tagged dNTP for the next annealing cycle to begin and so 

on. Resulting image data is converted into nucleotide sequences for each of the 

flowcell lanes5. This data is output as four fastq.gz files of similar size. These files form 

the source material for subsequent bioinformatic assessment.  

 

The Bioinformatic Pipeline: USER MANUAL 
Here, we present a detailed step-by-step instructional manual for the assessment of 

metagenomic ancient DNA (aDNA) from anthropogenic sediments. Each step will 

highlight why a process is undertaken, what a process does to the inputting genomic 

data and how to perform each process using a Linux based operating system. 

Examples are provided for each step. Note that not all Linux operating systems are the 

same, however the examples throughout should function on a bash-based Unix shell 

environment. The shell environment will be referenced as “Terminal” throughout. 

 

Getting started: How to set up a PATH 

In order to begin calling commands in your Terminal, it is important that they are 

located in a folder that is part of your PATH on your computer. This is a list of directories 

your Terminal will search to find the requested executable command. In Linux, 

common folders that exist on your PATH by default include /usr/bin (common utilities), 

/usr/local/bin (user-installed executables), /usr/local/sbin (user-installed executables) 

and /usr/sbin (system daemons and system utilities). By typing the below command 

into your Terminal, you will see what folders are currently in your PATH: 
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echo $PATH 

 

Where $PATH is a global variable in your Terminal to define where executable 

commands are located. 

 

In instances when you are installing new programs, you may choose not to include 

them in your computer’s default PATH directories. This allows you to maintain custom 

programs in a separate directory as well as ensure that default programs are not 

overwritten by a program of the same name. In order to add a custom directory to your 

PATH, you can type the below command: 

 
export PATH=$PATH:/location/of/your/custom/directory 

 

It is important to note however, that the above setting will modify your PATH for that 

shell session only. Additional shell sessions will not load the custom directory into the 

PATH. In order to ensure that your custom directory is loaded into the PATH at every 

shell launch varies depending on the Linux distribution being used. Here, we will use 

the .bash_profile file for the bash shell. 

 

In a new shell window, type the below command to launch vim, a command line text 

editor using the Terminal window. 

 
vim ~/.bash_profile 

 

Press the i character to enter insert mode. Next, add the export line described above 

to this file. Once inserted, press the Esc key followed by typing :wq! and then press 

Enter. Esc will exit insert mode, the : will enter a command, w will write to the file being 

edited and q! will exit the vim program.  

 

Now, with each launch of your shell, your custom directory will be loaded into the 

PATH. 
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Step 1. Concatenate Sequencer Output Files 

Upon completion of a NextSeq sequencing run, the system will output four zipped files 

(fastq.gz) for each sample sequenced. In this step the user will combine these four 

files into one large zipped file representing all extracted sequences for the given 

sample. The cat program, short for “concatenate” (meaning “to link”) allows the 

Terminal to read multiple files sequentially and output them to the Terminal. To run 

from the Terminal, navigate to the directory containing the desired NextSeq output files 

and type: 

 
cat sample_file_1.fastq.gz sample_file_2.fastq.gz 

sample_file_3.fastq.gz sample_file_4.fastq.gz > 

sample_combined.fastq.gz 

 

*Example:   
cat B038_S1_L001_R1_001.fastq.gz B038_S1_L002_R1_001.fastq.gz 

B038_S1_L003_R1_001.fastq.gz B038_S1_L004_R1_001.fastq.gz > 

B038_combined.fastq.gz  

 

*In the example “B038” represents a unique sample code 

 

The redirection command, executed by using >, is used to write the Terminal output to 

a specified file, instead of to the Terminal output, known as standard out or stdout. 

This file will either be created if it doesn’t exist or overwritten if it does exist. 

Note that within the NextSeq output file names the “L001-4” refers to the lane within 

the sequencing flowcell in which the data originated. Combining the four files into one 

reduces the need for repeated processing at subsequent steps.  

 

Step 2. Quality Control of NGS data (FastQC)  

FastQC6 is a software package that allows the user to perform quality control checks 

on raw sequence data coming from NGS platforms. FastQC can be run as a program 
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or directly using the Terminal. To run from the Terminal, navigate to file directory and 

type the following: 

 
fastqc -t <THREADS_AVAILABLE> sample.fastq.gz 

 

Example:  
fastqc -t 12 B038_combined.fastq.gz  

 

The -t option refers to the amount of processing power or “threads” the user wants to 

dedicate to the program. Increasing the amount of threads available will increase the 

processing speed. For a large file, such as those resulting from metagenomic studies, 

we would recommend using a minimum of 12 threads. The number of threads available 

to your program would depend on the number of processors and cores each processor 

has in your computer. 

 

This will result in the generation of two files: a sample.fastqc.html containing the 

quality analysis and a zipped folder (containing the same information).  

 

From the “basic statistics” module shows the total number of sequences, sequences 

tagged as poor quality, largest sequence length, and %GC can be viewed.  

 

The “per base sequence quality” module displays the average phred quality score (Y 

axis) of all sequences by base position within a read (X axis). For aDNA sequences, 

the user should still obtain high phred quality scores for the majority of sequences 

(preferably above 30). Phred scores are important for understanding the quality of 

obtained sequences7. The higher the phred value the better base cell accuracy is 

achieved (Table SI 1). 
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Table SI 1. Understanding Phred Quality Scores and Base Call Accuracy. The central 

column shows the probability of an incorrect base call associated with a phred quality 

score and the representative accuracy of sequence composition. 

Phred Quality Score Probability of incorrect base call Base call accuracy  

10 1 in 10 90% 

20 1 in 100 99% 

30 1 in 1000 99.90% 

40 1 in 10000 99.99% 

50 1 in 100000 99.999% 

 

The “per base sequence content” module displays the base content (Y axis) of all 

sequences by position in a read (X axis). In a random DNA library, the user would 

expect little to no difference between the bases of a sequencing run, meaning the lines 

in the plot should run parallel with each other. It is likely that FastQC will flag this 

module with a warning due to adapters changing the value of “G” and “C” base content 

(GC) (Figure SI 1A)6. Upon trimming the sample of adapters (step 3), the user can 

check the sequences again to see little difference between the bases from the 10th to 

74th base pair (10-74bp).  

 

For ancient DNA samples, it is important to note that the first 9 base positions are 

individual measures that tend to deviate by 10% due to the addition of oligonucleotides 

at the library preparation phase. The subsequent positions are binned averages, 

resulting in what should be smooth lines (Figure SI 1B) between 10-74bp. It has been 

noted that % base composition at the ends of reads that have undergone aggressive 

adapter trimming (such as that in step 3) are likely to be spurious with sudden 

deviations in composition6. For this reason, it is likely a trimmed sample will flag as 

failed with the last base position falsely deviating by more that 20%.      
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Figure SI 1. Sequence Content Across all Bases Using FastQC. (A) Prior to adapter 

trimming. (B) Post-trimming of adapters. The arrow highlights an area of difference.  
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The “per sequence GC content” module measures the mean GC content (X axis) 

across the length of each sequence (Y axis). Typically, a user would expect to see 

normal distribution of GC content where a central peak corresponds to the overall GC 

content of the underlying genome (i.e. 41.6% in the Homo sapiens genome if a sample 

is taken from human bone). While a small shift of an expected GC distribution is 

indicative of a systematic bias independent of base position, an unusual shaped 

distribution typically indicates the presence of other underlying genomes6, or 

contamination. As the FastQC program does not know the GC content of the 

underlying genome, the modal GC content is calculated from observed data and used 

to build a reference distribution. A warning is raised when the sum of deviations from 

the modal distribution represents more than 15% of reads (Figure SI 2A). Failure is 

flagged when deviations amount to more than 30% of all reads. By its very nature a 

metagenomic sample it is expected to have multiple underlying genomes represented 

and thus a warning or failure of this module is expected. Upon extracting the mapped 

sequences (step 19) aligned to a desired genome, the user can import into FastQC 

and compare the mapped %GC to compare to expected GC content. In this case the 

modal GC content should conform to the desired genomes overall %GC, with a normal 

peak distribution pattern (Figure SI 2B). 
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Figure SI 2. GC Content Across all Sequences Mapped to a Desired Genome (i.e. 

Homo sapiens) Using FastQC. (A) Prior to the extraction of mapped sequences. (B) 

Post extraction of mapped sequences with expected %GC for Homo sapiens. The 

mean percentage of “G” and “C” bases are plotted for all sequences within a sample. 

The arrow highlights an area of difference.      

 

The “sequence length distribution” module measures the sequence length (X axis) over 

all sequences (Y axis). If the user performs FastQC prior to the removal of adapters 

(step 3), the length distribution will always peak at 76bp as the max read length setting 
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on the NextSeq platform using the 500/550 high output V2 (75 cycle) reagent kit 

(Figure SI 3A). Upon trimming the sample of adapters (step 3) the user can check the 

sequences again to see a more distributed sequence pattern. Note that the module 

will flag a warning if all sequences are not the same length6. For ancient DNA samples, 

following the trimming of adapter indexes, the user should expect a distribution of 

sequences, usually accumulating in a short peak around the 35-50bp mark and a larger 

peak at the 74-76bp mark (Figure SI 3B).     
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Figure SI 3. Distribution of Sequences by Length (bp) Using FastQC. (A) Prior to 

adapter trimming. (B) Post-trimming of adapters. All sequences present within a 

sample sorted according to length of sequence strands. The arrow highlights an area 

of difference. 

 

The “adapter content” module displays a cumulative percentage of the proportion of 

the user’s library (Y axis) which has seen adapter sequences at each position (X axis). 

Once an adapter sequence has been read, it is counted as present through to the end 

of a read, thereby increasing the percentage of adapter content as read length 

continues. The user should expect to fail this module (adapter presence on more than 

10% of reads) if analysing sequences prior to the trimming of adapters. Post removal 

of adapter sequences (step 3), the user should expect to pass this module with 0% of 

all sequences showing evidence for adapters.     

 

Step 3. Removal of Adapter Sequences (cutadapt) 
Adapter sequences are synthesised oligonucleotides that can be added to the ends of 

DNA for a variety of applications. In aDNA research, adapters provide two functions, 

to stabilise authentic damaged sequences and to attach index sequences for sample 

identification after sequencing8. Post sequencing adapters are removed to leave only 

authentic DNA sequences.    

 

cutadapt is a software package that allows users to search all reads within a given 

sample for a specified adapter sequence and filter reads according to a minimum 

desired threshold, otherwise known as trimming or a cut9. To run from the Terminal, 

navigate to the directory containing the combined.fastq.gz file (from step 1) and 

type: 

 
cutadapt -a <ADAPTER_SEQUENCE_USED> -O 1 -m 

<MININMUM_CUT/THRESHOLD_DESIRED> combined.fastq.gz > 

sample_cut.fastq 2> sample_cut.txt 
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*Example:  
cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -O 1 -m 28 

B038_combined.fastq.gz > B038_MC28.fastq 2> B038_MC28.txt 

 

*In the example “MC28” refers to minimum cut (length) used. 

 

The -a option refers to the adapter sequence used during the library preparation phase 

ligated to the 3 prime (’) end of a sequence. The adapter and anything that follows is 

removed and discarded from a sequence. For aDNA the majority of authentic aDNA 

sequences are shorter than the maximum sequencing read length (76bp), thus part of 

the adapter is usually found at the 3’ end of reads10.    

 

The -O option is the minimum overlap length of bases that can match between the 

specified adapter and a read before removal of those bases. If a read contains a partial 

adapter sequence shorter than the minimal overlap length, no match is registered and 

no bases removed. For cutadapt, the default setting is “3” (bp)9, for aDNA “1” (bp) 

should be used, meaning if overlap between the adapter and a read is shorter than 

1bp the read is not altered, thereby reducing the number of authentic aDNA bases 

from being removed erroneously.  

 

The -m option parameter allows the user to discard processed reads that are shorter 

than the specified length (bp) after adapter removal. For aDNA a minimum length value 

of 28bp is used, being the lowest identifiable size of authentic ancient reads.  

 

This program uses a standard input (stdin) and output (stdout) format, allowing the 

user to output both a trimmed sequences file (using the redirection command >), and 

a redirected standard error stream (stderr) and discarded reads report in the format 

of a text file (using the redirection command 2>). Upon completion of cutadapt the 

user may want to quality check sequences using FastQC as outlined in step 2. 
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Step 4. Quality Assurance of NGS Data (1): Confirm Total Number of Sequences 
(1) 

Occasionally errors can occur with the format conversion, manipulation, or unzipping 

of a file, it is best practice to introduce checks to ensure data is consistent (integrity) 

and reduce possible complications with downstream bioinformatic processes.  

 

The wc utility program allows users to bioinformatically count the number of lines, 

words, and bytes contained within the specified input file 

 

The addition of the -l option instructs the command to only count the total number of 

lines within the specified input file. The number of lines counted can then be divided 

by four to give the user the total number of sequences within the trimmed FASTQ file.  

 

The total number of lines counted are divided by four on account of the formatting of 

FASTQ files. Each sequence present is represented by four lines of code11. The first 

and third line consist of sequence identifier information with first line identified with an 

“@” symbol, and the third a “+” character, the second line contains the raw sequence 

data in IUPAC convention, and the fourth encodes quality values for the sequence data 

within the second line.  

 

Using the Terminal, navigate to the directory containing the trimmed 

sample_cut.fastq file and type the following:  

 
wc -l sample_cut.fastq 

 

Example:  
wc -l B038_MC28.fastq 

 

Divide the resulting number by four to get the true sequence value. Then, using the 

sample_cut.txt file output in step 3, check the summary section for “Reads written 

(passing filters)”, this will display the total number of sequences within the trimmed 

sample_cut.fastq file. Both numbers should match. 
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Step 5. Convert FASTQ File to FASTA Format 
The conversion of FASTQ files to FASTA format is performed for a number of reasons. 

First, given that per base sequence quality has been assessed within step 2, the base 

quality scores are no longer need for downstream processing and as such can be 

removed to reduce file size, this is automatically performed during conversion into 

FASTA format. Secondly, the reduction in working file size gives the user the added 

benefit of faster processing speeds. Lastly, FASTA format has been widely used within 

bioinformatics for over 30 years, as such many programs used for downstream 

processing such as BLAST12 rely on this format. To begin formatting, navigate to the 

directory containing the sample_cut.fastq file and type:  

 
cat sample_cut.fastq | awk '{if(NR%4==1) 

{printf(">%s\n",substr($0,2));} else if(NR%4==2) print;}' > 

sample_cut.fasta 

 

Example:  
cat B038_MC28.fastq | awk '{if(NR%4==1) 

{printf(">%s\n",substr($0,2));} else if(NR%4==2) print;}' > 

B038_MC28.fasta 

 

The cat utility program is used to read the contents of the FASTQ file and ‘pipes’ the 

stdout into the awk program as stdin. Pipe, represented by the | character, is a 

command line program which allows the output of the 1st program (in this case cat) to 

serve as the input into a 2nd program (in this case awk), like a pipeline.  

 

The awk program is a tool to write simple yet effective statements in order to manipulate 

text. It defines text patterns that are to be searched for in each line of the input file. 

Here the awk program reads that if the Number of Records variable (NR), also defined 

as the line number, when divided by four has a remainder of 1 (denoted as the % 

character in NR%4==1) then it will format the line as follows, the printf command is 

invoked and this will print a > character, followed by a format specifier to specify the 

text as a string (%s) followed by a newline character (\n) with the string to be decided 
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using the substr command. $0 specifies the whole line to be inputted, and 2 specifies 

to get the whole line from character 2 onwards (this forms the sequence header), 

otherwise if the NR variable when divided by four has a remainder of 2, then print the 

corresponding line (the raw sequence data). Lines 3 and 4 are ignored from the awk 

command. Finally, this manipulated text file is written to a FASTA file using the 

redirection command >.  

 

Step 6. Quality Assurance of NGS Data (2): Confirm Total Number of Sequences 

(2) 
As mentioned in step 4, occasionally errors can occur when formatting, manipulating 

or unzipping a file. It is therefore best practice to check the number of sequences within 

a file remain consistent with the originating file. To do this we again use the wc utility 

program with the -l parameter.  

 

Unlike FASTQ format, FASTA files consist of two lines of code11. The first line consists 

of sequence identifier information or a short description for the sequence, while the 

second line contains the raw sequence data encoded to IUPAC conventions. As such 

the resulting total number of lines counted are divided by two to get the true number of 

sequences present within the FASTA file.  

 

Within the Terminal, make sure the directory contains the sample_cut.fasta file, and 

type: 

 
wc -l sample_cut.fasta 

 

Example:  
wc -l B038_MC28.fasta     

 

Divide the resulting number by two for the total number of sequences present. The 

number should match the total number of sequences present in the originating FASTQ 

file outlined in step 4.   
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Step 7. Create a Non-Redundant Sample File (FastX-Toolkit) 
A non-redundant sample refers to one without sequence repetitions, otherwise referred 

to as duplicates. The more sequences present within a sample file, the longer and less 

efficient the processing speed of downstream bioinformatic processes. This is a well-

documented issue when comparing sample sequences to a genomic database13,14 

(Step 10). 

  

FastX toolkit is a package of command line tools for the pre-processing of FASTQ and 

FASTA files15. The collapser program fastx_collapser, merges all duplicate 

sequences for a region of coding into a single representative sequence, while 

maintaining read counts. This is performed for all duplicates within a sample until only 

unique reads remain.  

 

To run the program in the Terminal, navigate to the file containing the 

sample_cut.fasta and type the following: 

 
fastx_collapser -v -i sample_cut.fasta -o sample_cut.NR.fasta 

 

*Example:  
fastx_collapser -v -i B038_MC28.fasta –o B038_MC28.NR.fasta 

*In the example NR refers to a non-redundant sample file. 

 

The -v option instructs the command to verbose the number of processed reads within 

the given sample. 

 

The -i option refers to the input file, in this case the sample_cut.fasta 

 

The -o option is the outputting non-redundant file. The resulting output file, should be 

drastically reduced in size to the inputting FASTA file.  

 

Note, do not remove the original FASTA file as this will be used for in-depth alignments 

downstream (step 15).   
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Step 8. Split the Non-Redundant Sample File into Ten Files of Equal Proportion 
(pyfasta) 

To further improve the processing speed of comparative analysis (step 10), the non-

redundant sample file can be split into ten files of equal proportion. As multiple regions 

of coding are extracted from origin sources of DNA, the splitting of a non-redundant 

sample will not affect the identification of a taxon’s presence within a sample.  

 

pyfasta is package of tools utilising python via a command line interface for the pre-

processing of FASTA files16. The split command pyfasta split allows users to 

distribute sequencing reads between multiple files via various means.  

 

Here, the -n option is used, referring to the number of outputting files desired. Ten files 

will result in each being 10% representative of the total sequences, while two files 

represent 50% each.   

 

To run from the Terminal, navigate to the directory containing the non-redundant 

sample_cut.NR.fasta file, and type: 

 
pyfasta split -n 10 sample_cut.NR.fasta 

*Example:  
pyfasta split -n 10 B038_MC28.NR.fasta 

 

*Outputting files will be labelled 00 – 09, this is useful for the following step (step 9). 

  

To validate that resulting files are representative of an entire samples sequences, the 

mean percentage difference, and standard error between expected hits based on the 

10% files and actual hits achieved with the 100% file were calculated. The expected 

total hits predicted by the 10% file was accurate to the 100% file within -0.007% 

(±1.101 SEM). Representing a difference of 0.07 hits within 1000.      
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Step 9. Randomly Select One of the Non-Redundant Sample Files 
In order eliminate the possibility for selection bias. A randomised number generator is 

used to determine which of the representative files (step 8) would be used for 

comparative analysis (step 10).  

 

For this, the /dev/urandom number generator available in the majority of Linux 

distributions used. In order to invoke it, the utility program grep is used. Grep allows 

users to search plain text data sets for lines matching a regular expression.  

 

To run using the Terminal, type:  
grep -m1 -ao ‘[0-9]’ /dev/urandom | head -n1 

 

The -m option ensures that only 1 line is returned from /dev/urandom. -a ensures that 

the line is processed as text and the o combination will only print matched, non-empty 

lines. -ao can also be written as -a -o in the above program if preferred. A simple 

regular expression is also specified to provide a single-character number range for 

grep to only return a single-digit number, specified with the ‘[0-9]’ regular 

expression pattern. These three options along with the regular expression, sanitise the 

output of the /dev/urandom program to ensure only single digit number characters are 

returned. This is then piped into the head command. The head command, with the -

n1 parameter will ensure that only the first number piped from grep is returned. 

 

The process will output a number corresponding to one of the split non-redundant 

sample files. This will become the users working file for subsequent steps.  

 

Step 10. Option 1. Compare Sample Sequences to a localised NCBI database 
(BLAST) 
Using this option, the representative sample file is used to compare its sequences to 

the entire National Centre for Biotechnology Information’s (NCBI) genomic database. 

Basic Local Alignment Search Tool (BLAST) is a multi-platform algorithm that allows 

users to query sample sequences against a specified database12,17,18. To run from the 
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Terminal, navigate to the folder containing the randomly selected representative 

sample file and type: 

 
blastn -task exec -query sample_cut.NR.split.fasta -db 

PATH/TO/DATABASE/nt -out sample_cut.NR.split.blast.txt -num_threads 

<NUMBER_OF_CORES> -word_size <HALF_VALUE_OF_CUT> 

 

*Example:  
blastn -task blastn -query B038_MC28.NR.02.fasta -db ~/ncbi-

blast/db/nt -out B038_MC28.NR.02.blast.txt -num_threads 16 -

word_size 14  

 

*The split refers to the split file (00-09) randomly selected in step 9. In this example 

02 is used.   

 

The -task exec option allows users to specify the type of search parameters best 

suited for the sample. The -task blastn and -task blastn-short options are best 

suited for interspecies comparisons using short sample sequences19. The later 

optimised for sequences shorter than 50bp. However, as most aDNA is 30-70bp in 

length10,20,21, we recommend the user utilise the task blastn option. 

 

The -db option refers to the location of the database. Here, the user specifies the path 

to the genomic database of choice. 

 

The -num_threads option allows users to specify the amount of processing power 

committable to a BLAST search. Each core in a computer processor typically has two 

threads available, we recommend specifying the maximum number of threads 

available to the user for fast processing. Thus, for a 32 core unit, a num_threads of 64 

can be used.    

 

The -word_size parameter specifies the number of base pairs required to confirm a 

match between a sample sequence and a reference sequence. Using -task blastn 
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this value is automatically set to 11bp19. We recommend using a word_size half the 

value of the smallest available sample sequences. In this case because we trimmed 

samples (step 3) at a value of 28bp the word_size used is 14.   

 

The output or -out file, contains all genomic matches and associated expect values. 

Text or txt format is used due to its versatility with any word processing program and 

subsequent alignment tools.   

 

Step 10. Option 2. Part 1. Make a de novo Comparative Database (BLAST) 
Using this option, the user can create a de novo genomic database for comparison 

with a representative sample file. This option can drastically reduce the amount of time 

committed to the blasting process. We recommend the use of this option if the user 

wishes to compare sequences to a specific database such as invertebrates or 

mammals. This option can also be used if searching for specific genomic alignments 

such as those identified in a zooarchaeological or archaeobotanical study of a site. 

However this will introduce a selection bias not representative of a true metagenomic 

study.  

For the purpose of this example, we downloaded the entire invertebrate 

database in the format of individual FASTA files following NCBI guidelines19. Once 

downloaded, the reference FASTA files (ending in the file extension .fna) are placed 

into a new directory folder and concatenated into a single FASTA file using the cat 

program (step 1). To run, open the Terminal and navigate to the newly created 

directory folder. Type: 

 
cat * > reference_database.fasta 

 

Example: 
cat * > All_Invertebrates.fasta && rm *.fna 

 

The * wildcard refers to all files within a specified directory.  
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The && logical operator is used to chain commands together in one execution, allowing 

a user to achieve a secondary action after the first action has been completed 

successfully. In this example, the removal of individual FASTA file after concatenation 

using the rm command, leaving only the full concatenated reference file (“.fasta”).  

 

To create a de novo database, the makeblastdb command as part of the BLAST suite 

is used19. The command converts a FASTA file into a reference database. To run from 

the Terminal, navigate to the directory containing the concatenated reference file and 

type the following:  

 
makeblastdb -in 

/PATH/TO/REFERENCE/DIRECTORY/reference_database.fasta -dbtype ‘nucl’ 

-out /PATH/TO/REFERENCE/DIRECTORY/reference_database 

 

Example: 
makeblastdb -in All_Invertebrates.fasta -dbtype ‘nucl’ -out 

~/Documents/Bioanalysis/databases/All_Invertebrates 

 

The -dbtype option refers to the type of reference sequences used. In this case nucl 

is used, short for nucleotide.  

 

In some situations a user may wish to use a genomic sequence not yet available via 

the traditional sources of NCBI or the University of California (UCSC)22,23. If this is the 

case, we recommend the user ensure sequences within the desired reference file be 

assigned unique identifier information to allow for downstream taxonomic assignment. 

This process should be performed before concatenation. To check this information 

using the grep program type: 

 
grep “^>” reference_sequence.fasta 

 

Example:  
grep “^>” bosTau8.fasta 
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The ^> regular expression in grep will print all lines that begin with the > character to 

the FASTA file specified and print it to the Terminal window as stdout 

 

In situations where this information is missing. Identifier data can be added using the 

following in-line perl script:  

 
perl -pi -e “s/^>/>Identifier_data-/g” reference_sequence.fasta 

 

Example:  
perl -pi -e “s/^>/>Bos_taurus-/g” bosTau*.fasta 

 

The -p option causes perl to assume a while loop will be used in the script. In 

combination with i, -pi specifies that files processed by the <> construct in the while 

loop are to be edited in-place. The -e option is used to specify one line of script entered 

into the command line. The script entered here is a search and replace operation to be 

applied to the FASTA file passed in after it. This is done by beginning with the s/ 

operator, followed by the regular expression ^> which will match all lines that begin 

with the > character, this will be replaced with the Identifier data and a – symbol (in the 

above example this is the text “Bos_taurus-”). Finally, the /g modifier applies the 

regular expression globally, i.e. to the whole file.  

In the example above the * wildcard is used to match all files that begin with the letters 

“bosTau” and end in “.fasta” 

 

Step 10. Option 2. Part 2. Compare Sample Sequences to de novo Database 
(BLAST) 

As specified previously, BLAST is a multi-platform algorithm that allows users to query 

sample sequences against a specified database12. In this example a de novo database 

is used. In the Terminal, navigate to the folder containing the randomly selected 

representative sample file and type: 

 



 xxiii 

blastn -task option -query sample_cut.NR.split.fasta -db 

PATH/TO/DE_NOVO_DATABASE/nt -out sample_cut.NR.split.blast.txt -

num_threads <NUMBER_OF_CORES> -word_size <HALF_VALUE_OF_CUT> 

 

Example:  
blastn -task blastn -query B038_MC28.NR.02.fasta -db 

~/Documents/Bioanalysis/databases/All_Invertebrates -out 

B038_MC28.NR.02.blast.txt -num_threads 16 -word_size 14  

 

Information regarding BLAST options used can be found in Step 10 (Option 1).   

 

Step 11. Compress BLAST file (Gzip) 
Following a successful BLAST, it is not uncommon that files will be several gigabytes 

in size. To optimise storage space and reduce processing time of subsequent 

assignment (Step 12) we would recommend zipping the “txt” file using the gzip 

program. gzip is a single-file, lossless data compression tool, that allows users to 

specify the level and speed of data compression from worst but fastest (1) to best but 

slowest (9). To run in the Terminal, navigate to the folder containing the “txt” file and 

type: 

 
gzip -<COMPRESSION_LEVEL> sample_cut.NR.split.blast.txt 

 

Example:  
gzip -9 B038_MC28.NR.02.blast.txt 

 

The resulting file will contain the file extension .gz  

  

Step 12. Import BLAST Data into MEGAN  
“MEtaGenome ANalyzer” or “MEGAN”, is a computer program that allows users to 

import and analyse large datasets of compared genomic sequences (via BLAST or 

other genomic comparison tools)24. During data import, MEGAN assigns a taxon 

identification to processed read results based on NCBI taxonomy. Using the lowest 
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common ancestor (LCA) algorithm, reads are assigned across a taxonomy (i.e. order, 

genus, tribe, etc.). The sequences which have a min-score within a specified 

percentage of the best alignments within a taxonomy are binned into the lowest 

possible common ancestor position. Sequences aligning to multiple taxa within a 

grouping are binned into a higher taxonomic level24 (i.e. sequences assigned to the 

genera Bos and Capra will be binned into the family Bovidae).  

 

Sequences are imported using a min-score (bit-score) of 40 within the top 10% of best 

alignments, and the default “naïve” LCA algorithm. A minimum of 1% of the total 

assigned reads is necessary to accept a taxon as present and use for downstream 

analyses25,26 (Paper 1, 3). 

 

The resulting taxonomic allocations inform the user on which reference sequences to 

download for in-depth sequence alignment downstream (step 14). It is important to 

note that any taxonomic assignments are representative of 10% the total sample pool 

as outlined in step 8, and can be multiplied by 10 to get the total expected genomic 

hits by taxonomy.  

 

Step 13. Cross Check BLAST Data using MGmapper (Optional) 
In some situations, the user may wish to cross-check BLAST data using a second 

method of mass comparative alignment. MGmapper is a web-based package that 

allows users to process raw sequencing data and perform reference-based sequence 

alignments (using NCBI genomic database) with post-processing taxonomic 

assignment at a species level27. It is important to note that distribution amongst an 

entire taxonomy is not applicable using this method, allowing only for genus and 

species-based comparisons.  

 

To run MGmapper, search for the following web address: 

https://cge.cbs.dtu.dk/services/MGmapper/. Using the default settings in double-

stranded best-mode with adapter trimming and a minimum alignment score of 20, 

upload the concatenated FASTQ file from step 1.  
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In best-mode, reads are assigned to solely one reference sequence after mapping to 

all specified genomic databases. We recommend using a minimum alignment score 

half the value of that used for MEGAN, in this case 20. This is because MGmapper’s 

four criteria to positively identify a taxonomy are optimised for larger sample sequence 

lengths, and are more prone to false negatives at lower bp lengths27. 

 

Genomic assignments (positive and negative) are output into downloadable xlsx 

Microsoft Excel files, accessible for 48 hours online.  

 

Step 14. Part 1. Build an FM-Index from a NCBI or UCSC FASTA Reference File 
(BWA) 

In order to perform an in-depth genomic alignment, a reference genome file in FASTA 

format must be provided. We would recommend using a well maintained and reviewed 

source for reference sequences such as NCBI or UCSC22,23. Reference genomes to 

be downloaded are determined by the genomic assignments achieved using BLAST 

(and MGmapper).  

 

Using NCBI as an example for how to download a reference file, visit: 

https://www.ncbi.nlm.nih.gov/. From the drop-down menu located next to the search 

bar, select “genome”. Type the name of the species desired within the search bar, 

preferably in Latin, and click enter. Once the new page has loaded, a box can be seen 

above the organism overview with three headings including one named “reference 

genome”. Here, the user can download sequences in FASTA format by clicking the tab 

“genome”. The download will result in a zipped FASTA file (fna.gz). Next, rename the 

file after the species, place the file within a new directory folder of the same name, and 

unzip using the gzip decompress command. From the Terminal, navigate to the 

directory created and type: 

 
gzip –d reference_sequence.fna.gz  

 

Example:  
gzip –d Bos_taurus.fna.gz 
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The -d option instructs the tool to “decompress” the file selected.  

 

“Burrows-Wheeler Aligner” or “BWA” is a software package for mapping low-divergent 

sequences to a large reference genome28. Because the software uses low-divergent 

sequences it is considered more stringent than mass alignment tools such as BLAST. 

BWA requires a specific FM-index set for alignment to take place. This can be 

constructed using the bwa index command. To run in the Terminal, navigate to the 

directory containing the blasted txt.gz file and type: 

 
bwa index reference_sequence.fna 

 

Example:  
bwa index Bos_taurus.fna 

 

The index command will result in six of the required seven index files for an alignment 

to take place, including the original .fna file, these include: .fna.amb, .fna.ann, 

.fna.bwt, .fna.pac, and .fna.sa. All files will have an identical base-name, allowing 

subsequent tools to recognise an index in its entirety regardless of the file extension. 

 

Step 14. Part 2. Retrieve Sequence Identifier Information by Creating a FAI File 
(SAMtools) 
The “FASTA index” or “FAI” file contains all sequence identifier information for a 

reference genome, including chromosome names, chromosome lengths, offset of the 

first base of each chromosome sequence, and the length of each FASTA line. This 

information allows subsequent tools or the user to efficiently query specific regions of 

a reference genome sequence.  
 

SAMtools is a set of utility commands that primarily allows users to view, read, write, 

and edit SAM, BAM and CRAM formatted files29. Additionally, SAMtools can extract 

sequence identifier information from FASTQ and FASTA indexed reference files. Using 

a FASTA reference file, a FAI file can be created using the faidx command. 
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To run from the Terminal, navigate to the directory created in Step 14 (Part 1), 

containing the reference genome .fna file. Type: 

 
samtools faidx reference_sequence.fna 

 

Example:  
samtools faidx Bos_taurus.fna 

 

The resulting file will contain an identical base-name with a .fai file extension and the 

.fna extension, reading as reference-sequence.fna.fai.  

 

Step 15. Compare All Sample Sequences to A Genomic Reference Sequence 
(BWA)  
As mentioned in the previous step BWA is a software package for mapping low-

divergent sequences to a large reference genome28, and is considered more stringent 

than methods of mass alignment (Paper 2). In this step, BWA is used to align (also 

referred to as mapping) sample sequences to a single reference genome using the 

aln command. We recommend the use of bwa aln over bwa-mem for aDNA sequences 

(30-70bp), as bwa-mem is optimised for sequences >70bp30, and it has been noted by 

users that bwa aln performs better with reads <70bp31,32. In order to perform 

alignment, the user will need the original FASTA file representing all sample 

sequences (generated in step 5). Using the Terminal, navigate to the directory 

containing the original sample FASTA file and type: 

 
bwa aln –l <EXCEED_LONGEST_SEQUENCE> 

./PATH/TO/REFERENCE/GENOME/FILE/FASTA sample_cut.fasta > 

sample_cut.species.sai 

 

Example:  
bwa aln –l 1000 –t 12 

~/Documents/Bioanalysis/Bos_taurus/Bos_taurus.fna B038_MC28.fasta > 

B038_MC28.BosT.sai  
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The -l option refers to “seed length” as part of the seeding process. Seeding can be 

explained as the finding of exact matches of part of a sample sequence with part of 

the reference sequence. The larger the seed length required (i.e. 300bp) the faster the 

alignment process but greater the chance for loss of accuracy. If used correctly a 

balance may be achievable. In the case of aDNA fragments, seeding is not 

recommended, owing to base substitutions and its highly fragmented nature. To 

disable seeding a seed length larger than the longest sample sequence can be 

specified, thus allowing damaged aDNA sequences to be aligned33. We recommend 

using a seed length of 1000.  

 

The -t option refers to the processing power in the form of “threads” that the user 

wishes to dedicate to the alignment process. The more threads available the faster the 

alignment process. Here we use 12.  

  

The resulting file with the .sai extension is an intermediate file containing “suffix array 

indexes” for interpretation and conversion into SAM format. 

 

Step 16. Convert the Aligned Reads to SAM format (BWA) 

Using the .sai file generated through alignment in step 15, BWA is further used to 

convert aligned sequences into “sequence alignment map” format or “SAM”. SAM is 

the most widely used format for the storing and manipulation of NGS generated 

nucleotide sequences. As such, the conversion of .sai files to .sam is essential for 

use with downstream packages. To convert in the Terminal using BWA28, and in the 

same directory as the .sai file type:  

 
bwa samse ./PATH/TO/REFERENCE/GENOME/FILE/FASTA 

sample_cut.species.sai sample_cut.fasta > sample_cut.species.sam 

 

Example:  
bwa samse ~/Documents/Bioanalysis/Bos_taurus/Bos_taurus.fna 

B038_MC28.BosT.sai  B038_MC28.fasta > B038_MC28.BosT.sam  
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The samse command generates alignments given single-end reads. Repetitive hits will 

be randomly chosen. 

 

Step 17. Quality Assurance of NGS Data (3): Confirm Number of Sequences (3) 
As previously mentioned, errors can occur with any format conversion and/or file 

manipulation. As such it is best practice to check data is consistent, throughout the 

bioinformatic pipeline and reduce possible complications downstream. Unlike previous 

quality checks,  the view command of the SAMtools software package is used29. In the 

same Terminal directory as the previous step, type the following: 

 
samtools view –c sample_cut.species.sam 

 

Example:  
samtools view –c B038_MC28.BosT.sam 

 

The -c option refers to “count”, instructing the Terminal to print only the number of 

alignments present within a file to stdout. Without this parameter all sequences are 

printed to the Terminal window.  

 

The resulting number generated is representative of the exact amount of sequences 

within the specified file and should match the total amount of sequences identified in 

previous quality assurance steps (4, 6).  

  

Step 18. Part 1. Clip Nucleotide Overhangs (Picard Tools) (Optional) 

A DNA overhang is a portion of unpaired nucleotides at the end of a DNA strand. 

During the library preparation phase of an aDNA extraction protocol. Enzymes are 

typically added to remove 3’ overhangs and fill-in 5’ overhanging ends8,34. The 

complimentary fill-in sequence to these authentic overhangs play an important role for 

the interpretation of aDNA deamination damage patterns34.   

 



 xxx 

Occasionally, artificial overhangs occur during the amplification phase using 

polymerase chain reaction (PCR). These artificial overhangs are typically small and 

palindromic in nature35. In order to ensure artificial PCR overhangs are removed 

allowing for a more accurate assessment of DNA damage patterns, the soft-clipping of 

nucleotide overhangs may be performed.  

 

Picard tools are a set of java encoded command-line tools for manipulating NGS data 

in SAM, BAM, CRAM and VCF formats36. The CleanSam command performs soft-

clipping of nucleotide overhangs beyond the end of reference alignment36, thereby 

removing artificial PCR artefacts. To run, open the Terminal and navigate to the 

directory containing the aligned SAM file and type: 

 
java –jar /PATH/TO/picard.jar CleanSam I=sample_cut.species.sam 

O=sample_cut.species.cleaned.sam 2> sample_cut.species.cleaned.txt 

 

Example:  
java –jar ~/Documents/Bioanalysis/picard.jar CleanSam 

INPUT=B038_MC28.BosT.sam OUTPUT=B038_MC28.BosT.cleaned.sam 2> 

B038_MC28.BosT.cleaned.txt 

 

The I or INPUT parameter refers to the original inputting file. 

 

The O or OUTPUT parameter refers to the desired outputting file. 

 

Similar to previous steps, the inclusion of the 2> redirection operator redirects Terminal 

error output into a specified written file format, which is used as a report. This allows 

the user to view information regarding which sequences received soft-clipping of 

overhangs.  

 

We recommend setting picard as an environment variable in your ~/.bash_profile, 

instead of evoking java –jar /PATH/TO/picard.jar each time. This can be 

achieved by inserting the below line into your bash profile 



 xxxi 

alias picard=”java -jar /PATH/TO/picard.jar”  

 

You will need to reference the absolute path to the location of picard.jar 

 

In our experience, very few sequences possess nucleotide overhangs. This is most 

likely a result of the type of enzymes used during the DNA library preparation and 

amplification phases8,10. For this reason, this step is marked as “optional”.  

 

Step 18. Part 2. Quality Assurance of NGS Data (4): Confirm Number of 

Sequences (4) (Optional) 
The clipping of DNA overhangs, even if present, should not result in the loss of DNA 

sequences within a sample file. Occasionally, errors can occur when outputting data 

into a new file. As such quality assurance steps are needed to ensure the data remains 

consistent and reduce downstream complications. In the Terminal, navigate to the 

directory containing the file ending in .cleaned.sam and type: 

 
samtools view –c sample_cut.species.cleaned.sam 

 

Example:  
samtools view –c B038_MC28.BosT.cleaned.sam 

 

The printed number to stdout is representative of the exact amount of sequences 

within the specified file and should match the total amount of sequences identified in 

previous quality assurance steps (4, 6, 17). 

  

Step 19. Extract Mapped (Aligned) Reads (SAMtools) 

Not all of a sample’s sequences will be aligned to a reference genome. For accurate 

downstream assessment of a taxonomy’s ancient authenticity, those mapped reads 

must be separated from the remaining non-aligned sequences. This is performed using 

the SAMtools “view” function29. Using the Terminal, in the directory containing the last 

worked upon file (either ending in .sam or .cleaned.sam), type the following: 
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samtools view –Sb –q <MAP_QUALITY> –F 4 

sample_cut.species.cleaned.sam > 

sample_cut.species.cleaned.mappedQuality.bam 

 

Example:  
samtools view –Sb –q25 –F 4 B038_MC28.BosT.cleaned.sam > 

B038_MC28.BosT.cleaned.mappedQ25.bam 

 

The -Sb option refers to the input file as SAM format S and the desired output file as 

BAM format b. As previously mentioned, this can also be expresses as -S -b in the 

above command. BAM or “Binary Alignment Map” is the compressed binary 

representation of SAM29. While SAM format is designed to be readable by conventional 

text-based processing programs, allowing human visualisation of NGS data, the BAM 

format is designed for quick computational processing, ideal for subsequent 

processes. 

 

The -q option refers to the desired mapping quality of genomic alignments. All 

alignments with a mapping quality less than the desired threshold are skipped. For 

aDNA it is standard to use a map quality score between 25 and 3025,33. We found that 

aDNA alignments fell within a map quality score between 25 and 30. Here we use 25. 

 

The –F option relates to the “filtering flag”. Reads matching the specified flag are 

segmented out. For this step we use a flag of “4” (Decimal) or “0x4” (Hexadecimal), 

resulting in segmentation of unmapped reads from those mapped reads29.  

 

The resulting BAM file will be greatly reduced in size and contain only the mapped 

sample reads to the desired reference genome.    

 

Step 20. Quality Assurance of NGS Data (5): Confirm Number of Mapped Reads 
(1) 
As highlighted in previous quality assurance steps, to ensure data consistency 

throughout the bioinformatic pipeline and to reduce chances of downstream 
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complications, it is critical to implement quality assurance checks. At this stage the 

user has extracted all mapped reads from a sample, meaning the number of sample 

sequences within the working file have reduced compared to that identified in previous 

quality assurance steps (4, 6, 17, 18). As such, it is important to identify the new 

working number of sequences within the most recent file (.bam) and check its 

consistency with the originating input (.sam).  

 

To identify the number of mapped sequences present within the BAM file, the 

SAMtools view command with the -c option as described in step 17, is used29. To run 

from the Terminal, navigate to the directory containing the BAM file and type: 

 
samtools view -c sample_cut.species.cleaned.mappedQuality.bam 

 

Example:  
samtools view -c B038_MC28.BosT.cleaned.mappedQ25.bam 

 

The resulting number represents the exact amount of mapped sequences present 

within the file.  

 

To test the consistency of the outputted mapped data with that from the originating 

input file used in step 19, the same SAMtools view command is used. However, the 

lack of a specified output parameter used in conjunction with the -c option, instructs 

the command to print the exact number of mapped sequences within a file to the 

Terminal window as stdout. To run in the Terminal, navigate to the directory 

containing the SAM file and type: 

 
samtools view –q <MAP_QUALITY> –F 4 sample_cut.species.cleaned.sam  

 

Example:  
samtools view –q25 –F 4 B038_MC28.BosT.cleaned.sam 

 

The resulting number should match that identified from the BAM file.  
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At this point, a minimum threshold of 250 genomic hits are necessary for a taxon to be 

processed downstream. This is because alignments with less than 250 reads were 

often found insufficient for mapDamage to plot damage patterns effectively. 

 

Step 21. Sort Mapped Reads by Leftmost Coordinates (SAMtools) 

The sorting of DNA sequences by order of occurrence along a reference genome is 

required for most downstream applications. This is particularly true for the removal of 

PCR duplicates (explained in step 23). Typically, sorting is performed using the 

mapped coordinate position of a sequence against the reference genome.  

 

SAMtools sort command uses the leftmost mapped coordinate position of a sequence 

to accomplish this29. To run from the Terminal, navigate to the directory containing the 

file ending in .mappedQuality.bam and type the following:  

 
samtools sort sample_cut.species.cleaned.mappedQuality.bam > 

sample_cut.species.cleaned.mappedQuality.sorted.bam 

 

Example:  
samtools sort B038_MC28.BosT.cleaned.mappedQ25.bam > 

B038_MC28.BosT.cleaned.mappedQ25.sorted.bam 

 

The resulting BAM file will now contain all mapped sequences in order of occurrence 

along the reference genome.  

 

Step 22. Quality Assurance of NGS Data (6): Confirm Number of Mapped Reads 

(2) 
To check that sample data remains consistent throughout the pipeline, with no errors 

occurring during a bioinformatic process, a file is quality-assessed to reduce the 

likelihood for downstream complications. As with previous steps, the SAMtool’s view 

command in conjunction with the -c option is used to read and print the amount of 
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sequences present within a BAM file29. To run in the Terminal, navigate to the directory 

containing the file ending in .sorted.bam and type: 

 
samtools view -c sample_cut.species.cleaned.mappedQuality.sorted.bam 

 

Example:  
samtools view -c B038_MC28.BosT.cleaned.mappedQ25.sorted.bam 

 

The resulting number should match that identified from the inputting BAM file in step 

20.  

 

Step 23. Option 1: Remove Duplicate Sequences from Mapped Data using 5’ 

coordinate position (SAMtools or Picard)  

The definition of a PCR duplicate is complicated and subject to much debate within the 

scientific community. For the purposes of this study we define a duplicate as the 

presence of two or more identical DNA sequences.  

 

Presence of PCR duplicates can be problematic in the assessment of authentic DNA 

sequences. The most common reason being the potential for amplification bias, also 

referred to as base composition bias, introduced during library construction resulting 

in proportional over representation of specific areas of coding37. To ensure the integrity 

of authentic DNA data, and mitigate the potential effects of duplicate sequences, they 

are bioinformatically removed.  

 

Method of duplicate removal can vary as can the parameters defining a duplicate 

sequence. The rmdup command of SAMtools identifies PCR duplicates by external 

coordinate location of outer mapped reads and removes them29,38. If two or more reads 

have the exact same 5’ start position coordinates, the highest map quality score is 

retained and the others removed. The same can also be accomplished on the reverse 

3’ end of a sequence depending on removal option selected. However, it is important 

to note that the rmdup command does not work for unpaired sequences or those 

mapped to different chromosomes. Meaning a sequence with the same 5’ start 
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coordinate as another sequence but mapped to a different chromosome will be 

removed as a duplicate.  

 

Picard’s MarkDuplicates command likewise uses the 5’ coordinates as a means for 

duplicate removal, however differs from SAMtool’s rmdup, by taking into account the 

intrachromosomal sequences36,38. Additionally, Picard takes into account soft-clipping 

at the 5’ start position of mapped reads and makes calculations based on where the 5’ 

start position would be if the entire sequence were mapped to the reference genome 
36,38. However, the use of external coordinate location as a method for duplicate 

removal in both methods cannot account for internal sequence variations such as 

single nucleotide polymorphisms (SNPs), resulting in a potential loss of authentic DNA 

sequences. 

 

Depending on the size of the originating file, processing speed and memory 

consumption of the duplicate removal process may be taken into consideration. 

Previous studies have shown SAMtools as more proficient in this regard using 

substantially less memory than Picard38. For this reason, both options have been 

detailed below. Where memory is not of concern, we would recommend the use of 

Picard’s MarkDuplicates over SAMtool’s rmdup.  

 

To run SAMtool’s rmdup from the Terminal, navigate to the directory containing the file 

ending in .sorted.bam and type:  
samtools rmdup -<REMOVAL_OPTION>  

sample_cut.species.cleaned.mappedQuality.sorted.bam 

sample_cut.species.cleaned.mappedQuality.sorted.rmdup.bam 2> 

sample_cut.species.cleaned.mappedQuality.sorted.rmdup.txt 

 

Example:  
samtools rmdup -s B038_MC28.BosT.cleaned.mappedQ25.sorted.bam 

B038_MC28.BosT.cleaned.mappedQ25.sorted.rmdup.bam 2> 

B038_MC28.BosT.cleaned.mappedQ25.sorted.rmdup.txt 
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The <REMOVAL_OPTION> option allows users to select the type of external coordinate 

matching for duplicate removal. The -s (lower-case s) option removes duplicates for 

single-end matches at the 5’ location only. The -S (upper-case S) option removes 

duplicates for single and paired-end matches, meaning matches made at the 5’ end of 

a sequence or at the 3’ end separately will be removed. Sequences have been shown 

to decline in base quality at the 3’ end of a read1, usually resulting in the soft clipping 

of these bases during BWA alignment. As such, the removal of sequences based 

solely on a 3’ match is not advised. We would recommend the use of the -s (lower-

case s) option to reduce the likelihood of authentic DNA removal.    

 

To run Picard’s MarkDuplicates from the Terminal, navigate to the directory 

containing the file ending in .sorted.bam and type the following: 

 
java –jar /PATH/TO/picard.jar MarkDuplicates 

I=sample_cut.species.cleaned.mappedQuality.sorted.bam 

O=sample_cut.species.cleaned.mappedQuality.sorted.markdup.bam 

M=sample_cut.species.cleaned.mappedQuality.sorted.markdup.txt 

REMOVE_DUPLICATES=True 

 

Example:  
java –jar ~/Documents/Bioanalysis/picard.jar MarkDuplicates 

I=B038_MC28.BosT.cleaned.mappedQ25.sorted.bam O= 

B038_MC28.BosT.cleaned.mappedQ25.sorted.markdup.bam M= 

B038_MC28.BosT.cleaned.mappedQ25.sorted.markdup.txt 

REMOVE_DUPLICATES=True 

 

The M or METRICS_FILE option refers to the text-based log detaining the duplicate 

sequences removed.  

 

The REMOVE_DUPLICATES option used in conjunction with the Boolean True instructs 

the process to remove the duplicate sequences from the outputting file.  
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Both methods result in a BAM file containing “unique” DNA sequences. The number of 

duplicate sequences removed are available from the resulting txt file.  

  

Step 23. Option 2: Remove Duplicate Sequences from Mapped Data (aweSAM) 
As mentioned above, both SAMtools and Picard tools identify PCR duplicates by 

external coordinate location of outer mapped reads at the 5’ potion29,36. However, 

depending on the type of DNA sample sequenced, DNA can share the same outer 

coordinate location against a reference genome but not represent the same DNA 

fragment. Instead possessing different internal variations, this is commonly seen in the 

occurrence of SNPs. 

 

Due to the multi-origin nature of a metagenomic study, we recommend the use of a 

duplicate removal process that takes into account the coordinate position of a 

sequence at both the 5’ and 3’ ends as well as accompanying strand information.  

 

aweSAM is a SAM assembly collapser that uses a sequence’s coordinates (5’ and 3’) 

and strand information as the unique insert identifiers, while keeping the read with the 

highest mapping quality score39. The use of multiple unique insert identifiers allows 

users to conserve reads that may be lost through other duplicate removal command 

tools. It should be noted that depending on the size of the input file this process can 

be time intensive. If time is of concern, we would recommend using one of the duplicate 

removal functions listed in Option 1.   

 

To run aweSAM, first create a bash shell script of aweSAM_collapser by downloading 

the script at the link below and ensuring the runtime permissions are updated to allow 

you to execute the file using sudo chmod command. A downloadable aweSAM script 

can be found here: https://gist.github.com/jakeenk.  

 

Lastly, edit the final line of code within the aweSAM_collapser script to also report the 

total number of duplicate sequences removed. The script can be edited using the vim 

program, followed by using i to go into Insert mode, then pressing Esc followed by 
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typing :wq to save and quit. This can be performed using the echo program to print to 

stdout. The line should now read: 

 
echo $1" collapsed to "$2"; "$duprate"% were duplicates" 

“”$duplicates” duplicates removed” 

 

Once created, open the Terminal and navigate to the directory containing the 

“sorted.bam” file, then type the following:     

 
samtools view -h -o 

sample_cut.species.cleaned.mappedQuality.sorted.preawesam.sam 

sample_cut.species.cleaned.mappedQuality.sorted.bam && bash 

~/PATH/TO/SHELL/SCRIPT/aweSAM_collapser.sh 

sample_cut.species.cleaned.mappedQuality.sorted.preawesam.sam 

sample_cut.species.cleaned.mappedQuality.sorted.awesam.sam && 

samtools view -Sb 

sample_cut.species.cleaned.mappedQuality.sorted.awesam.sam > 

sample_cut.species.cleaned.mappedQuality.sorted.awesam.bam 

  

Example:  
samtools view -h -o 

B038_MC28.BosT.cleaned.mappedq25.sorted.preawesam.sam 

B038_MC28.BosT.cleaned.mappedq25.sorted.bam && bash 

~/Documents/Bioanalysis/aweSAM_collapser.sh 

B038_MC28.BosT.cleaned.mappedq25.sorted.preawesam.sam 

B038_MC28.BosT.cleaned.mappedq25.sorted.awesam.sam && samtools view 

-Sb B038_MC28.BosT.cleaned.mappedq25.sorted.awesam.sam > 

B038_MC28.BosT.cleaned.mappedq25.sorted.awesam.bam 

 

The -h option informs the command to include header information in the outputting file. 

 

The -o option refers to the desired outputting file.    
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The use of bash here instructs the process to read a series of executable commands 

contained within the aweSAM_collapser shell script.   

 

The resulting awesam.bam file contains unique DNA sequences. The percentage and 

number of duplicate sequences removed from the originating input file are printed to 

the Terminal window. 

 

The samtools and bash programs are all linked together using the && logical operator, 

which will allow the subsequent program to run if the previous program runs 

successfully. The output of the last samtools is redirected to a BAM file using >. 

 

Step 24. Quality Assurance of NGS Data (7): Confirm Final Number of Reads 

Quality assurance of NGS data is critical for ensuring consistent data flow and reducing 

the chances of downstream complications. By this step the user has removed all 

possible PCR duplicates from a mapped DNA sample. This means that the total 

number of DNA sequences within the most recently outputted file has reduced 

compared to the amount identified from the input file during the previous quality 

assurance step (22). As such, the new working number of sequences must be 

identified and checked for consistency.  

 

First, we utilise the view command of SAMtools in conjunction with the -c option, as 

described in step 17, to identify the new number of DNA sequences29. Using the 

Terminal, navigate to the directory containing the duplicates removed BAM file (in this 

example, the file ending in .awesam.bam) and type: 

 
samtools -c  

sample_cut.species.cleaned.mappedQuality.sorted.awesam.bam 

 

Example:  
samtools -c B038_MC28.BosT.cleaned.mappedQ25.sorted.awesam.bam 
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The exact number of unique sample sequences will be printed within the Terminal 

window.  

 

To check the consistency of data flow. The total number of duplicates removed are 

added to the remaining number of DNA sequences identified within the newest BAM 

file. The resulting number should amount to the sequences present within originating 

input file identified in steps 20 and 22.  

 

Step 25. Map Deamination Damage Profile of Mapped Reads (MapDamage 2.0 / 

Python / R) 

MapDamage is a computation framework written in Python and R, that tracks and 

quantifies aDNA damage patterns among input sequences generated by NGS 

platforms40,41. This is performed using a statistical model based on the damage profile 

of aDNA fragments described by Briggs34. Full details of this framework can be 

accessed via publication40,41.  

 

To run from the Terminal, navigate to directory containing the duplicate removed BAM 

file (in this example, the file ending in .awesam.bam) and type: 

 
mapDamage -i 

sample_cut.species.cleaned.sorted.mappedQuality.awesam.bam -r 

/PATH/TO/REFERENCE/SEQUENCE/FASTA/FILE --merge-reference-sequences -

-no-stats 

 

Example:  
mapDamage B038_MC28.BosT.cleaned.mappedQ25.awesam.bam -r 

~/Documents/Bioanalysis/Bos_taurus/Bos_taurus.fna --merge-reference-

sequences --no-stats 

 

The -i option refers to the file containing sample sequences to be tested. 
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The -r option refers to the location of the reference genome to which the sample 

sequences have been aligned.  

 

The --merge-reference-sequences option instructs the program to ignore reference 

sequence names when tabulating reads. This greatly reduces the amount of memory 

and disk space used during computation, reducing the likelihood of a code 9 kill error. 

We would strongly recommend the use of this option for metagenomic studies or those 

with large sample sizes.  

 

The --no-stats option disables the statistical estimation of posterior intervals and 

distributions. Removal of this option activates statistical estimation by default. The use 

of this option greatly reduces the processing time required for mapDamage to complete 

and as such we would recommend the use of this option if statistical estimation is not 

required. In the case of this study, statistical estimation of posterior intervals and 

distributions are not required for the confirmation of an ancient taxa.  

 

Completion of the process will result in the creation of a new directory under the same 

name as the inputting file. Details for each output file can be found disclosed by the 

authors online at: https://ginolhac.github.io/mapDamage/.  

 

Taxa can be identified as ancient by assessing the frequency of base substitutions 

located at the Terminal ends of sample sequences. This data can be accessed via the 

5pCtoT_freq.txt file for 5’ C>T substitutions and the 3pGtoA_freq.txt file for G>A 

substitutions at the 3’ end. The same data can be graphically visualised by opening 

the fragmentation_plot.pdf file. A threshold of ≥0.05 (representing 5% damage) 

can be used to identify potentially ancient taxa using an exploratory extraction protocol 

such as the Collin method42,43 (Papers 1, 3). These taxa identifications can be used for 

the selection of probes for subsequent DNA capture techniques and reassessed using 

a higher damage threshold. Any taxa reaching a threshold ≥0.10 (10% damage) can 

be considered definitively ancient in origin.  
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