
 i

Supplementary Information For: An open-sourced bioinformatic

pipeline for the processing of Next-Generation Sequencing derived

nucleotide reads: Identification and authentication of ancient

metagenomic DNA.
*THOMAS C. COLLIN1, KONSTANTINA DROSOU2,3, JEREMIAH DANIEL

O’RIORDAN4, TENGIZ MESHVELIANI5, RON PINHASI6, ROBIN N. M. FEENEY1

1School of Medicine, University College Dublin, Ireland

2Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester,

United Kingdom
3Manchester Institute of Biotechnology, School of Earth and Environmental Sciences,

University of Manchester, United Kingdom
4j.daniel.oriordan@icloud.com

5Institute of Paleobiology and Paleoanthropology, National Museum of Georgia,

Tbilisi, Georgia
6Department of Evolutionary Anthropology, University of Vienna, Austria

*Correspondence: thomas.c.collin@icloud.com

Next Generation Sequencing
Modern day next generation sequencing platforms (Illumina) use a process known as

sequencing by synthesis. In this process, a DNA library is prepared into a sequencing

sample pool by fragmenting DNA into pieces no larger than 200 base pairs (bp).

Custom identifying adapters are added to the ends of a DNA strand and the sample

pool is flowed across the solid surface of the flowcell1. A flowcell can be described as

a glass slide with channels through which polymerases, deoxynucleotide triphosphates

(dNTPs) and buffers can be passed. Each nucleotide passing into a flowcell is

annealed to a complementary fluorescently tagged dNTP that also serves as a

reversible terminator for polymerisation1,2. The flowcells allow for clonal clustering of

DNA molecules in a PCR process known as bridge amplification3,4. The clustering

allows for greater fluorescence and improved image analysis. Each flowcell consists

 ii

of four lanes supplied by a single reservoir, allowing for simultaneous processing of

millions of template DNA molecules.

Unlike other sequencing devices, NextSeqs devices employed here use 2-

channel sequencing; only two types of fluorescent dyes are used, red and green5. “C”

nucleotides are tagged with a red fluorophore, “T” with a green fluorophore and “A”

nucleotides are tagged using both red and green fluorophores (imaging as yellow). The

remaining “G” nucleotides are not tagged with a dye. Towards the end of each

sequencing cycle a red and green image are taken and a cleaving enzyme released

to remove the fluorophore tagged dNTP for the next annealing cycle to begin and so

on. Resulting image data is converted into nucleotide sequences for each of the

flowcell lanes5. This data is output as four fastq.gz files of similar size. These files form

the source material for subsequent bioinformatic assessment.

The Bioinformatic Pipeline: USER MANUAL
Here, we present a detailed step-by-step instructional manual for the assessment of

metagenomic ancient DNA (aDNA) from anthropogenic sediments. Each step will

highlight why a process is undertaken, what a process does to the inputting genomic

data and how to perform each process using a Linux based operating system.

Examples are provided for each step. Note that not all Linux operating systems are the

same, however the examples throughout should function on a bash-based Unix shell

environment. The shell environment will be referenced as “Terminal” throughout.

Getting started: How to set up a PATH

In order to begin calling commands in your Terminal, it is important that they are

located in a folder that is part of your PATH on your computer. This is a list of directories

your Terminal will search to find the requested executable command. In Linux,

common folders that exist on your PATH by default include /usr/bin (common utilities),

/usr/local/bin (user-installed executables), /usr/local/sbin (user-installed executables)

and /usr/sbin (system daemons and system utilities). By typing the below command

into your Terminal, you will see what folders are currently in your PATH:

 iii

echo $PATH

Where $PATH is a global variable in your Terminal to define where executable

commands are located.

In instances when you are installing new programs, you may choose not to include

them in your computer’s default PATH directories. This allows you to maintain custom

programs in a separate directory as well as ensure that default programs are not

overwritten by a program of the same name. In order to add a custom directory to your

PATH, you can type the below command:

export PATH=$PATH:/location/of/your/custom/directory

It is important to note however, that the above setting will modify your PATH for that

shell session only. Additional shell sessions will not load the custom directory into the

PATH. In order to ensure that your custom directory is loaded into the PATH at every

shell launch varies depending on the Linux distribution being used. Here, we will use

the .bash_profile file for the bash shell.

In a new shell window, type the below command to launch vim, a command line text

editor using the Terminal window.

vim ~/.bash_profile

Press the i character to enter insert mode. Next, add the export line described above

to this file. Once inserted, press the Esc key followed by typing :wq! and then press

Enter. Esc will exit insert mode, the : will enter a command, w will write to the file being

edited and q! will exit the vim program.

Now, with each launch of your shell, your custom directory will be loaded into the

PATH.

 iv

Step 1. Concatenate Sequencer Output Files

Upon completion of a NextSeq sequencing run, the system will output four zipped files

(fastq.gz) for each sample sequenced. In this step the user will combine these four

files into one large zipped file representing all extracted sequences for the given

sample. The cat program, short for “concatenate” (meaning “to link”) allows the

Terminal to read multiple files sequentially and output them to the Terminal. To run

from the Terminal, navigate to the directory containing the desired NextSeq output files

and type:

cat sample_file_1.fastq.gz sample_file_2.fastq.gz

sample_file_3.fastq.gz sample_file_4.fastq.gz >

sample_combined.fastq.gz

*Example:
cat B038_S1_L001_R1_001.fastq.gz B038_S1_L002_R1_001.fastq.gz

B038_S1_L003_R1_001.fastq.gz B038_S1_L004_R1_001.fastq.gz >

B038_combined.fastq.gz

*In the example “B038” represents a unique sample code

The redirection command, executed by using >, is used to write the Terminal output to

a specified file, instead of to the Terminal output, known as standard out or stdout.

This file will either be created if it doesn’t exist or overwritten if it does exist.

Note that within the NextSeq output file names the “L001-4” refers to the lane within

the sequencing flowcell in which the data originated. Combining the four files into one

reduces the need for repeated processing at subsequent steps.

Step 2. Quality Control of NGS data (FastQC)

FastQC6 is a software package that allows the user to perform quality control checks

on raw sequence data coming from NGS platforms. FastQC can be run as a program

 v

or directly using the Terminal. To run from the Terminal, navigate to file directory and

type the following:

fastqc -t <THREADS_AVAILABLE> sample.fastq.gz

Example:
fastqc -t 12 B038_combined.fastq.gz

The -t option refers to the amount of processing power or “threads” the user wants to

dedicate to the program. Increasing the amount of threads available will increase the

processing speed. For a large file, such as those resulting from metagenomic studies,

we would recommend using a minimum of 12 threads. The number of threads available

to your program would depend on the number of processors and cores each processor

has in your computer.

This will result in the generation of two files: a sample.fastqc.html containing the

quality analysis and a zipped folder (containing the same information).

From the “basic statistics” module shows the total number of sequences, sequences

tagged as poor quality, largest sequence length, and %GC can be viewed.

The “per base sequence quality” module displays the average phred quality score (Y

axis) of all sequences by base position within a read (X axis). For aDNA sequences,

the user should still obtain high phred quality scores for the majority of sequences

(preferably above 30). Phred scores are important for understanding the quality of

obtained sequences7. The higher the phred value the better base cell accuracy is

achieved (Table SI 1).

 vi

Table SI 1. Understanding Phred Quality Scores and Base Call Accuracy. The central

column shows the probability of an incorrect base call associated with a phred quality

score and the representative accuracy of sequence composition.

Phred Quality Score Probability of incorrect base call Base call accuracy

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.90%

40 1 in 10000 99.99%

50 1 in 100000 99.999%

The “per base sequence content” module displays the base content (Y axis) of all

sequences by position in a read (X axis). In a random DNA library, the user would

expect little to no difference between the bases of a sequencing run, meaning the lines

in the plot should run parallel with each other. It is likely that FastQC will flag this

module with a warning due to adapters changing the value of “G” and “C” base content

(GC) (Figure SI 1A)6. Upon trimming the sample of adapters (step 3), the user can

check the sequences again to see little difference between the bases from the 10th to

74th base pair (10-74bp).

For ancient DNA samples, it is important to note that the first 9 base positions are

individual measures that tend to deviate by 10% due to the addition of oligonucleotides

at the library preparation phase. The subsequent positions are binned averages,

resulting in what should be smooth lines (Figure SI 1B) between 10-74bp. It has been

noted that % base composition at the ends of reads that have undergone aggressive

adapter trimming (such as that in step 3) are likely to be spurious with sudden

deviations in composition6. For this reason, it is likely a trimmed sample will flag as

failed with the last base position falsely deviating by more that 20%.

 vii

Figure SI 1. Sequence Content Across all Bases Using FastQC. (A) Prior to adapter

trimming. (B) Post-trimming of adapters. The arrow highlights an area of difference.

 viii

The “per sequence GC content” module measures the mean GC content (X axis)

across the length of each sequence (Y axis). Typically, a user would expect to see

normal distribution of GC content where a central peak corresponds to the overall GC

content of the underlying genome (i.e. 41.6% in the Homo sapiens genome if a sample

is taken from human bone). While a small shift of an expected GC distribution is

indicative of a systematic bias independent of base position, an unusual shaped

distribution typically indicates the presence of other underlying genomes6, or

contamination. As the FastQC program does not know the GC content of the

underlying genome, the modal GC content is calculated from observed data and used

to build a reference distribution. A warning is raised when the sum of deviations from

the modal distribution represents more than 15% of reads (Figure SI 2A). Failure is

flagged when deviations amount to more than 30% of all reads. By its very nature a

metagenomic sample it is expected to have multiple underlying genomes represented

and thus a warning or failure of this module is expected. Upon extracting the mapped

sequences (step 19) aligned to a desired genome, the user can import into FastQC

and compare the mapped %GC to compare to expected GC content. In this case the

modal GC content should conform to the desired genomes overall %GC, with a normal

peak distribution pattern (Figure SI 2B).

 ix

Figure SI 2. GC Content Across all Sequences Mapped to a Desired Genome (i.e.

Homo sapiens) Using FastQC. (A) Prior to the extraction of mapped sequences. (B)

Post extraction of mapped sequences with expected %GC for Homo sapiens. The

mean percentage of “G” and “C” bases are plotted for all sequences within a sample.

The arrow highlights an area of difference.

The “sequence length distribution” module measures the sequence length (X axis) over

all sequences (Y axis). If the user performs FastQC prior to the removal of adapters

(step 3), the length distribution will always peak at 76bp as the max read length setting

 x

on the NextSeq platform using the 500/550 high output V2 (75 cycle) reagent kit

(Figure SI 3A). Upon trimming the sample of adapters (step 3) the user can check the

sequences again to see a more distributed sequence pattern. Note that the module

will flag a warning if all sequences are not the same length6. For ancient DNA samples,

following the trimming of adapter indexes, the user should expect a distribution of

sequences, usually accumulating in a short peak around the 35-50bp mark and a larger

peak at the 74-76bp mark (Figure SI 3B).

 xi

Figure SI 3. Distribution of Sequences by Length (bp) Using FastQC. (A) Prior to

adapter trimming. (B) Post-trimming of adapters. All sequences present within a

sample sorted according to length of sequence strands. The arrow highlights an area

of difference.

The “adapter content” module displays a cumulative percentage of the proportion of

the user’s library (Y axis) which has seen adapter sequences at each position (X axis).

Once an adapter sequence has been read, it is counted as present through to the end

of a read, thereby increasing the percentage of adapter content as read length

continues. The user should expect to fail this module (adapter presence on more than

10% of reads) if analysing sequences prior to the trimming of adapters. Post removal

of adapter sequences (step 3), the user should expect to pass this module with 0% of

all sequences showing evidence for adapters.

Step 3. Removal of Adapter Sequences (cutadapt)
Adapter sequences are synthesised oligonucleotides that can be added to the ends of

DNA for a variety of applications. In aDNA research, adapters provide two functions,

to stabilise authentic damaged sequences and to attach index sequences for sample

identification after sequencing8. Post sequencing adapters are removed to leave only

authentic DNA sequences.

cutadapt is a software package that allows users to search all reads within a given

sample for a specified adapter sequence and filter reads according to a minimum

desired threshold, otherwise known as trimming or a cut9. To run from the Terminal,

navigate to the directory containing the combined.fastq.gz file (from step 1) and

type:

cutadapt -a <ADAPTER_SEQUENCE_USED> -O 1 -m

<MININMUM_CUT/THRESHOLD_DESIRED> combined.fastq.gz >

sample_cut.fastq 2> sample_cut.txt

 xii

*Example:
cutadapt -a AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC -O 1 -m 28

B038_combined.fastq.gz > B038_MC28.fastq 2> B038_MC28.txt

*In the example “MC28” refers to minimum cut (length) used.

The -a option refers to the adapter sequence used during the library preparation phase

ligated to the 3 prime (’) end of a sequence. The adapter and anything that follows is

removed and discarded from a sequence. For aDNA the majority of authentic aDNA

sequences are shorter than the maximum sequencing read length (76bp), thus part of

the adapter is usually found at the 3’ end of reads10.

The -O option is the minimum overlap length of bases that can match between the

specified adapter and a read before removal of those bases. If a read contains a partial

adapter sequence shorter than the minimal overlap length, no match is registered and

no bases removed. For cutadapt, the default setting is “3” (bp)9, for aDNA “1” (bp)

should be used, meaning if overlap between the adapter and a read is shorter than

1bp the read is not altered, thereby reducing the number of authentic aDNA bases

from being removed erroneously.

The -m option parameter allows the user to discard processed reads that are shorter

than the specified length (bp) after adapter removal. For aDNA a minimum length value

of 28bp is used, being the lowest identifiable size of authentic ancient reads.

This program uses a standard input (stdin) and output (stdout) format, allowing the

user to output both a trimmed sequences file (using the redirection command >), and

a redirected standard error stream (stderr) and discarded reads report in the format

of a text file (using the redirection command 2>). Upon completion of cutadapt the

user may want to quality check sequences using FastQC as outlined in step 2.

 xiii

Step 4. Quality Assurance of NGS Data (1): Confirm Total Number of Sequences
(1)

Occasionally errors can occur with the format conversion, manipulation, or unzipping

of a file, it is best practice to introduce checks to ensure data is consistent (integrity)

and reduce possible complications with downstream bioinformatic processes.

The wc utility program allows users to bioinformatically count the number of lines,

words, and bytes contained within the specified input file

The addition of the -l option instructs the command to only count the total number of

lines within the specified input file. The number of lines counted can then be divided

by four to give the user the total number of sequences within the trimmed FASTQ file.

The total number of lines counted are divided by four on account of the formatting of

FASTQ files. Each sequence present is represented by four lines of code11. The first

and third line consist of sequence identifier information with first line identified with an

“@” symbol, and the third a “+” character, the second line contains the raw sequence

data in IUPAC convention, and the fourth encodes quality values for the sequence data

within the second line.

Using the Terminal, navigate to the directory containing the trimmed

sample_cut.fastq file and type the following:

wc -l sample_cut.fastq

Example:
wc -l B038_MC28.fastq

Divide the resulting number by four to get the true sequence value. Then, using the

sample_cut.txt file output in step 3, check the summary section for “Reads written

(passing filters)”, this will display the total number of sequences within the trimmed

sample_cut.fastq file. Both numbers should match.

 xiv

Step 5. Convert FASTQ File to FASTA Format
The conversion of FASTQ files to FASTA format is performed for a number of reasons.

First, given that per base sequence quality has been assessed within step 2, the base

quality scores are no longer need for downstream processing and as such can be

removed to reduce file size, this is automatically performed during conversion into

FASTA format. Secondly, the reduction in working file size gives the user the added

benefit of faster processing speeds. Lastly, FASTA format has been widely used within

bioinformatics for over 30 years, as such many programs used for downstream

processing such as BLAST12 rely on this format. To begin formatting, navigate to the

directory containing the sample_cut.fastq file and type:

cat sample_cut.fastq | awk '{if(NR%4==1)

{printf(">%s\n",substr($0,2));} else if(NR%4==2) print;}' >

sample_cut.fasta

Example:
cat B038_MC28.fastq | awk '{if(NR%4==1)

{printf(">%s\n",substr($0,2));} else if(NR%4==2) print;}' >

B038_MC28.fasta

The cat utility program is used to read the contents of the FASTQ file and ‘pipes’ the

stdout into the awk program as stdin. Pipe, represented by the | character, is a

command line program which allows the output of the 1st program (in this case cat) to

serve as the input into a 2nd program (in this case awk), like a pipeline.

The awk program is a tool to write simple yet effective statements in order to manipulate

text. It defines text patterns that are to be searched for in each line of the input file.

Here the awk program reads that if the Number of Records variable (NR), also defined

as the line number, when divided by four has a remainder of 1 (denoted as the %

character in NR%4==1) then it will format the line as follows, the printf command is

invoked and this will print a > character, followed by a format specifier to specify the

text as a string (%s) followed by a newline character (\n) with the string to be decided

 xv

using the substr command. $0 specifies the whole line to be inputted, and 2 specifies

to get the whole line from character 2 onwards (this forms the sequence header),

otherwise if the NR variable when divided by four has a remainder of 2, then print the

corresponding line (the raw sequence data). Lines 3 and 4 are ignored from the awk

command. Finally, this manipulated text file is written to a FASTA file using the

redirection command >.

Step 6. Quality Assurance of NGS Data (2): Confirm Total Number of Sequences

(2)
As mentioned in step 4, occasionally errors can occur when formatting, manipulating

or unzipping a file. It is therefore best practice to check the number of sequences within

a file remain consistent with the originating file. To do this we again use the wc utility

program with the -l parameter.

Unlike FASTQ format, FASTA files consist of two lines of code11. The first line consists

of sequence identifier information or a short description for the sequence, while the

second line contains the raw sequence data encoded to IUPAC conventions. As such

the resulting total number of lines counted are divided by two to get the true number of

sequences present within the FASTA file.

Within the Terminal, make sure the directory contains the sample_cut.fasta file, and

type:

wc -l sample_cut.fasta

Example:
wc -l B038_MC28.fasta

Divide the resulting number by two for the total number of sequences present. The

number should match the total number of sequences present in the originating FASTQ

file outlined in step 4.

 xvi

Step 7. Create a Non-Redundant Sample File (FastX-Toolkit)
A non-redundant sample refers to one without sequence repetitions, otherwise referred

to as duplicates. The more sequences present within a sample file, the longer and less

efficient the processing speed of downstream bioinformatic processes. This is a well-

documented issue when comparing sample sequences to a genomic database13,14

(Step 10).

FastX toolkit is a package of command line tools for the pre-processing of FASTQ and

FASTA files15. The collapser program fastx_collapser, merges all duplicate

sequences for a region of coding into a single representative sequence, while

maintaining read counts. This is performed for all duplicates within a sample until only

unique reads remain.

To run the program in the Terminal, navigate to the file containing the

sample_cut.fasta and type the following:

fastx_collapser -v -i sample_cut.fasta -o sample_cut.NR.fasta

*Example:
fastx_collapser -v -i B038_MC28.fasta –o B038_MC28.NR.fasta

*In the example NR refers to a non-redundant sample file.

The -v option instructs the command to verbose the number of processed reads within

the given sample.

The -i option refers to the input file, in this case the sample_cut.fasta

The -o option is the outputting non-redundant file. The resulting output file, should be

drastically reduced in size to the inputting FASTA file.

Note, do not remove the original FASTA file as this will be used for in-depth alignments

downstream (step 15).

 xvii

Step 8. Split the Non-Redundant Sample File into Ten Files of Equal Proportion
(pyfasta)

To further improve the processing speed of comparative analysis (step 10), the non-

redundant sample file can be split into ten files of equal proportion. As multiple regions

of coding are extracted from origin sources of DNA, the splitting of a non-redundant

sample will not affect the identification of a taxon’s presence within a sample.

pyfasta is package of tools utilising python via a command line interface for the pre-

processing of FASTA files16. The split command pyfasta split allows users to

distribute sequencing reads between multiple files via various means.

Here, the -n option is used, referring to the number of outputting files desired. Ten files

will result in each being 10% representative of the total sequences, while two files

represent 50% each.

To run from the Terminal, navigate to the directory containing the non-redundant

sample_cut.NR.fasta file, and type:

pyfasta split -n 10 sample_cut.NR.fasta

*Example:
pyfasta split -n 10 B038_MC28.NR.fasta

*Outputting files will be labelled 00 – 09, this is useful for the following step (step 9).

To validate that resulting files are representative of an entire samples sequences, the

mean percentage difference, and standard error between expected hits based on the

10% files and actual hits achieved with the 100% file were calculated. The expected

total hits predicted by the 10% file was accurate to the 100% file within -0.007%

(±1.101 SEM). Representing a difference of 0.07 hits within 1000.

 xviii

Step 9. Randomly Select One of the Non-Redundant Sample Files
In order eliminate the possibility for selection bias. A randomised number generator is

used to determine which of the representative files (step 8) would be used for

comparative analysis (step 10).

For this, the /dev/urandom number generator available in the majority of Linux

distributions used. In order to invoke it, the utility program grep is used. Grep allows

users to search plain text data sets for lines matching a regular expression.

To run using the Terminal, type:
grep -m1 -ao ‘[0-9]’ /dev/urandom | head -n1

The -m option ensures that only 1 line is returned from /dev/urandom. -a ensures that

the line is processed as text and the o combination will only print matched, non-empty

lines. -ao can also be written as -a -o in the above program if preferred. A simple

regular expression is also specified to provide a single-character number range for

grep to only return a single-digit number, specified with the ‘[0-9]’ regular

expression pattern. These three options along with the regular expression, sanitise the

output of the /dev/urandom program to ensure only single digit number characters are

returned. This is then piped into the head command. The head command, with the -

n1 parameter will ensure that only the first number piped from grep is returned.

The process will output a number corresponding to one of the split non-redundant

sample files. This will become the users working file for subsequent steps.

Step 10. Option 1. Compare Sample Sequences to a localised NCBI database
(BLAST)
Using this option, the representative sample file is used to compare its sequences to

the entire National Centre for Biotechnology Information’s (NCBI) genomic database.

Basic Local Alignment Search Tool (BLAST) is a multi-platform algorithm that allows

users to query sample sequences against a specified database12,17,18. To run from the

 xix

Terminal, navigate to the folder containing the randomly selected representative

sample file and type:

blastn -task exec -query sample_cut.NR.split.fasta -db

PATH/TO/DATABASE/nt -out sample_cut.NR.split.blast.txt -num_threads

<NUMBER_OF_CORES> -word_size <HALF_VALUE_OF_CUT>

*Example:
blastn -task blastn -query B038_MC28.NR.02.fasta -db ~/ncbi-

blast/db/nt -out B038_MC28.NR.02.blast.txt -num_threads 16 -

word_size 14

*The split refers to the split file (00-09) randomly selected in step 9. In this example

02 is used.

The -task exec option allows users to specify the type of search parameters best

suited for the sample. The -task blastn and -task blastn-short options are best

suited for interspecies comparisons using short sample sequences19. The later

optimised for sequences shorter than 50bp. However, as most aDNA is 30-70bp in

length10,20,21, we recommend the user utilise the task blastn option.

The -db option refers to the location of the database. Here, the user specifies the path

to the genomic database of choice.

The -num_threads option allows users to specify the amount of processing power

committable to a BLAST search. Each core in a computer processor typically has two

threads available, we recommend specifying the maximum number of threads

available to the user for fast processing. Thus, for a 32 core unit, a num_threads of 64

can be used.

The -word_size parameter specifies the number of base pairs required to confirm a

match between a sample sequence and a reference sequence. Using -task blastn

 xx

this value is automatically set to 11bp19. We recommend using a word_size half the

value of the smallest available sample sequences. In this case because we trimmed

samples (step 3) at a value of 28bp the word_size used is 14.

The output or -out file, contains all genomic matches and associated expect values.

Text or txt format is used due to its versatility with any word processing program and

subsequent alignment tools.

Step 10. Option 2. Part 1. Make a de novo Comparative Database (BLAST)
Using this option, the user can create a de novo genomic database for comparison

with a representative sample file. This option can drastically reduce the amount of time

committed to the blasting process. We recommend the use of this option if the user

wishes to compare sequences to a specific database such as invertebrates or

mammals. This option can also be used if searching for specific genomic alignments

such as those identified in a zooarchaeological or archaeobotanical study of a site.

However this will introduce a selection bias not representative of a true metagenomic

study.

For the purpose of this example, we downloaded the entire invertebrate

database in the format of individual FASTA files following NCBI guidelines19. Once

downloaded, the reference FASTA files (ending in the file extension .fna) are placed

into a new directory folder and concatenated into a single FASTA file using the cat

program (step 1). To run, open the Terminal and navigate to the newly created

directory folder. Type:

cat * > reference_database.fasta

Example:
cat * > All_Invertebrates.fasta && rm *.fna

The * wildcard refers to all files within a specified directory.

 xxi

The && logical operator is used to chain commands together in one execution, allowing

a user to achieve a secondary action after the first action has been completed

successfully. In this example, the removal of individual FASTA file after concatenation

using the rm command, leaving only the full concatenated reference file (“.fasta”).

To create a de novo database, the makeblastdb command as part of the BLAST suite

is used19. The command converts a FASTA file into a reference database. To run from

the Terminal, navigate to the directory containing the concatenated reference file and

type the following:

makeblastdb -in

/PATH/TO/REFERENCE/DIRECTORY/reference_database.fasta -dbtype ‘nucl’

-out /PATH/TO/REFERENCE/DIRECTORY/reference_database

Example:
makeblastdb -in All_Invertebrates.fasta -dbtype ‘nucl’ -out

~/Documents/Bioanalysis/databases/All_Invertebrates

The -dbtype option refers to the type of reference sequences used. In this case nucl

is used, short for nucleotide.

In some situations a user may wish to use a genomic sequence not yet available via

the traditional sources of NCBI or the University of California (UCSC)22,23. If this is the

case, we recommend the user ensure sequences within the desired reference file be

assigned unique identifier information to allow for downstream taxonomic assignment.

This process should be performed before concatenation. To check this information

using the grep program type:

grep “^>” reference_sequence.fasta

Example:
grep “^>” bosTau8.fasta

 xxii

The ^> regular expression in grep will print all lines that begin with the > character to

the FASTA file specified and print it to the Terminal window as stdout

In situations where this information is missing. Identifier data can be added using the

following in-line perl script:

perl -pi -e “s/^>/>Identifier_data-/g” reference_sequence.fasta

Example:
perl -pi -e “s/^>/>Bos_taurus-/g” bosTau*.fasta

The -p option causes perl to assume a while loop will be used in the script. In

combination with i, -pi specifies that files processed by the <> construct in the while

loop are to be edited in-place. The -e option is used to specify one line of script entered

into the command line. The script entered here is a search and replace operation to be

applied to the FASTA file passed in after it. This is done by beginning with the s/

operator, followed by the regular expression ^> which will match all lines that begin

with the > character, this will be replaced with the Identifier data and a – symbol (in the

above example this is the text “Bos_taurus-”). Finally, the /g modifier applies the

regular expression globally, i.e. to the whole file.

In the example above the * wildcard is used to match all files that begin with the letters

“bosTau” and end in “.fasta”

Step 10. Option 2. Part 2. Compare Sample Sequences to de novo Database
(BLAST)

As specified previously, BLAST is a multi-platform algorithm that allows users to query

sample sequences against a specified database12. In this example a de novo database

is used. In the Terminal, navigate to the folder containing the randomly selected

representative sample file and type:

 xxiii

blastn -task option -query sample_cut.NR.split.fasta -db

PATH/TO/DE_NOVO_DATABASE/nt -out sample_cut.NR.split.blast.txt -

num_threads <NUMBER_OF_CORES> -word_size <HALF_VALUE_OF_CUT>

Example:
blastn -task blastn -query B038_MC28.NR.02.fasta -db

~/Documents/Bioanalysis/databases/All_Invertebrates -out

B038_MC28.NR.02.blast.txt -num_threads 16 -word_size 14

Information regarding BLAST options used can be found in Step 10 (Option 1).

Step 11. Compress BLAST file (Gzip)
Following a successful BLAST, it is not uncommon that files will be several gigabytes

in size. To optimise storage space and reduce processing time of subsequent

assignment (Step 12) we would recommend zipping the “txt” file using the gzip

program. gzip is a single-file, lossless data compression tool, that allows users to

specify the level and speed of data compression from worst but fastest (1) to best but

slowest (9). To run in the Terminal, navigate to the folder containing the “txt” file and

type:

gzip -<COMPRESSION_LEVEL> sample_cut.NR.split.blast.txt

Example:
gzip -9 B038_MC28.NR.02.blast.txt

The resulting file will contain the file extension .gz

Step 12. Import BLAST Data into MEGAN
“MEtaGenome ANalyzer” or “MEGAN”, is a computer program that allows users to

import and analyse large datasets of compared genomic sequences (via BLAST or

other genomic comparison tools)24. During data import, MEGAN assigns a taxon

identification to processed read results based on NCBI taxonomy. Using the lowest

 xxiv

common ancestor (LCA) algorithm, reads are assigned across a taxonomy (i.e. order,

genus, tribe, etc.). The sequences which have a min-score within a specified

percentage of the best alignments within a taxonomy are binned into the lowest

possible common ancestor position. Sequences aligning to multiple taxa within a

grouping are binned into a higher taxonomic level24 (i.e. sequences assigned to the

genera Bos and Capra will be binned into the family Bovidae).

Sequences are imported using a min-score (bit-score) of 40 within the top 10% of best

alignments, and the default “naïve” LCA algorithm. A minimum of 1% of the total

assigned reads is necessary to accept a taxon as present and use for downstream

analyses25,26 (Paper 1, 3).

The resulting taxonomic allocations inform the user on which reference sequences to

download for in-depth sequence alignment downstream (step 14). It is important to

note that any taxonomic assignments are representative of 10% the total sample pool

as outlined in step 8, and can be multiplied by 10 to get the total expected genomic

hits by taxonomy.

Step 13. Cross Check BLAST Data using MGmapper (Optional)
In some situations, the user may wish to cross-check BLAST data using a second

method of mass comparative alignment. MGmapper is a web-based package that

allows users to process raw sequencing data and perform reference-based sequence

alignments (using NCBI genomic database) with post-processing taxonomic

assignment at a species level27. It is important to note that distribution amongst an

entire taxonomy is not applicable using this method, allowing only for genus and

species-based comparisons.

To run MGmapper, search for the following web address:

https://cge.cbs.dtu.dk/services/MGmapper/. Using the default settings in double-

stranded best-mode with adapter trimming and a minimum alignment score of 20,

upload the concatenated FASTQ file from step 1.

 xxv

In best-mode, reads are assigned to solely one reference sequence after mapping to

all specified genomic databases. We recommend using a minimum alignment score

half the value of that used for MEGAN, in this case 20. This is because MGmapper’s

four criteria to positively identify a taxonomy are optimised for larger sample sequence

lengths, and are more prone to false negatives at lower bp lengths27.

Genomic assignments (positive and negative) are output into downloadable xlsx

Microsoft Excel files, accessible for 48 hours online.

Step 14. Part 1. Build an FM-Index from a NCBI or UCSC FASTA Reference File
(BWA)

In order to perform an in-depth genomic alignment, a reference genome file in FASTA

format must be provided. We would recommend using a well maintained and reviewed

source for reference sequences such as NCBI or UCSC22,23. Reference genomes to

be downloaded are determined by the genomic assignments achieved using BLAST

(and MGmapper).

Using NCBI as an example for how to download a reference file, visit:

https://www.ncbi.nlm.nih.gov/. From the drop-down menu located next to the search

bar, select “genome”. Type the name of the species desired within the search bar,

preferably in Latin, and click enter. Once the new page has loaded, a box can be seen

above the organism overview with three headings including one named “reference

genome”. Here, the user can download sequences in FASTA format by clicking the tab

“genome”. The download will result in a zipped FASTA file (fna.gz). Next, rename the

file after the species, place the file within a new directory folder of the same name, and

unzip using the gzip decompress command. From the Terminal, navigate to the

directory created and type:

gzip –d reference_sequence.fna.gz

Example:
gzip –d Bos_taurus.fna.gz

 xxvi

The -d option instructs the tool to “decompress” the file selected.

“Burrows-Wheeler Aligner” or “BWA” is a software package for mapping low-divergent

sequences to a large reference genome28. Because the software uses low-divergent

sequences it is considered more stringent than mass alignment tools such as BLAST.

BWA requires a specific FM-index set for alignment to take place. This can be

constructed using the bwa index command. To run in the Terminal, navigate to the

directory containing the blasted txt.gz file and type:

bwa index reference_sequence.fna

Example:
bwa index Bos_taurus.fna

The index command will result in six of the required seven index files for an alignment

to take place, including the original .fna file, these include: .fna.amb, .fna.ann,

.fna.bwt, .fna.pac, and .fna.sa. All files will have an identical base-name, allowing

subsequent tools to recognise an index in its entirety regardless of the file extension.

Step 14. Part 2. Retrieve Sequence Identifier Information by Creating a FAI File
(SAMtools)
The “FASTA index” or “FAI” file contains all sequence identifier information for a

reference genome, including chromosome names, chromosome lengths, offset of the

first base of each chromosome sequence, and the length of each FASTA line. This

information allows subsequent tools or the user to efficiently query specific regions of

a reference genome sequence.

SAMtools is a set of utility commands that primarily allows users to view, read, write,

and edit SAM, BAM and CRAM formatted files29. Additionally, SAMtools can extract

sequence identifier information from FASTQ and FASTA indexed reference files. Using

a FASTA reference file, a FAI file can be created using the faidx command.

 xxvii

To run from the Terminal, navigate to the directory created in Step 14 (Part 1),

containing the reference genome .fna file. Type:

samtools faidx reference_sequence.fna

Example:
samtools faidx Bos_taurus.fna

The resulting file will contain an identical base-name with a .fai file extension and the

.fna extension, reading as reference-sequence.fna.fai.

Step 15. Compare All Sample Sequences to A Genomic Reference Sequence
(BWA)
As mentioned in the previous step BWA is a software package for mapping low-

divergent sequences to a large reference genome28, and is considered more stringent

than methods of mass alignment (Paper 2). In this step, BWA is used to align (also

referred to as mapping) sample sequences to a single reference genome using the

aln command. We recommend the use of bwa aln over bwa-mem for aDNA sequences

(30-70bp), as bwa-mem is optimised for sequences >70bp30, and it has been noted by

users that bwa aln performs better with reads <70bp31,32. In order to perform

alignment, the user will need the original FASTA file representing all sample

sequences (generated in step 5). Using the Terminal, navigate to the directory

containing the original sample FASTA file and type:

bwa aln –l <EXCEED_LONGEST_SEQUENCE>

./PATH/TO/REFERENCE/GENOME/FILE/FASTA sample_cut.fasta >

sample_cut.species.sai

Example:
bwa aln –l 1000 –t 12

~/Documents/Bioanalysis/Bos_taurus/Bos_taurus.fna B038_MC28.fasta >

B038_MC28.BosT.sai

 xxviii

The -l option refers to “seed length” as part of the seeding process. Seeding can be

explained as the finding of exact matches of part of a sample sequence with part of

the reference sequence. The larger the seed length required (i.e. 300bp) the faster the

alignment process but greater the chance for loss of accuracy. If used correctly a

balance may be achievable. In the case of aDNA fragments, seeding is not

recommended, owing to base substitutions and its highly fragmented nature. To

disable seeding a seed length larger than the longest sample sequence can be

specified, thus allowing damaged aDNA sequences to be aligned33. We recommend

using a seed length of 1000.

The -t option refers to the processing power in the form of “threads” that the user

wishes to dedicate to the alignment process. The more threads available the faster the

alignment process. Here we use 12.

The resulting file with the .sai extension is an intermediate file containing “suffix array

indexes” for interpretation and conversion into SAM format.

Step 16. Convert the Aligned Reads to SAM format (BWA)

Using the .sai file generated through alignment in step 15, BWA is further used to

convert aligned sequences into “sequence alignment map” format or “SAM”. SAM is

the most widely used format for the storing and manipulation of NGS generated

nucleotide sequences. As such, the conversion of .sai files to .sam is essential for

use with downstream packages. To convert in the Terminal using BWA28, and in the

same directory as the .sai file type:

bwa samse ./PATH/TO/REFERENCE/GENOME/FILE/FASTA

sample_cut.species.sai sample_cut.fasta > sample_cut.species.sam

Example:
bwa samse ~/Documents/Bioanalysis/Bos_taurus/Bos_taurus.fna

B038_MC28.BosT.sai B038_MC28.fasta > B038_MC28.BosT.sam

 xxix

The samse command generates alignments given single-end reads. Repetitive hits will

be randomly chosen.

Step 17. Quality Assurance of NGS Data (3): Confirm Number of Sequences (3)
As previously mentioned, errors can occur with any format conversion and/or file

manipulation. As such it is best practice to check data is consistent, throughout the

bioinformatic pipeline and reduce possible complications downstream. Unlike previous

quality checks, the view command of the SAMtools software package is used29. In the

same Terminal directory as the previous step, type the following:

samtools view –c sample_cut.species.sam

Example:
samtools view –c B038_MC28.BosT.sam

The -c option refers to “count”, instructing the Terminal to print only the number of

alignments present within a file to stdout. Without this parameter all sequences are

printed to the Terminal window.

The resulting number generated is representative of the exact amount of sequences

within the specified file and should match the total amount of sequences identified in

previous quality assurance steps (4, 6).

Step 18. Part 1. Clip Nucleotide Overhangs (Picard Tools) (Optional)

A DNA overhang is a portion of unpaired nucleotides at the end of a DNA strand.

During the library preparation phase of an aDNA extraction protocol. Enzymes are

typically added to remove 3’ overhangs and fill-in 5’ overhanging ends8,34. The

complimentary fill-in sequence to these authentic overhangs play an important role for

the interpretation of aDNA deamination damage patterns34.

 xxx

Occasionally, artificial overhangs occur during the amplification phase using

polymerase chain reaction (PCR). These artificial overhangs are typically small and

palindromic in nature35. In order to ensure artificial PCR overhangs are removed

allowing for a more accurate assessment of DNA damage patterns, the soft-clipping of

nucleotide overhangs may be performed.

Picard tools are a set of java encoded command-line tools for manipulating NGS data

in SAM, BAM, CRAM and VCF formats36. The CleanSam command performs soft-

clipping of nucleotide overhangs beyond the end of reference alignment36, thereby

removing artificial PCR artefacts. To run, open the Terminal and navigate to the

directory containing the aligned SAM file and type:

java –jar /PATH/TO/picard.jar CleanSam I=sample_cut.species.sam

O=sample_cut.species.cleaned.sam 2> sample_cut.species.cleaned.txt

Example:
java –jar ~/Documents/Bioanalysis/picard.jar CleanSam

INPUT=B038_MC28.BosT.sam OUTPUT=B038_MC28.BosT.cleaned.sam 2>

B038_MC28.BosT.cleaned.txt

The I or INPUT parameter refers to the original inputting file.

The O or OUTPUT parameter refers to the desired outputting file.

Similar to previous steps, the inclusion of the 2> redirection operator redirects Terminal

error output into a specified written file format, which is used as a report. This allows

the user to view information regarding which sequences received soft-clipping of

overhangs.

We recommend setting picard as an environment variable in your ~/.bash_profile,

instead of evoking java –jar /PATH/TO/picard.jar each time. This can be

achieved by inserting the below line into your bash profile

 xxxi

alias picard=”java -jar /PATH/TO/picard.jar”

You will need to reference the absolute path to the location of picard.jar

In our experience, very few sequences possess nucleotide overhangs. This is most

likely a result of the type of enzymes used during the DNA library preparation and

amplification phases8,10. For this reason, this step is marked as “optional”.

Step 18. Part 2. Quality Assurance of NGS Data (4): Confirm Number of

Sequences (4) (Optional)
The clipping of DNA overhangs, even if present, should not result in the loss of DNA

sequences within a sample file. Occasionally, errors can occur when outputting data

into a new file. As such quality assurance steps are needed to ensure the data remains

consistent and reduce downstream complications. In the Terminal, navigate to the

directory containing the file ending in .cleaned.sam and type:

samtools view –c sample_cut.species.cleaned.sam

Example:
samtools view –c B038_MC28.BosT.cleaned.sam

The printed number to stdout is representative of the exact amount of sequences

within the specified file and should match the total amount of sequences identified in

previous quality assurance steps (4, 6, 17).

Step 19. Extract Mapped (Aligned) Reads (SAMtools)

Not all of a sample’s sequences will be aligned to a reference genome. For accurate

downstream assessment of a taxonomy’s ancient authenticity, those mapped reads

must be separated from the remaining non-aligned sequences. This is performed using

the SAMtools “view” function29. Using the Terminal, in the directory containing the last

worked upon file (either ending in .sam or .cleaned.sam), type the following:

 xxxii

samtools view –Sb –q <MAP_QUALITY> –F 4

sample_cut.species.cleaned.sam >

sample_cut.species.cleaned.mappedQuality.bam

Example:
samtools view –Sb –q25 –F 4 B038_MC28.BosT.cleaned.sam >

B038_MC28.BosT.cleaned.mappedQ25.bam

The -Sb option refers to the input file as SAM format S and the desired output file as

BAM format b. As previously mentioned, this can also be expresses as -S -b in the

above command. BAM or “Binary Alignment Map” is the compressed binary

representation of SAM29. While SAM format is designed to be readable by conventional

text-based processing programs, allowing human visualisation of NGS data, the BAM

format is designed for quick computational processing, ideal for subsequent

processes.

The -q option refers to the desired mapping quality of genomic alignments. All

alignments with a mapping quality less than the desired threshold are skipped. For

aDNA it is standard to use a map quality score between 25 and 3025,33. We found that

aDNA alignments fell within a map quality score between 25 and 30. Here we use 25.

The –F option relates to the “filtering flag”. Reads matching the specified flag are

segmented out. For this step we use a flag of “4” (Decimal) or “0x4” (Hexadecimal),

resulting in segmentation of unmapped reads from those mapped reads29.

The resulting BAM file will be greatly reduced in size and contain only the mapped

sample reads to the desired reference genome.

Step 20. Quality Assurance of NGS Data (5): Confirm Number of Mapped Reads
(1)
As highlighted in previous quality assurance steps, to ensure data consistency

throughout the bioinformatic pipeline and to reduce chances of downstream

 xxxiii

complications, it is critical to implement quality assurance checks. At this stage the

user has extracted all mapped reads from a sample, meaning the number of sample

sequences within the working file have reduced compared to that identified in previous

quality assurance steps (4, 6, 17, 18). As such, it is important to identify the new

working number of sequences within the most recent file (.bam) and check its

consistency with the originating input (.sam).

To identify the number of mapped sequences present within the BAM file, the

SAMtools view command with the -c option as described in step 17, is used29. To run

from the Terminal, navigate to the directory containing the BAM file and type:

samtools view -c sample_cut.species.cleaned.mappedQuality.bam

Example:
samtools view -c B038_MC28.BosT.cleaned.mappedQ25.bam

The resulting number represents the exact amount of mapped sequences present

within the file.

To test the consistency of the outputted mapped data with that from the originating

input file used in step 19, the same SAMtools view command is used. However, the

lack of a specified output parameter used in conjunction with the -c option, instructs

the command to print the exact number of mapped sequences within a file to the

Terminal window as stdout. To run in the Terminal, navigate to the directory

containing the SAM file and type:

samtools view –q <MAP_QUALITY> –F 4 sample_cut.species.cleaned.sam

Example:
samtools view –q25 –F 4 B038_MC28.BosT.cleaned.sam

The resulting number should match that identified from the BAM file.

 xxxiv

At this point, a minimum threshold of 250 genomic hits are necessary for a taxon to be

processed downstream. This is because alignments with less than 250 reads were

often found insufficient for mapDamage to plot damage patterns effectively.

Step 21. Sort Mapped Reads by Leftmost Coordinates (SAMtools)

The sorting of DNA sequences by order of occurrence along a reference genome is

required for most downstream applications. This is particularly true for the removal of

PCR duplicates (explained in step 23). Typically, sorting is performed using the

mapped coordinate position of a sequence against the reference genome.

SAMtools sort command uses the leftmost mapped coordinate position of a sequence

to accomplish this29. To run from the Terminal, navigate to the directory containing the

file ending in .mappedQuality.bam and type the following:

samtools sort sample_cut.species.cleaned.mappedQuality.bam >

sample_cut.species.cleaned.mappedQuality.sorted.bam

Example:
samtools sort B038_MC28.BosT.cleaned.mappedQ25.bam >

B038_MC28.BosT.cleaned.mappedQ25.sorted.bam

The resulting BAM file will now contain all mapped sequences in order of occurrence

along the reference genome.

Step 22. Quality Assurance of NGS Data (6): Confirm Number of Mapped Reads

(2)
To check that sample data remains consistent throughout the pipeline, with no errors

occurring during a bioinformatic process, a file is quality-assessed to reduce the

likelihood for downstream complications. As with previous steps, the SAMtool’s view

command in conjunction with the -c option is used to read and print the amount of

 xxxv

sequences present within a BAM file29. To run in the Terminal, navigate to the directory

containing the file ending in .sorted.bam and type:

samtools view -c sample_cut.species.cleaned.mappedQuality.sorted.bam

Example:
samtools view -c B038_MC28.BosT.cleaned.mappedQ25.sorted.bam

The resulting number should match that identified from the inputting BAM file in step

20.

Step 23. Option 1: Remove Duplicate Sequences from Mapped Data using 5’

coordinate position (SAMtools or Picard)

The definition of a PCR duplicate is complicated and subject to much debate within the

scientific community. For the purposes of this study we define a duplicate as the

presence of two or more identical DNA sequences.

Presence of PCR duplicates can be problematic in the assessment of authentic DNA

sequences. The most common reason being the potential for amplification bias, also

referred to as base composition bias, introduced during library construction resulting

in proportional over representation of specific areas of coding37. To ensure the integrity

of authentic DNA data, and mitigate the potential effects of duplicate sequences, they

are bioinformatically removed.

Method of duplicate removal can vary as can the parameters defining a duplicate

sequence. The rmdup command of SAMtools identifies PCR duplicates by external

coordinate location of outer mapped reads and removes them29,38. If two or more reads

have the exact same 5’ start position coordinates, the highest map quality score is

retained and the others removed. The same can also be accomplished on the reverse

3’ end of a sequence depending on removal option selected. However, it is important

to note that the rmdup command does not work for unpaired sequences or those

mapped to different chromosomes. Meaning a sequence with the same 5’ start

 xxxvi

coordinate as another sequence but mapped to a different chromosome will be

removed as a duplicate.

Picard’s MarkDuplicates command likewise uses the 5’ coordinates as a means for

duplicate removal, however differs from SAMtool’s rmdup, by taking into account the

intrachromosomal sequences36,38. Additionally, Picard takes into account soft-clipping

at the 5’ start position of mapped reads and makes calculations based on where the 5’

start position would be if the entire sequence were mapped to the reference genome
36,38. However, the use of external coordinate location as a method for duplicate

removal in both methods cannot account for internal sequence variations such as

single nucleotide polymorphisms (SNPs), resulting in a potential loss of authentic DNA

sequences.

Depending on the size of the originating file, processing speed and memory

consumption of the duplicate removal process may be taken into consideration.

Previous studies have shown SAMtools as more proficient in this regard using

substantially less memory than Picard38. For this reason, both options have been

detailed below. Where memory is not of concern, we would recommend the use of

Picard’s MarkDuplicates over SAMtool’s rmdup.

To run SAMtool’s rmdup from the Terminal, navigate to the directory containing the file

ending in .sorted.bam and type:
samtools rmdup -<REMOVAL_OPTION>

sample_cut.species.cleaned.mappedQuality.sorted.bam

sample_cut.species.cleaned.mappedQuality.sorted.rmdup.bam 2>

sample_cut.species.cleaned.mappedQuality.sorted.rmdup.txt

Example:
samtools rmdup -s B038_MC28.BosT.cleaned.mappedQ25.sorted.bam

B038_MC28.BosT.cleaned.mappedQ25.sorted.rmdup.bam 2>

B038_MC28.BosT.cleaned.mappedQ25.sorted.rmdup.txt

 xxxvii

The <REMOVAL_OPTION> option allows users to select the type of external coordinate

matching for duplicate removal. The -s (lower-case s) option removes duplicates for

single-end matches at the 5’ location only. The -S (upper-case S) option removes

duplicates for single and paired-end matches, meaning matches made at the 5’ end of

a sequence or at the 3’ end separately will be removed. Sequences have been shown

to decline in base quality at the 3’ end of a read1, usually resulting in the soft clipping

of these bases during BWA alignment. As such, the removal of sequences based

solely on a 3’ match is not advised. We would recommend the use of the -s (lower-

case s) option to reduce the likelihood of authentic DNA removal.

To run Picard’s MarkDuplicates from the Terminal, navigate to the directory

containing the file ending in .sorted.bam and type the following:

java –jar /PATH/TO/picard.jar MarkDuplicates

I=sample_cut.species.cleaned.mappedQuality.sorted.bam

O=sample_cut.species.cleaned.mappedQuality.sorted.markdup.bam

M=sample_cut.species.cleaned.mappedQuality.sorted.markdup.txt

REMOVE_DUPLICATES=True

Example:
java –jar ~/Documents/Bioanalysis/picard.jar MarkDuplicates

I=B038_MC28.BosT.cleaned.mappedQ25.sorted.bam O=

B038_MC28.BosT.cleaned.mappedQ25.sorted.markdup.bam M=

B038_MC28.BosT.cleaned.mappedQ25.sorted.markdup.txt

REMOVE_DUPLICATES=True

The M or METRICS_FILE option refers to the text-based log detaining the duplicate

sequences removed.

The REMOVE_DUPLICATES option used in conjunction with the Boolean True instructs

the process to remove the duplicate sequences from the outputting file.

 xxxviii

Both methods result in a BAM file containing “unique” DNA sequences. The number of

duplicate sequences removed are available from the resulting txt file.

Step 23. Option 2: Remove Duplicate Sequences from Mapped Data (aweSAM)
As mentioned above, both SAMtools and Picard tools identify PCR duplicates by

external coordinate location of outer mapped reads at the 5’ potion29,36. However,

depending on the type of DNA sample sequenced, DNA can share the same outer

coordinate location against a reference genome but not represent the same DNA

fragment. Instead possessing different internal variations, this is commonly seen in the

occurrence of SNPs.

Due to the multi-origin nature of a metagenomic study, we recommend the use of a

duplicate removal process that takes into account the coordinate position of a

sequence at both the 5’ and 3’ ends as well as accompanying strand information.

aweSAM is a SAM assembly collapser that uses a sequence’s coordinates (5’ and 3’)

and strand information as the unique insert identifiers, while keeping the read with the

highest mapping quality score39. The use of multiple unique insert identifiers allows

users to conserve reads that may be lost through other duplicate removal command

tools. It should be noted that depending on the size of the input file this process can

be time intensive. If time is of concern, we would recommend using one of the duplicate

removal functions listed in Option 1.

To run aweSAM, first create a bash shell script of aweSAM_collapser by downloading

the script at the link below and ensuring the runtime permissions are updated to allow

you to execute the file using sudo chmod command. A downloadable aweSAM script

can be found here: https://gist.github.com/jakeenk.

Lastly, edit the final line of code within the aweSAM_collapser script to also report the

total number of duplicate sequences removed. The script can be edited using the vim

program, followed by using i to go into Insert mode, then pressing Esc followed by

 xxxix

typing :wq to save and quit. This can be performed using the echo program to print to

stdout. The line should now read:

echo $1" collapsed to "$2"; "$duprate"% were duplicates"

“”$duplicates” duplicates removed”

Once created, open the Terminal and navigate to the directory containing the

“sorted.bam” file, then type the following:

samtools view -h -o

sample_cut.species.cleaned.mappedQuality.sorted.preawesam.sam

sample_cut.species.cleaned.mappedQuality.sorted.bam && bash

~/PATH/TO/SHELL/SCRIPT/aweSAM_collapser.sh

sample_cut.species.cleaned.mappedQuality.sorted.preawesam.sam

sample_cut.species.cleaned.mappedQuality.sorted.awesam.sam &&

samtools view -Sb

sample_cut.species.cleaned.mappedQuality.sorted.awesam.sam >

sample_cut.species.cleaned.mappedQuality.sorted.awesam.bam

Example:
samtools view -h -o

B038_MC28.BosT.cleaned.mappedq25.sorted.preawesam.sam

B038_MC28.BosT.cleaned.mappedq25.sorted.bam && bash

~/Documents/Bioanalysis/aweSAM_collapser.sh

B038_MC28.BosT.cleaned.mappedq25.sorted.preawesam.sam

B038_MC28.BosT.cleaned.mappedq25.sorted.awesam.sam && samtools view

-Sb B038_MC28.BosT.cleaned.mappedq25.sorted.awesam.sam >

B038_MC28.BosT.cleaned.mappedq25.sorted.awesam.bam

The -h option informs the command to include header information in the outputting file.

The -o option refers to the desired outputting file.

 xl

The use of bash here instructs the process to read a series of executable commands

contained within the aweSAM_collapser shell script.

The resulting awesam.bam file contains unique DNA sequences. The percentage and

number of duplicate sequences removed from the originating input file are printed to

the Terminal window.

The samtools and bash programs are all linked together using the && logical operator,

which will allow the subsequent program to run if the previous program runs

successfully. The output of the last samtools is redirected to a BAM file using >.

Step 24. Quality Assurance of NGS Data (7): Confirm Final Number of Reads

Quality assurance of NGS data is critical for ensuring consistent data flow and reducing

the chances of downstream complications. By this step the user has removed all

possible PCR duplicates from a mapped DNA sample. This means that the total

number of DNA sequences within the most recently outputted file has reduced

compared to the amount identified from the input file during the previous quality

assurance step (22). As such, the new working number of sequences must be

identified and checked for consistency.

First, we utilise the view command of SAMtools in conjunction with the -c option, as

described in step 17, to identify the new number of DNA sequences29. Using the

Terminal, navigate to the directory containing the duplicates removed BAM file (in this

example, the file ending in .awesam.bam) and type:

samtools -c

sample_cut.species.cleaned.mappedQuality.sorted.awesam.bam

Example:
samtools -c B038_MC28.BosT.cleaned.mappedQ25.sorted.awesam.bam

 xli

The exact number of unique sample sequences will be printed within the Terminal

window.

To check the consistency of data flow. The total number of duplicates removed are

added to the remaining number of DNA sequences identified within the newest BAM

file. The resulting number should amount to the sequences present within originating

input file identified in steps 20 and 22.

Step 25. Map Deamination Damage Profile of Mapped Reads (MapDamage 2.0 /

Python / R)

MapDamage is a computation framework written in Python and R, that tracks and

quantifies aDNA damage patterns among input sequences generated by NGS

platforms40,41. This is performed using a statistical model based on the damage profile

of aDNA fragments described by Briggs34. Full details of this framework can be

accessed via publication40,41.

To run from the Terminal, navigate to directory containing the duplicate removed BAM

file (in this example, the file ending in .awesam.bam) and type:

mapDamage -i

sample_cut.species.cleaned.sorted.mappedQuality.awesam.bam -r

/PATH/TO/REFERENCE/SEQUENCE/FASTA/FILE --merge-reference-sequences -

-no-stats

Example:
mapDamage B038_MC28.BosT.cleaned.mappedQ25.awesam.bam -r

~/Documents/Bioanalysis/Bos_taurus/Bos_taurus.fna --merge-reference-

sequences --no-stats

The -i option refers to the file containing sample sequences to be tested.

 xlii

The -r option refers to the location of the reference genome to which the sample

sequences have been aligned.

The --merge-reference-sequences option instructs the program to ignore reference

sequence names when tabulating reads. This greatly reduces the amount of memory

and disk space used during computation, reducing the likelihood of a code 9 kill error.

We would strongly recommend the use of this option for metagenomic studies or those

with large sample sizes.

The --no-stats option disables the statistical estimation of posterior intervals and

distributions. Removal of this option activates statistical estimation by default. The use

of this option greatly reduces the processing time required for mapDamage to complete

and as such we would recommend the use of this option if statistical estimation is not

required. In the case of this study, statistical estimation of posterior intervals and

distributions are not required for the confirmation of an ancient taxa.

Completion of the process will result in the creation of a new directory under the same

name as the inputting file. Details for each output file can be found disclosed by the

authors online at: https://ginolhac.github.io/mapDamage/.

Taxa can be identified as ancient by assessing the frequency of base substitutions

located at the Terminal ends of sample sequences. This data can be accessed via the

5pCtoT_freq.txt file for 5’ C>T substitutions and the 3pGtoA_freq.txt file for G>A

substitutions at the 3’ end. The same data can be graphically visualised by opening

the fragmentation_plot.pdf file. A threshold of ≥0.05 (representing 5% damage)

can be used to identify potentially ancient taxa using an exploratory extraction protocol

such as the Collin method42,43 (Papers 1, 3). These taxa identifications can be used for

the selection of probes for subsequent DNA capture techniques and reassessed using

a higher damage threshold. Any taxa reaching a threshold ≥0.10 (10% damage) can

be considered definitively ancient in origin.

 xliii

References
1. Fuller CW, Middendorf LR, Benner SA, Church GM, Harris T, Huang X, et al. The

Challenges of Sequencing by Synthesis. Nat Biotechnol. 2009;27(11):1013–23.

2. Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J. High Throughput Sequencing:
An Overview of Sequencing Chemistry. Indian J Microbiol. 2016;56(4):394–404.

3. Holt RA, Jones SJM. The New Paradigm of Flow Cell Sequencing. Genome Res.
2008;18(6):839–46.

4. Heather JM, Chain B. The Sequence of Sequencers: The History of Sequencing
DNA. Genomics. 2016;107(1):1–8.

5. Illumina Two-Channel SBS Sequencing Technology [Internet]. Illumina; 2016
[cited 2019 Jul 30]. Available from: https://www.well.ox.ac.uk/ogc/wp-
content/uploads/2017/09/techspotlight_two-channel_sbs.pdf

6. Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data
[Internet]. 2010. Available from:
http://www.bioinformatics.babraham.ac.uk/projects/fastqc

7. Kao W-C, Stevens K, Song YS. BayesCall: A Model-Based Base-Calling
Algorithm for High-Throughput Short-Read Sequencing. Genome Res.
2009;19(10):1884–95.

8. Meyer M, Kircher M. Illumina Sequencing Library Preparation for Highly
Multiplexed Target Capture and Sequencing. Cold Spring Harb Protoc.
2010;2010(6):pdb.prot5448.

9. Martin M. Cutadapt Removes Adapter Sequences from High-Throughput
Sequencing Reads. EMBnet.journal. 2011;17(1):3.

10. Gamba C, Jones ER, Teasdale MD, McLaughlin RL, Gonzalez-Fortes G,
Mattiangeli V, et al. Genome Flux and Stasis in a Five Millennium Transect of
European Prehistory. Nature Communications. 2014;5(1):5257.

11. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format
for Sequences with Quality Scores, and the Solexa/Illumina FASTQ Variants.
Nucleic Acids Res. 2010;38(6):1767–71.

12. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local Alignment
Search Tool. J Mol Biol. 1990;215(3):403–10.

13. Pertsemlidis A, Fondon JW 3rd. Having a BLAST with Bioinformatics (and
Avoiding BLASTphemy). Genome Biol. 2001;2(10):reviews2002.

14. Wood DE, Salzberg SL. Kraken: Ultrafast Metagenomic Sequence Classification
Using Exact Alignments. Genome Biology. 2014;15(3):R46.

 xliv

15. Hannon GJ. FASTX-Toolkit [Internet]. 2010. Available from:
http://hannonlab.cshl.edu/fastx_toolkit

16. Pedersen B. Pyfasta [Internet]. 2010. Available from:
https://pypi.org/project/pyfasta

17. Altschul SF, Gish W. Local Alignment Statistics. Methods Enzymol.
1996;266:460–80.

18. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped
BLAST and PSI-BLAST: A New Generation of Protein Database Search
Programs. Nucleic Acids Res. 1997;25(17):3389–402.

19. BLAST Command Line Applications User Manual. National Center for
Biotechnology Information; 2008.

20. Shapiro B, Hofreiter M. A Paleogenomic Perspective on Evolution and Gene
Function: New Insights from Ancient DNA. Science. 2014;343(6169):1236573.

21. Parducci L, Alsos I, Unneberg P, Pedersen M, Han L, Lammers Y, et al. Shotgun
Environmental DNA, Pollen, and Macrofossil Analysis of Lateglacial Lake
Sediments From Southern Sweden. Frontiers in Ecology and Evolution. 2019;7.

22. Welcome to NCBI [Internet]. National Center for Biotechnology Information. [cited
2019 Jul 30]. Available from: https://www.ncbi.nlm.nih.gov/

23. Genome Browser [Internet]. University of California Santa Cruz Genomics
Institute. [cited 2019 Jul 30]. Available from: https://genome.ucsc.edu/

24. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN Analysis of Metagenomic Data.
Genome Res. 2007;17(3):377–86.

25. Slon V, Hopfe C, Weiß C, Mafessoni F, Rasilla M, Lalueza-Fox C, et al.
Neandertal and Denisovan DNA from Pleistocene Sediments. Science.
2017;356:eaam9695.

26. Stahlschmidt MC, Collin TC, Fernandes DM, Bar-Oz G, Belfer-Cohen A, Gao Z,
et al. Ancient Mammalian and Plant DNA from Late Quaternary Stalagmite Layers
at Solkota Cave, Georgia. Scientific Reports. 2019;9(1):6628.

27. Petersen TN, Lukjancenko O, Thomsen MCF, Maddalena Sperotto M, Lund O,
Møller Aarestrup F, et al. MGmapper: Reference Based Mapping and Taxonomy
Annotation of Metagenomics Sequence Reads. PLOS ONE.
2017;12(5):e0176469.

28. Li H, Durbin R. Fast and Accurate Short Read Alignment with Burrows-Wheeler
Transform. Bioinformatics. 2009;25(14):1754–60.

29. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
Alignment/Map Format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

 xlv

30. Li H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with
BWA-MEM. arXiv. 2013;1303:e1303.3997.

31. Ziemann M. DNA Aligner Accuracy: BWA, Bowtie, Soap and SubRead Tested
with Simulated Reads [Internet]. Genomespot. 2014 [cited 2019 Jul 30]. Available
from: http://genomespot.blogspot.com/2014/11/dna-aligner-accuracy-bwa-
bowtie-soap.html

32. Tang M. BWA Aln or BWA MEM for Short Reads (36bp) [Internet]. Diving into
genetics and genomics. 2017 [cited 2019 Jul 30]. Available from:
http://.divingintogeneticsandgenomics.blogspot.com/2017/06/bwa-aln-or-bwa-
mem-for-short-reads-36bp.html

33. Schubert M, Ginolhac A, Lindgreen S, Thompson JF, Al-Rasheid KAS, Willerslev
E, et al. Improving Ancient DNA Read Mapping Against Modern Reference
Genomes. BMC Genomics. 2012;13:178.

34. Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, et al. Patterns
of Damage in Genomic DNA Sequences from a Neandertal. Proc Natl Acad Sci
USA. 2007;104(37):14616.

35. Star B, Nederbragt AJ, Hansen MHS, Skage M, Gilfillan GD, Bradbury IR, et al.
Palindromic sequence Artifacts Generated During Next Generation Sequencing
Library Preparation from Historic and Ancient DNA. PLoS One.
2014;9(3):e89676–e89676.

36. Picard Tools [Internet]. Broad Institute; [cited 2019 Jul 30]. Available from:
http://broadinstitute.github.io/picard/

37. Aird D, Ross MG, Chen W-S, Danielsson M, Fennell T, Russ C, et al. Analyzing
and Minimizing PCR Amplification Bias in Illumina Sequencing Libraries. Genome
Biol. 2011;12(2):R18.

38. Ebbert MTW, Wadsworth ME, Staley LA, Hoyt KL, Pickett B, Miller J, et al.
Evaluating the Necessity of PCR Duplicate Removal from Next-Generation
Sequencing Data and a Comparison of Approaches. BMC Bioinformatics.
2016;17(7):239.

39. Enk J, Devault A. aweSAM_collapser [Internet]. 2013. Available from:
https://gist.github.com/jakeenk/

40. Ginolhac A, Rasmussen M, Gilbert M, Willerslev E, Orlando L. mapDamage:
Testing for Damage Patterns in Ancient DNA Sequences. Bioinformatics (Oxford,
England). 2011;27:2153–5.

41. Jonsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0:
Fast Approximate Bayesian Estimates of Ancient DNA Damage Parameters.
Bioinformatics. 2013;29(13):1682–4.

 xlvi

42. Collin TC, Pinhasi R, Feeney RMN. Optimisation of Metagenomic Next
Generation Sequencing Shotgun Techniques for the Study of Ancient
Anthropogenic Sediments. American Journal of Physical Anthropology
Supplement. 2016;S62:119.

43. Collin TC, Stahlschmidt MC, Pinhasi R, Feeney RMN. Metagenomic Study of
Anthropogenic Sediments: Insights into Public Health and Lifestyle. In Hinxton,
Cambridge, UK: Wellcome Genome Campus; 2017.

