
	 1	

Artificial	intelligence	predicts	the	immunogenic	
landscape	of	SARS-CoV-2:	toward	universal	blueprints	
for	vaccine	designs	

	
Brandon	Malone*2,	Boris	Simovski*1,	Clément	Moliné*1,	Jun	Cheng2,	Marius	
Gheorghe1,	Hugues	Fontenelle1,	Ioannis	Vardaxis1,	Simen	Tennøe1,	Jenny-Ann	
Malmberg1,	Richard	Stratford1,	Trevor	Clancy¶1	

	

1NEC	OncoImmunity	AS,	Oslo	Cancer	Cluster,	Ullernchausseen	64/66,	0379	Oslo,	
Norway		

2NEC	Laboratories	Europe	GmbH	Kurfuersten-Anlage	36,	69115	Heidelberg,	Germany	

*These	authors	contributed	equally	

¶Corresponding	author	(Email:	trevor@oncoimmunity.com)	

	

	

	 	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.21.052084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052084


	 2	

Abstract	

The	global	population	is	at	present	suffering	from	a	pandemic	of	Coronavirus	

disease	2019	(COVID-19),	caused	by	the	novel	coronavirus	Severe	Acute	

Respiratory	Syndrome	Coronavirus	2	(SARS-CoV-2).	The	goals	of	this	study	were	

to	use	artificial	intelligence	(AI)	to	predict	blueprints	for	designing	universal	

vaccines	against	SARS-CoV-2,	that	contain	a	sufficiently	broad	repertoire	of	T-cell	

epitopes	capable	of	providing	coverage	and	protection	across	the	global	

population.	To	help	achieve	these	aims,	we	profiled	the	entire	SARS-CoV-2	

proteome	across	the	most	frequent	100	HLA-A,	HLA-B	and	HLA-DR	alleles	in	the	

human	population,	using	host-infected	cell	surface	antigen	presentation	and	

immunogenicity	predictors	from	the	NEC	Immune	Profiler	suite	of	tools,	and	

generated	comprehensive	epitope	maps.	We	then	used	these	epitope	maps	as	

input	for	a	Monte	Carlo	simulation	designed	to	identify	statistically	significant	

“epitope	hotspot”	regions	in	the	virus	that	are	most	likely	to	be	immunogenic	

across	a	broad	spectrum	of	HLA	types.	We	then	removed	epitope	hotspots	that	

shared	significant	homology	with	proteins	in	the	human	proteome	to	reduce	the	

chance	of	inducing	off-target	autoimmune	responses.	We	also	analyzed	the	

antigen	presentation	and	immunogenic	landscape	of	all	the	nonsynonymous	

mutations	across	3400	different	sequences	of	the	virus,	to	identify	a	trend	

whereby	SARS-COV-2	mutations	are	predicted	to	have	reduced	potential	to	be	

presented	by	host-infected	cells,	and	consequently	detected	by	the	host	immune	

system.	A	sequence	conservation	analysis	then	removed	epitope	hotspots	that	

occurred	in	less-conserved	regions	of	the	viral	proteome.	Finally,	we	used	a	

database	of	the	HLA	genotypes	of	approximately	22	000	individuals	to	develop	a	

“digital	twin”	type	simulation	to	model	how	effective	different	combinations	of	

hotspots	would	work	in	a	diverse	human	population,	and	used	the	approach	to	

identify	an	optimal	constellation	of	epitopes	hotspots	that	could	provide	

maximum	coverage	in	the	global	population.	By	combining	the	antigen	

presentation	to	the	infected-host	cell	surface	and	immunogenicity	predictions	of	

the	NEC	Immune	Profiler	with	a	robust	Monte	Carlo	and	digital	twin	simulation,	

we	have	managed	to	profile	the	entire	SARS-CoV-2	proteome	and	identify	a	

subset	of	epitope	hotspots	that	could	be	harnessed	in	a	vaccine	formulation	to	

provide	a	broad	coverage	across	the	global	population.	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.21.052084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052084


	 3	

Introduction		

The	outbreak	of	Coronavirus	disease	2019	(COVID-19)	and	its	rapid	worldwide	

transmission	resulted	in	the	World	Health	Organization	(WHO)	declaring	COVID-

19	as	a	pandemic	and	global	health	emergency.	COVID-19	is	caused	by	the	novel	

coronavirus	Severe	Acute	Respiratory	Syndrome	Coronavirus	2	(SARS-CoV-2)	

[1].	Like	all	coronaviridae,	SARS-CoV-2	is	a	positive-sense	RNA	viruse	

encapsulated	by	an	envelope,	and	characterized	by	an	exposed	spike	

glycoprotein	(S-protein)	that	is	projected	from	the	viral	surface	and	comprises	a	

large	RNA	genome	[2].	Although	the	main	structural	proteins	on	coronaviridae,	

such	as	the	S-protein,	are	reasonably	well	studied,	many	of	the	other	proteins	are	

less	well	characterized.		Correcting	this	gap	may	be	important	to	improve	the	

design	of	therapeutic	interventions	[3].	This	particular	gap	in	knowledge	is	very	

relevant	from	the	perspective	of	finding	immunogenic	targets	across	the	entire	

virus	proteome,	in	order	to	guide	the	design	of	effective	vaccines.		The	SARS-

CoV-2	virus	is	closely	related	in	sequence	identity	and	receptor	binding	to	SARS-

CoV	[4,	5],	and	therefore	it	has	been	purported	that	one	may	borrow	from	this	

similarity	to	validate	targets	in	potential	vaccines	[6,	7].	Much	of	the	emphasis	on	

coronaviridae	vaccines	to	date	has	focused	on	antibody	responses	against	the	S-

protein,	which	is	the	most	“antibody	exposed”	structural	protein	in	the	virus.	

Although	demonstrated	to	be	effective	with	short-lived	responses	in	a	mouse	

study	[8],	the	immune	response	against	the	S-protein	of	SARS-CoV	is	associated	

with	low	neutralizing	antibody	titers	and	short-lived	memory	B	cell	responses	

in	recovered	patients	[9,	10].	Additionally,	potential	harmful	effects	of	vaccines	

based	on	the	antibody	response	to	S-protein	in	SARS-CoV	have	raised	possible	

safety	concerns	regarding	this	approach.	For	example,	in	macaque	models,	it	was	

observed	that	anti-S-protein	antibodies	caused	severe	acute	lung	injury	[11],	and	

sera	from	SARS-CoV	patients	also	revealed	that	elevated	anti-S-protein	

antibodies	were	observed	in	those	patients	that	succumbed	to	the	infection[11].		

When	considering	antibody	responses	to	the	S	protein,	it	is	also	important	to	

consider	the	possibility	that	antibody-dependent	enhancement	(ADE)	may	occur,	

whereby	antibodies	facilitate	viral	entry	into	host	cells	and	enhance	the	infection	

of	the	virus[12].	It	has	already	been	demonstrated	that	neutralizing	antibodies	

bound	to	the	S	protein	of	coronaviridae	trigger	a	conformational	change	that	
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facilitates	viral	entry	into	host	cells[13].	Considering	the	potential	for	ADE,	the	

reported	short-lived	antibody	response	[9,	10,	14],	and	the	documented	

pathological	consequence	of	S-protein	specific	antibodies	in	certain	animal	

models,	it	is	worth	considering	alternative	strategies	for	vaccine	development	

that	drive	T-cell	responses	from	targets	other	than	the	S-protein	when	designing	

vaccines	to	combat	coronaviridae	infections.	

Although	T	cells	cannot	prevent	the	initial	entry	of	a	virus	into	host	cells,	they	

can	provide	protection	by	recognizing	viral	peptides	presented	by	human	

leukocyte	antigens	(HLAs)	on	the	surface	of	host-infected	cells,	or	antigen	

presenting	cells	(APCs).	Several	studies	have	demonstrated	in	SARS-CoV	that	

virus	specific	CD8	T	cells	are	required	for	mounting	an	effective	immune	

response	and	viral	clearance	[9,	15-19].	A	vaccine	design	that	confers	optimal	

protection	may	also	need	to	involve	the	generation	of	memory	T	cell	responses	

[20].	It	has	been	shown	that	the	activation	of	memory	T	cells	specific	for	a	

conserved	epitope	shared	by	SARS-CoV	and	MERS-CoV	is	a	potential	strategy	for	

developing	coronavirus	vaccines	[21].	In	addition,	levels	of	memory	T	cell	

responses	to	SARS-CoV	against	peptides	from	its	structural	proteins	were	

detected	in	a	proportion	of	SARS-recovered	patients,	several	years	after	infection	

[22,	23].	However,	an	adequate	T	cell	response	in	isolation	may	not	be	sufficient.	

In	a	cohort	study	of	128	recovered	SARS-CoV	patients,	the	immune	correlates	of	

protection	were	investigated	and	broad	CD8,	CD4	and	neutralizing	antibody	

response	were	all	shown	to	contribute	to	protection	[24].	The	CD4	T	cell	

responses	mainly	clustered	in	the	S-protein,	presumably	as	B	cell	antibody	

responses	to	the	S-protein	requires	the	help	of	CD4	T	cells	specific	to	the	same	

protein	[25].	Given	that	in	the	before	mentioned	study	by	Mitchison	et	al	that	

neutralizing	antibody	responses	correlated	with	CD8	T	cell	responses	against	a	

broad	set	of	CD8	T	cell	epitopes	in		the	S-protein,	a	vaccine	design	that	centers	on	

the	S-protein	or	any	other	viral	protein	will	need	to	stimulate	a	broad	CD8	

response	[26].	In	the	previous	study,	robust	T	cell	responses	correlated	

significantly	with	higher	neutralizing	antibody	activity,	consistent	with	the	

hypothesis	that	T	cells	play	an	important	role	in	the	generation	of	antibody	

responses	in	recovered	SARS-CoV	patients[24].	The	concept	of	considering	
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integrative	CD8/CD4,	and	antibody	immune	parameters	when	designing	a	

vaccine	is	also	reinforced	in	an	influenza	mouse	study	which	demonstrated	that	

a	universal	T	cell	vaccine	against	Flu	in	the	absence	of	a	protective	antibody	

response	could	result	in	a	detrimental	immunopathology	in	mice[27].	The	

importance	of	an	integrative	CD8,	CD4	and	B	cell	response	in	mounting	a	

successful	immune	response	against	the	present	SARS-CoV-2	threat	was	well	

established	at	an	early	stage	[28].	Activated	CD4	T	cells	and	CD8	T	cells,	in	

concert	with	antibodies	against	SARS-CoV-2	were	recruited	in	a	successful	fight	

against	the	virus	and	recovery	in	an	infected	patient	[28].		

Many	of	the	previous	SARS-CoV	studies	have	found	promising	CD8	targets	[9,	15,	

18,	24],	including	sustainable	memory	T	cell	responses	[9,	15-17,	20-23]	that	

recogise	epitopes	in	proteins	across	the	entire	spectrum	of	the	virus,	although	

the	S-protein	have	been	reported	to	be	enriched	for	dominant	CD8	T	cell	

responses	[24].	Taken	together,	this	supports	the	approach	taken	in	this	study,	

which	is	to	map	computationally,	a	broad	epitope	landscape	across	the	global	

viral	SARS-CoV-2	proteome,	which	includes	integrated	CD8,	CD4	and	B	cell	

targets	in	the	modeling.	There	has	been	some	preliminary	efforts	submitted	into	

preprint	servers	recently	that	describe	epitope	maps	generated	[29-31],	

however	it	appears	that	the	emphasis	in	those	approaches	were	based	mostly	on	

HLA	binding.	It	is	important	to	profile	in	whole	viral	proteome	epitope	screens,	

as	carried	out	in	this	study	using	an	extensive	artificial	intelligence	platform,	not	

only	the	candidates	that	may	bind	to	the	HLA	molecule	but	also	those	CD8	

epitopes	that	are	naturally	processed	by	the	cell’s	antigen	processing	machinery,	

and	presented	on	the	surface	of	the	infected	host	cells.		Layered	on	top	of	the	

antigen	presentation	predictions	in	the	host	infected	cells,	we	also	make	

predictions	across	the	entire	viral	proteome	that	measure	the	likelihood	that	the	

peptides	presented	on	the	host	infected	cells	are	capable	of	being	recognized	by	

T	cells	that	are	not	yet	tolerized	or	deleted	from	a	patient’s	T	cell	repertoire.	The	

subsequent	immunogenic	landscape	of	the	SARS-CoV-2	that	we	present	here	is	

taken	further	to	analyze	the	immunogenicity	of	all	the	non-synonymous	

variations	across	approximately	3400	different	SARS-CoV-2	sequences,	to	map	
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the	trajectory	of	differential	immunogenic	potential	between	all	the	currently	

sequenced	viral	strains.		

Any	viable	vaccine	to	tackle	SARS-CoV-2	that	incorporates	T	cell	epitopes	in	its	

design	would	need	to	contain	a	constellation	of	overlapping	epitopes	that	protect	

the	vast	majority	of	the	human	HLA	population	against	the	virus.		In	this	study	

we	attempt	to	demonstrate	that	the	SARS-CoV-2	immunogenic	landscape	

clusters	into	distinct	groups	across	the	spectrum	of	HLA	alleles	in	the	human	

population.	Our	predicted	immunogenic	landscape	of	the	SARS-CoV-2	virus	is	

therefore	then	processed	through	a	robust	comprehensive	statistical	Monte	

Carlo	simulation,	incorporating	the	integrative	immune	parameters,	to	identify	

epitope	hotspots	for	a	broad	adaptive	immune	response	across	the	most	

common	HLA	genetic	makeup	in	the	human	population.	The	resulting	epitope	

hotspots	we	identified	may	represent	areas	in	the	viral	proteome	that	are	most	

likely	to	be	viable	vaccine	targets	and	represent	blueprints	for	vaccine	designs	

that	may	be	universal	in	nature.	

In	order	to	rank-prioritize	these	potential	universal	epitope	hotspots,	and	the	

peptides	that	underlie	them	at	high	resolution,	the	baseline	peptide	predictions	

are	then	taken	through	a	graph	based	“digital	twin”	type	simulation[32],	to	

prioritize	hotspots	and	the	specific	overlapping	peptides	that	they	comprise	at	a	

patient	specific	and	population	specific	level.	In	addition,	epitope	hotspots	

containing	viral	epitopes	that	had	high	similarity	with	human	peptides,	

especially	those	expressed	in	critical	organs	were	removed	from	the	blueprints.	

In	this	context,	the	digital	twin	information	is	the	precise	HLA	genotype	of	an	

individual,	and	many	virtual	individuals	are	considered	within	a	given	

population	being	analyzed.	The	HLA	genotype	is	a	key	determinant	of	the	

immune	response	that	a	specific	individual	can	mount	against	an	infection,	and	it	

is	also	an	important	factor	for	determining	whether	a	vaccine	is	effective	in	

establishing	immunity	for	the	specific	individual	and	a	broader	population	

(consisting	of	multiple	diverse	individuals).	The	candidate	sequence	targets	that	

emerge	from	this	computational	analysis	represent	blueprints	for	potential	

vaccine	designs	modeled	across	the	global	human	population		
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Results	

The	immunogenic	landscape	of	SARS-CoV-2	reveals	diversity	among	the	

different	HLA	groups	in	the	human	population		

We	carried	out	an	epitope	mapping	of	the	entire	SARS-CoV-2	virus	proteome	

using	cell-surface	antigen	presentation	and	immunogenicity	predictors	from	the	

NEC	Immune	Profiler	suite	of	tools.	Antigen	presentation	(AP)	was	predicted	

from	a	machine-learning	model	that	integrates	in	an	ensemble	machine	learning	

layer	information	from	several	HLA	binding	predictors	(in	the	case	three	distinct	

HLA	binding	predictors	trained	on	ic50nm	binding	affinity	data)	and	13	different	

predictors	of	antigen	processing	(all	trained	on	mass	spectrometry	data).	The	

outputted	AP	score	ranges	from	0	to	1,	and	was	used	as	input	to	compute	

immune	presentation	(IP)	across	the	epitope	map.	The	IP	score	penalizes	those	

presented	peptides	that	have	degrees	of	“similarity	to	human”	when	compared	

against	the	human	proteome,	and	awards	peptides	that	are	less	similar.	The	

resulting	IP	score	represents	those	HLA	presented	peptides	that	are	likely	to	be	

recognized	by	circulating	T-cells	in	the	periphery	i.e.	T-cells	that	have	not	been	

deleted	or	tolerized,	and	therefore	most	likely	to	be	immunogenic.		Both	the	AP	

and	the	IP	epitope	predictions	are	“pan”	HLA	or	HLA-agnostic	and	can	be	carried	

out	for	any	allele	in	the	human	population,	however	for	the	purpose	of	this	study	

we	limited	the	analysis	to	the	100	of	the	most	frequent	HLA-A,	HLA-B	and	HLA-

DR	alleles	in	the	human	population.	Class	II	HLA	binding	predictions	were	also	

incorporated	into	the	large	scale	epitope	screen	from	the	IEDB	consensus	of	

tools	[33],	and	B	cell	epitope	predictions	were	performed	using	BepiPred	[33].	

The	resulting	epitope	maps	allowed	for	the	identification	of	regions	in	the	viral	

proteome	that	are	most	likely	to	be	presented	by	host-infected	cells	using	the	

most	frequent	HLA-A,	HLA-B	and	HLA-DR	alleles	in	the	global	human	population.	

Epitope	maps	were	created	for	all	of	the	viral	proteins	and	an	example	based	on	

the	IP	scores	for	the	S-protein	is	depicted	in	Figure	1A	and	for	AP	in	Figure	1B,	

and	illustrates	distinct	regions	of	the	S-protein	that	contain	candidate	CD8	and	

CD4	epitopes	for	the	100	most	frequent	human	HLA-A,	HLA-B	and	HLA-DR	

alleles.	Interestingly,	the	predicted	B	cell	epitopes	often	map	to	regions	of	the	

protein	that	contain	a	high	density	of	predicted	T	cell	epitopes,	thus	the	heat	
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maps	provide	an	overview	of	the	most	relevant	regions	of	the	SARS-CoV-2	virus	

that	could	be	used	to	develop	a	vaccine.	It	is	clear	from	Figure	1	that	different	

HLA	alleles	have	different	Class	I	AP	(and	IP),	and	Class	II	binding	

properties.		This	strongly	suggests,	as	one	might	anticipate,	that	the	SARS-CoV-2	

antigen	presentation	landscape	(and	IP)	clusters	into	distinct	population	groups	

across	the	spectrum	of	different	human	HLA	alleles.	This	trend	is	further	

illustrated	in	the	hierarchichal-clustering	map	presented	Figure	2	after	the	AP	

scores	have	been	binarized.		Figure	2	clearly	demonstrates	that	some	allelic	

clusters	present	many	viral	targets	to	the	human	immune	system,	while	others	

only	present	a	few	targets,	and	some	are	unable	to	present	any.	This	implies	that	

different	groups	in	the	human	population	with	different	HLA’s	will	respond	

differentially	to	a	T	cell	driven	vaccine	composed	of	viral	peptides.	Therefore	in	

order	to	design	the	optimal	vaccine	that	leverages	the	benefits	of	T	cell	immunity	

across	a	broad	human	population	we	need	to	predict	"epitope	hotspots"	in	viral	

proteome.	These	hotspots	are	regions	of	the	virus	that	are	enriched	for	

overlapping	epitopes,	and/or	epitopes	in	close	spatial	proximity,	that	can	be	

recognized	by	multiple	HLA	types	across	the	human	population.		

Prior	to	applying	the	NEC	Immune	Profiler	suite	of	tools	to	map	the	SARS-CoV-2	

viral	proteome,		it	was	important	to	first	validate,	to	the	extent	that	is	possible	

from	the	limited	number	of	validated	SARS-CoV	viral	epitopes,	that	the	T	cell	

based	AP	and	IP	scores	are	predicting	viable	targets.	We	identified	class	I	

epitopes	from	the	original	SARS-CoV	virus	(that	first	emerged	in	the	Guangdong	

province	in	China	in	2002)	that	shared	≥90%	sequence	identity	with	the	current	

SARS-CoV-2.	Unfortunately,	many	of	the	published	epitopes	were	identified	

using	ELISPOT	on	PBMCs	from	convalescent	patients	and/or	healthy	donors	(or	

humanised	mouse	models)	where	the	restricting	HLA	was	not	explicitly	

deconvoluted.	In	order	to	circumvent	this	problem,	we	identified	a	subset	of	5	

epitopes	where	the	minimal	epitopes	and	HLA	restriction	had	been	identified	

using	tetramers	[6].	Four	out	of	the	5	epitopes	tested	were	identified	as	positive	

i.e.	had	an	IP	score	of	above	0.5	(see	Table	1)	demonstrating	an	accuracy	of	80%.	

Although	this	was	a	very	small	test	dataset,	this	provides	us	some	degree	of	

confidence	that	the	NEC	Immune	Profiler	prediction	pipeline	can	accurately	
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identify	good	immunogenic	candidates	and	that	the	epitope	hotspots	identified	

by	this	analysis	and	subsequent	analyses	represent	interesting	targets	for	

vaccine	development.		

	A	robust	statistical	analysis	identifies	epitope	hotspots	for	a	broad	T	cell	

response.	

In	order	to	identify	epitope	hotspots	that	have	the	potential	to	be	viable	

immunogenic	targets	for	the	vast	majority	of	the	human	population,	we	first	

carried	out	a	Monte	Carlo	random	sampling	procedure,	on	the	epitope	maps	

generated	previously	(for	the	Wuhan	reference	sequence	exemplified	in	Figure	1	

for	the	S-protein),	to	identify	specific	areas	of	the	SARS-CoV-2	proteome	that	

have	the	highest	probability	of	being	epitope	hotspots	(See	Material	and	

Methods).	Three	bin	sizes	were	investigated	for	potential	epitope	hotspots;	27,	

50	and	100.	A	statistic	was	calculated	for	each	defined	subset	region	of	the	

protein	(bin)	from	the	set	of	100	HLAs.	The	Monte	Carlo	simulation	method	was	

then	used	to	estimate	the	p-values	for	each	bin,	whereby	each	bin	represented	a	

candidate	epitope	hotspot.	The	statistically	significant	bins	that	emerged	from	

the	simulation	represented	epitope	hotspot	or	regions	of	interest	for	each	

protein	analyzed.	Epitope	hotspots	are	built	on	the	individual	epitope	scores,	

epitope	lengths,	and	for	each	amino	acid	that	they	comprise.	These	scores	are	

generated	for	each	amino	acid	in	the	hotspots	for	all	of	the	100	HLA	alleles	most	

frequent	in	the	human	population.	Based	on	the	Monte	Carlo	analysis,	the	

significant	hotspots	are	those	below	a	5%	false	discovery	rate	(FDR),	and	

represent	regions	that	are	most	likely	to	contain	viable	T	cell	driven	vaccine	

targets	that	can	be	recognized	by	multiple	HLA	types	across	the	human	

population.	A	summary	of	the	epitope	hotspots	identified	across	the	entire	

spectrum	of	the	virus	is	depicted	in	Figure	3	and	reveals	that	the	most	

immunogenic	regions	of	the	virus,	that	target	the	most	frequent	Human	HLA	

alleles	in	the	global	population,	are	found	in	several	of	the	viral	proteins	above	

and	beyond	the	antibody	exposed	structural	proteins,	such	as	the	S-protein.	
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Conservation	analysis	identifies	robust	epitope	hotspots	in	SARS-CoV-2		

Although	an	early	report	in	a	preprint	article	demonstrated	in	a	few	sequences	

that	the	SARS-COV-2	genome	has	a	lower	mutation	rate	and	genetic	diversity	

compared	to	that	of	SARS-COV	[34],	another	preprint	study	has	demonstrated	

that	there	are	evolving	genetic	patterns	emerging	in	different	strains	of	SARS-

COV-2	in	diverse	geographic	locations	[35].		A	universal	vaccine	blueprint	should	

ideally	also	be	able	to	protect	populations	against	different	emerging	clades	of	

the	SARS-COV-2	virus	and	we	therefore	compared	the	AP	potential	of	

approximately	3400	virus	sequences	in	the	GISAID	database	against	the	AP	

potential	of	the	Wuhan	Genbank	reference	sequence.		The	outcome	of	that	

comparison	is	illustrated	in	Figure	4,	and	hints	at	a	trend	whereby	SARS-COV-2	

mutations	seem	to	reduce	their	potential	to	be	presented	and	consequently	

detected	by	the	host	immune	system.	Similar	trends	have	been	observed	in	

chronic	infections	such	as	HPV	and	HIV.			

In	order	to	assess	if	these	epitope	hotspots	are	sufficiently	robust	across	all	the	

sequenced	and	mutating	strains	of	SARS-CoV-2,	we	next	used	the	epitope	

hotspot	Monte	Carlo	statistical	framework,	and	analyzed	10	sequences	of	the	

virus	from	among	the	10	most	mutated	viral	sequences	from	different	

geographical	regions	[36].		The	vast	majority	of	the	hotspots	were	present	in	all	

of	the	sequenced	viruses,	however	occasionally	hotspots	were	eliminated	and/or	

new	hotspots	emerged	in	these	divergent	strains	as	shown	in	Figure	5.	

Although	the	identified	hotspots	seem	to	be	maintained	across	different	viral	

strains,	in	order	to	design	the	most	robust	vaccine	blueprint	that	will	hopefully	

provide	broad	protection	against	new	emerging	clades	of	the	SARS-COV-2	virus,	

the	epitope	hotspots	were	subject	to	a	sequence	conservation	analysis.	The	goal	

of	this	analysis	was	to	identify	hotspots	that	appear	to	be	less	prone	to	mutation	

across	thousands	of	viral	sequences.	We	calculated	a	conservation	score	for	each	

hotspot	based	on	the	consensus	sequence	of	a	protein	(see	Materials	and	

Methods).	Figure	6	shows	conservation	scores	for	the	hotspots	identified	based	

on	IP	using	different	bin	sizes.	Only	the	epitope	hotspots	presenting	a	

conservation	score	higher	than	the	median	conservation	score	were	kept	for	
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further	analysis.	This	allowed	us	to	filter	out	a	significant	amount	of	less	

conserved	epitope	hotspots,	that	although	have	high	immunogenic	scores,	

harbor	a	higher	degree	of	potential	sequence	variation.	In	addition,	to	reduce	the	

potential	for	off-target	autoimmune	responses	against	host	tissue	we	removed	

bins	that	contained	exact	sequence	matches	to	proteins	in	the	human	proteome.		

A	graph	based	"digital	twin"	optimization	prioritizes	epitopes	hotspots	to	

select	universal	blueprints	for	vaccine	design	

The	Monte	Carlo	simulation	identified	well	over	100	different	hotspots	of	length	

27,	50	or	100	amino	acids,	for	both	AP	and	IP.	Even	after	filtering	for	

conservation	and	self-similarity	we	were	left	with	over	50	different	hotpots	for	

both	the	AP	and	IP	based	analyses.		In	order	to	develop	a	blueprint	for	viable	

universal	vaccine	against	SARS-CoV-2,	it	is	necessary	to	1)	cover	with	fidelity	a	

broad	proportion	of	the	human	population,	and	2)	prioritize	the	selection	to	

even	fewer	regions	(the	exact	number	may	depend	on	the	size	of	the	bin	and	the	

vaccine	platform	under	consideration).	Consequently,	we	need	to	identify	the	

optimal	constellation	of	hotspots,	or	relevant	viral	segments,	that	can	provide	

broad	coverage	in	the	human	population	with	a	limited	and	targeted	vaccine	

“payload”.	In	order	to	achieve	this	aim,	we	developed	and	applied	(see	Materials	

and	Methods)	a	“digital	twin”	method,	which	models	the	specific	HLA	

background	of	different	geographical	populations	and	used	the	method	to	

identify	optimal	clusters	of	immunogenic	epitope	hotspots	that	will	induce	

immunity	in	the	broad	human	population.	A	graph-based	mathematical	

optimization	approach	is	then	used	to	select	the	optimal	combination	of	

immunogenic	epitope	hotspots	that	will	induce	immunity	in	the	broad	human	

population.	The	results	of	this	analysis	are	shown	in	Figure	7.	The	output	clearly	

identified	a	subset	of	hotspots	that	may	be	combined	to	stimulate	a	robust	

immune	response	in	a	broad	global	population.	An	example	hotspot	for	the	

ORF3a100-150	region	is	provided	in	the	supplementary	data	file,	which	shows	

the	amino	acid	sequence	and	its	component	Class	I	and	Class	II	epitopes.		
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Conclusions	

In	order	to	effectively	combat	the	SARS-CoV-2	pandemic	a	vaccine	will	need	to	

protect	the	vast	majority	of	the	human	population,	and	stimulate	diverse	T	cell	

responses,	against	multiple	viral	targets	including	but	not	limited	to	the	S-

protein.	To	help	achieve	this	ambitious	aim,	we	have	profiled	the	entire	SARS-

CoV-2	proteome	across	the	most	frequent	100	HLA-A,	HLA-B	and	HLA-DR	alleles	

in	the	human	population	and	generated	comprehensive	epitope	maps.	We	

subsequently	used	these	epitope	maps	as	the	basis	for	modeling	the	specific	

genetic	HLA	background	of	individual	persons	in	a	diverse	set	of	different	human	

populations	using	the	most	significant	CD8	and	CD4	T	cell	“epitope	hotspots”	in	

the	virus.		To	the	best	of	our	knowledge	this	is	the	first	computational	approach	

that	generates	comprehensive	vaccine	design	blueprints	from	large-scale	epitope	

maps	of	SARS-CoV-2,	in	a	manner	that	optimizes	for	diverse	T	cell	immune	

responses	across	the	global	population.	Underlying	this	approach	are	two	novel	

methods	that	when	integrated	together	result	in	a	solution	that	is	uniquely	

suited	to	achieving	the	objective	of	the	study	i.e.	designing	blueprints	for	

universal	vaccines.	Firstly,	a	framework	that	leverages	Monte	Carlo	simulations	

was	developed	to	identify	statistically	significant	epitope	hotspot	regions	in	the	

virus	that	are	most	likely	to	be	immunogenic	across	a	broad	spectrum	of	HLA	

types.	Secondly,	a	novel	person-specific	or	“digital	twin”	type	simulation	using	

the	actual	HLA	genotypes	of	approximately	22,	000	individuals	prioritizes	these	

epitope	hotspots,	to	identify	the	optimal	constellation	of	vaccine	hotspots	in	the	

SARS-CoV-2	proteome	that	are	most	likely	to	promote	a	robust	T	cell	immune	

response	in	the	global	population.		

Importantly,	the	CD8	epitope	maps	that	underlie	these	optimized	epitope	

hotspots	are	based	on	our	AP	predictions	of	peptides	presented	on	the	surface	of	

host-infected	cells,	and	visible	to	the	host’s	CD8	T	cells.	Additionally,	these	

antigen	presented	peptides	are	subject	to	our	IP	predictions	that	infer	those	

specific	epitopes	that	are	most	likely	to	activate	a	T	cell	in	a	host’s	repertoire	that	

has	not	been	deleted	or	tolerized.	These	features	confer	unique	properties	to	the	

epitope	maps	that	underlie	our	epitope	hotspot	predictions	and	digital	twin	

optimization.	These	properties	differ	from	the	SARS-CoV-2	epitope	maps	that	
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have	been	reported	in	recent	preprints	since	the	outbreak	of	this	virus,	which	

mainly	utilize	predictions	based	on	HLA	binding	[29-31].		

A	genomic	analysis	of	approximately	3400	SARS-COV-2	sequences	revealed	that	

the	epitope	hotspots	that	we	predict	are	robust	across	different	evolving	clades	

of	the	virus,	which	may	be	important	in	the	design	of	universal	vaccine	

blueprints.	However,	on	average,	mutations	in	the	virus	that	cause	amino	acid	

changes	in	peptides	seem	to	reduce	their	potential	to	be	presented	on	the	cell	

surface	and	consequently	detected	by	the	host	immune	system.	We	therefore	

apply	filters	on	the	vaccine	blueprints	that	discard	less	sequence	conserved	

hotspots,	and	hotspots	that	harbor	peptides	that	have	an	exact	match	in	the	

human	proteome,	before	performing	our	digital	twin	simulation.		

These	results	highlight	the	potential	of	looking	beyond	the	S-protein	and	mining	

the	whole	viral	proteome	in	order	to	identify	optimal	constellations	of	epitopes	

that	can	be	used	to	develop	efficacious	and	universal	T-cell	vaccines.	The	novel	

integrated	methodological	approaches	described	in	this	study	may	result	in	the	

design	of	diverse	T	cell	driven	vaccines	that	may	help	combat	the	SARS-CoV-2	

pandemic,	and	bring	much	needed	relief	to	the	suffering	global	human	

population.	
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Materials	and	Methods		

Generation	of	global	epitope	maps	and	amino	acid	scores		

For	a	given	HLA	allele,	the	score	allocated	to	an	amino	acid	corresponds	to	the	

best	score	obtained	by	an	epitope	prediction	overlapping	with	this	amino	acid.	

For	Class	I	HLA	alleles,	the	epitope	lengths	are	8,	9,	10	and	11,	and	predicted	for	

antigen	presentation	(AP)	or	immune	presentation	(IP)	of	the	viral	peptide	to	

host-infected	cell	surface,	generated	using	the	NEC	Immune	Profiler	software.	

These	Class	I	scores	range	between	0	and	1,	where	by	1	is	the	best	score	i.e.,	

higher	likelihood	of	being	naturally	presented	on	the	cell	surface	(AP)	or	being	

recognized	by	a	T-cell	(IP).	For	class	II	HLA	alleles,	the	only	peptide	length	we	

have	made	predictions	on	is	15mers.	The	Class	II	were	predictions	were	

percentile	rank	binding	affinity	scores	(not	antigen	presentation),	so	the	lower	

scores	are	best	(the	scores	range	from	0	to	100,	with	0	being	the	best	score).		

Statistical	framework	for	the	detection	of	epitope	hotspot	epitope	regions	

in	different	HLA	populations	

Input	data	

The	data	sets	inputted	into	the	statistical	framework	are	epitope	maps	generated	

for	each	amino-acid	position	in	all	the	proteins	in	the	SARS-CoV-2	proteome,	for	

all	of	the	studied	100	HLA	alleles.	A	score	for	any	given	amino	acid	was	

determined	as	the	maximum	AP	or	IP	score	that	a	peptide	overlapping	that	

amino	acid	holds	in	the	epitope	map.	All	peptide	lengths	of	size	8-11	amino	acids	

for	class	I,	and	15	for	class	II	were	processed,	generating	one	HLA	dataset	per	

viral	protein.	Each	row	in	the	dataset	represents	the	amino	acid	epitope	scores	

predicted	for	one	HLA	type.		

Statistical	framework	

The	central	question	that	the	statistical	framework	attempts	to	answer	is:		“are	

specific	regions	in	a	given	viral	protein	enriched	with	higher	immunogenic	

scores,	with	respect	to	a	given	set	of	HLA	types,	more	than	expected	by	chance?”	
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To	answer	the	question	we	implemented	a	hypothesis-testing	framework	

inspired	by	work	done	in	statistical	genomics	[37,	38].	

HLA	tracks	

The	raw	input	datasets	are	first	transformed	into	binary	tracks.	For	each	class	I	

HLA	dataset,	the	epitope	scores	are	transformed	to	binary	(0	and	1)	values,	such	

that	amino-acid	positions	with	predicted	epitope	scores	larger	than	0.7	(for	AP)	

and	larger	than	0.5	(for	IP)	are	assigned	the	value	1	(positively	predicted	

epitope),	and	the	rest	are	assigned	the	value	0.	Similarly,	for	class	II	HLA	datasets,	

amino-acid	positions	with	predicted	epitope	scores	smaller	than	10	are	assigned	

the	value	1,	otherwise	0.	These	thresholds	were	relatively	conservative.	Each	

binary	track	can	effectively	be	presented	as	a	list	of	intervals	of	consecutive	ones	

-	segments,	with	consecutive	zeros	in	between,	forming	inter-segments	or	gaps.	

Test	statistic	

For	a	group	of	k	HLA	binary	tracks,	a	test	statistic	Si	is	calculated	for	each	bin	bi	of	

given	size	m,	dividing	the	protein	in	n	bins	(e.g.	m=100	amino-acids	for	the	larger	

proteins).	For	a	single	HLA	track,	a	test	statistic	Si	is	calculated	for	each	bin	bi	

	

where	the	weight	is	by	default	1.0	 ,	however	can	also	represent	frequency	of	the	

HLA	track	in	the	population	under	analysis.		

Then,	for	i=1..n,	

	

which	is	the	average	number	of	amino-acids	predicted	to	be	epitopes	(epitope	

enrichment)	of	the	bin	bi,	across	the	selected	HLA	types.	
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Null	model		

As	with	genomic	tracks	[38],	analytical	approaches	to	estimate	the	statistical	

significance	of	multiple	observed	HLA	tracks	are	computationally	intractable.	An	

effective	alternative	to	this	problem	is	Monte	Carlo-based	simulations.	A	null	

model	is	defined,	as	the	generative	model	of	the	HLA	tracks,	if	they	were	

generated	by	chance.	From	the	null	model,	through	sampling,	arises	the	null	

distribution	of	the	test	statistic	Si.	The	null	model	must	reflect	the	complexities	

behind	the	nature	of	the	HLA	tracks.	Amino	acids	in	one	HLA	track	will	always	

form	consecutive	groups	of	length	at	least	8	(smallest	peptide	size	used	in	the	

prediction	framework).	Similarly,	amino	acids	with	low	epitope	scores	will	also	

cluster	together.		

P-value	estimation		

To	sample	from	the	null	model,	each	of	the	k	HLA	tracks	is	divided	in	segments	

and	gaps,	which	are	then	shuffled	to	produce	a	randomized	HLA	track.	This	is	

repeated	10000	times,	to	produce	10000	samples	of	Si	statistic	for	each	bin.	For	

each	bin,	the	p-value	is	estimated	as	the	proportion	of	the	samples	that	are	equal	

or	larger	then	the	truly	observed	enrichment.	Further,	the	generated	p-values	

are	adjusted	for	multiple	testing	with	the	Benjamini–Yekutieli	procedure	to	

control	for	a	false	discovery	rate	(FDR)	of	0.05.	

Graph	based	optimization	in	digital	twin	simulations	of	the	epitope	

hotspots		

We	consider	a	population	as	a	set	C	of	“digital	twin”	citizens	c,	and	a	vaccine	as	a	

set	V	of	vaccine	elements	v.	We	denote	the	likelihood	that	all	citizens	have	a	

positive	response	to	a	vaccine	as	! ! = + !,! .	Our	goal	is	to	design	a	vaccine,	

that	is,	select	a	set	of	vaccine	elements,	to	maximize	this	probability:	

max
!

 ! ! = + !,! 	

In	this	setting,	maximizing	the	probability	of	positive	response	is	the	same	as	

minimizing	the	probability	of	no	response.	Thus,	we	approach	vaccine	design	by	
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minimizing	the	probability	of	no	response	for	the	citizen	who	has	the	highest	

probability	of	no	response	! ! = − !, !! :	

max
!

 ! ! = + !,! ≔ min
!
max
!!∈!

 (! ! = − !, !! )	

We	consider	that	a	vaccine	causes	a	response	if	at	least	one	of	its	elements	

causes	a	positive	response.	That	is,	the	probability	of	no	response	is	the	joint	

likelihood	that	all	elements	fail.	For	a	particular	citizen	!! ,	this	probability	is	
given	as	follows.	

! ! = − !, !! = !(! = −|!, !! ,!)
!!∈!

	

The	original	optimization	problem	can	then	be	expressed	as:	

min 
!
max
!!∈!

!(! = −|!! , !! ,!)
!!∈!

	

Since	the	logarithm	function	is	monotonic,	the	value	of	V	which	minimizes	the	

logarithm	of	the	function	also	minimizes	the	original	function.	

min 
!
max
!!∈!

log!(! = −|!! , !! ,!)
!!∈!

	

Further,	we	consider	each	citizen	as	a	set	of	HLA	alleles,	and	we	assume	that	

each	vaccine	element	!! 	may	result	in	a	response	on	each	allele	independently;	
we	refer	to	the	alleles	for	citizen	!! 	as	!(!!).	Thus,	our	final	objective	is	as	follows.	

min 
!
max
!∈!

log!(! = −|!! , !,!)
!!∈!(!)!!∈!

	

We	approach	this	minimax	problem	as	a	type	of	network	flow	problem,	with	one	

set	of	nodes	corresponding	to	vaccine	elements,	one	set	corresponding	to	HLA	

alleles,	and	one	set	corresponding	to	citizens.	The	goal	is	to	select	the	set	of	

vaccine	elements	such	that	the	likelihood	of	no	response	is	minimized	for	each	

citizen.	Figure	8	gives	an	overview	of	the	problem	setting.	
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Vaccine	design	process	

Concretely,	we	approach	the	vaccine	design	process	in	four	steps:	

1. Select	a	set	of	candidate	vaccine	elements	for	inclusion	in	the	vaccine.	

2. Create	a	set	of	“digital	twin”	citizens	for	a	population	of	interest,	where	a	

digital	twin	is	a	set	of	HLA	alleles.	

3. Create	a	tripartite	graph	in	which	the	nodes	correspond	to	vaccine	

elements,	HLA	alleles,	and	citizens;	edges	correspond	to	relevant	

biological	terms	described	below.	

4. Select	a	set	of	vaccine	elements	(respecting	a	given	budget)	such	that	the	

likelihood	that	each	citizen	has	a	positive	response	is	maximized	(or,	

equivalently,	that	the	log	likelihood	of	no	response	for	each	citizen	is	

minimized).	

Each	step	is	described	in	more	detail	in	the	supplementary	methods	

Variant	immunogenic	potential	across	the	mutating	sequences	of	SARS-

CoV-2		

	We	downloaded	all	the	strains	available	in	the	GISAID	database	[36]	as	of	

31.03.2020,	and	ran	them	through	the	Nexstrain/Augur	software	suite	with	

default	parameters	[39].	We	parsed	the	resulting	phylogenic	tree	to	obtain	all	

protein	variants.	For	each	we	computed	a	wildtype	score	and	a	mutated	Antigen	

Presentation	(AP)	score	for	HLA-A*02:01.	The	mutated	score	is	the	maximum	AP	

score	among	the	nine	possible	9-mers	peptides	that	include	the	variant.	The	

wildtype	score	is	the	maximum	AP	score	for	the	9-mers	at	the	same	positions	in	

the	reference	(Wuhan)	strain.	

Epitope	hotspot	conservation	scores		

For	each	protein	within	the	viral	genome,	the	set	of	unique	amino	acid	sequences	

was	compiled	from	all	the	strains	available	in	the	GISAID	database	[36]	as	of	

29.03.2020.	These	sets	were	individually	processed	using	the	Clustal	Omega	

(v1.2.4)	[40]	software	via	the	command	line	interface	with	default	parameter	
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settings.	The	software	outputs	a	consensus	sequence	that	contains	conservation	

information	for	each	amino	acid	within	the	protein	sequence.	As	such,	an	amino	

acid	depicted	as	an	“*”	at	position	i	within	the	consensus	sequence	translates	to	

that	amino	acid	being	conserved	at	position	i	among	all	the	input	sequences[40]			

The	hotspot	offsets	were	then	used	to	extract	their	respective	consensus	sub-

sequence.	For	each	hotspot,	the	conservation	score	was	calculated	as	the	ratio	of	

“*”	within	its	consensus	sub-sequence	to	the	total	length	of	the	sub-sequence.	

Accordingly,	each	hotspot	was	assigned	a	conservation	score	between	0	and	1,	

with	1	representing	a	perfect	conservation	across	all	available	strains.		

The	median	conservation	score	was	calculated	by	sampling	1,000	sub-sequences	

equal	to	the	hotspot	size	from	the	entire	consensus	sequence	of	a	protein.	Each	

sample	was	assigned	a	conservation	score	and	the	median	value	from	all	1,000	

conservation	scores	was	calculated.	The	minimum	conservation	score	was	

calculated	using	a	sliding	window	approach,	with	the	window	size	being	equal	to	

the	hotspot	size.	For	each	increment,	a	conservation	score	was	calculated	and	the	

resulting	minimum	conservation	score	was	kept.		
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Tables		

Table	1.		

Peptide		 Sequence	
similarity		

Parental	protein	 IP	score	

FIAGLIAIV	 100%	 Spike	glycoprotein	 0.54	
MEVTPSGTWL	 100%	 Nucleoprotein	 0.61	
RLNEVAKNL	 100%	 Spike	glycoprotein	 0.39	
TLACFVLAAV	 100%	 Membrane	protein	 0.54	
KLPDDFTGCV	 90%	 Spike	glycoprotein	 0.58	
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Supplementary	methods	

The	digital	twin	simulation	framework	

Step	1.	Select	a	set	of	candidate	vaccine	elements	

Some	of	these	candidate	vaccine	elements	will	be	selected	for	inclusion	in	a	vaccine.	Two	
examples	of	vaccine	elements	are:	(1)	short	peptide	sequences,	such	as	9-mer	amino	acid	
sequences;	(2)	long	peptide	sequences,	such	as	27-mer	amino	acid	sequence	which	may	be	
based	on	a	short	peptide	sequence	and	include	flanking	regions.	

Each	vaccine	element	!! 	is	associated	with	a	cost	!!!,	while	a	total	budget	b	is	available	for	
including	elements	in	the	vaccine.	The	description	of	the	budget	and	costs	depend	on	the	
vaccine	platform.	

Some	vaccine	platforms	are	mainly	restricted	to	a	fixed	number	of	vaccine	elements;	in	this	
case,	each	cost	!!!	will	be	1,	and	the	budget	will	indicate	the	total	number	of	elements	which	
can	be	included.	

Some	other	vaccine	platforms	are	restricted	to	a	maximum	length	of	included	elements.	In	
this	case,	each	cost	!!!	will	be	the	length	of	the	vaccine	element,	and	the	budget	will	indicate	
the	maximum	length	of	elements	which	can	be	included.	

Step	2.	Create	a	set	of	“digital	twin”	citizens	

Our	approach	is	based	on	simulating	a	set	of	“digital	twin”	citizens.	In	this	work,	we	focus	on	
vaccine	elements	whose	effects	are	determined,	in	part,	by	the	HLAs	of	each	citizen.	Thus,	
each	digital	twin	corresponds	to	a	set	of	HLA	alleles.	

It	is	known1	that	citizens	from	different	regions	of	the	world	tend	to	have	different	sets	of	
HLA	alleles;	further,	some	combinations	of	HLA	alleles	are	more	common	than	others.	We	
use	full	HLA	genotypes	from	actual	citizens	available	from	high-quality	samples	in	the	Allele	
Frequency	Net	Database2	(AFND)	to	accurately	model	these	relationships.	

Creating	a	distribution	over	genotypes	for	each	region.	In	particular,	AFND	assigns	each	
sample	to	a	region	based	on	where	the	sample	came	from	(e.g.,	“Europe”	or	“Sub-Saharan	
Africa”).	In	a	first	step,	we	create	a	posterior	distribution	over	genotypes	in	each	region	
based	on	the	observations	and	an	uninformative	(Jeffreys)	prior	distribution.	

Specifically,	we	collect	all	genotypes	observed	at	least	once	across	all	regions;	we	assign	an	
index	g	to	each	genotype,	and	we	call	the	total	number	of	unique	genotypes	as	G.	Second,	
we	specify	a	prior	distribution	over	genotypes.	We	use	a	symmetric	Dirichlet	distribution	
with	concentration	parameter	of	0.5	because	this	distribution	is	uninformative	in	an	
information	theoretic	sense	and	does	not	reflect	strong	prior	beliefs	that	any	particular	

																																																													
1	Cao,	K.;	JillHollenbach;	Shi,	X.;	Shi,	W.;	Chopek,	M.	&	Fernández-Viña,	M.	A.	Analysis	of	the	
frequencies	of	HLA-A,	B,	and	C	alleles	and	haplotypes	in	the	five	major	ethnic	groups	of	the	
United	States	reveals	high	levels	of	diversity	in	these	loci	and	contrasting	distribution	patterns	in	
these	populations.	Human	Immunology,	2001,	62,	1009-1030.	
2	http://www.allelefrequencies.net/	
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genotypes	are	more	likely	to	appear	in	any	specific	region.	For	each	region,	we	then	
calculate	a	posterior	distribution	over	genotypes	as	a	Dirichlet	distribution	as	follows.	

!!,… , !!|!!,… , !! ∼ !"#"$ℎ!"#(!! + !!,… ,!! + !!)	

where	!!	is	the	(prior)	concentration	parameter	for	the	!!!	genotype	(always	0.5	here)	and	
!!	is	the	number	of	times	the	!!!	genotype	was	observed	in	the	region.	

We	can	now	use	this	distribution	to	sample	genotypes	from	a	region	using	a	two-step	
process.	

!!,… , !! ∼ !"#"$ℎ!"#(!! + !!,… ,!! + !!)	

!!,… , !! ∼ !"#$%&'(%)#(!!,… , !! ; !)	

where	n	is	the	desired	number	of	genotypes	to	sample	from	the	region,	and	!!,… , !! 	are	
the	counts	of	each	genotype	in	the	sample.	

Creating	a	set	of	“digital	twin”	citizens.	We	create	a	set	of	digital	twin	citizens	using	a	two-
step	approach.	Our	method	must	be	given	the	population	size	p,	as	well	as	a	distribution	
over	regions.	Concretely,	the	input	is	a	Dirichlet	distribution	over	the	regions,	as	well	as	p.	
(We	note	that	this	Dirichlet	is	completely	independent	of	those	over	genotypes	discussed	in	
the	previous	section.)	The	number	of	citizens	from	each	region	is	sampled	using	the	same	
two-step	sampling	process	described	above.	

Second,	the	genotypes	for	each	region	are	sampled	using	the	posterior	distributions	over	
genotypes	discussed	above.	

Step	3.	Create	a	tripartite	graph	

We	next	use	the	vaccine	elements	and	digital	twins	to	construct	a	tripartite	graph	that	will	
form	the	basis	of	the	optimization	problem	for	vaccine	design.	The	graph	has	three	sets	of	
nodes:	

1. All	candidate	vaccine	elements	identified	in	Step	1	

2. All	HLA	alleles	in	all	digital	twin	genotypes	

3. All	digital	twins	

	

The	graph	also	has	two	sets	of	weighted	edges:	

1. An	edge	from	each	vaccine	element	!! 	to	each	HLA	allele	!!.	The	weight	of	this	edge	
is	log!(! = −|!! , !!),	that	is,	the	likelihood	of	no	response	for	the	allele	from	that	
particular	vaccine	element.	(We	describe	below	an	approach	for	calculating	this	
value	for	short	peptides.)	
	

2. An	edge	from	each	allele	to	each	citizen	which	has	that	allele	in	its	genotype.	The	
weight	of	these	edges	is	always	1.	
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As	an	intuition,	we	call	the	edges	from	a	vaccine	element	to	an	allele	(and,	then,	from	the	
allele	to	each	patient	with	that	allele)	as	“active”	when	the	vaccine	element	is	selected.	
Then,	the	log	likelihood	of	response	for	a	citizen	is	the	sum	of	all	active	incoming	edges.	That	
is,	the	flow	from	selected	vaccine	elements	to	the	citizens	gives	the	likelihood	of	no	
response	for	that	citizen.	

log! ! = − !! , !!
!!∈!(!!)!!∈!

	

This	definition	does	not	include	V	in	the	conditioning	set	of	the	likelihood.	Thus,	it	does	not	
account	for	interactions	among	vaccine	elements,	such	as	immunodominance.	

Calculating	the	likelihood	of	no	response	for	a	given	digital	twin	and	vaccine	elements.	We	
now	describe	example	approaches	for	calculating	log! ! = − !! , !! 	for	three	types	of	
vaccine	elements.	Our	vaccine	design	approach	is	applicable	for	any	approach	which	assigns	
a	value	for	log! ! = − !! , !! .	

1. Short	peptide	sequences.	Most	short	peptide	prediction	engines3	compute	some	sort	
of	a	score	that	a	peptide	will	result	in	some	immune	response	(e.g.,	binding,	
presentation,	cytokine	release,	etc.),	and	this	score	generally	takes	into	account	a	
specific	HLA	allele.	In	some	cases,	this	is	already	a	probability,	and	in	others,	it	can	
be	converted	into	a	probability	using	a	transformation	function,	such	as	a	logistic	
function.	
	
Thus,	the	prediction	engines	give	!(! = +|!! , !!),	where	!! 	is	the	peptide	and	!! 	is	
the	allele.	We	then	take	log! ! = − !! , !! =  log[1 − ! ! = + !! , !! ].	
	

2. Long	peptide	sequences.	Longer	peptide	sequences	may	include	multiple	short	
peptide	sequences	with	different	scores	from	the	prediction	engine.	An	example	
approach	to	calculate	log! ! = − !! , !! ,	where	v	is	the	long	peptide	sequence,	is	
to	take	the	minimum	(i.e.,	best)	log! ! = − !, !! ,	where	p	is	any	short	peptide	
contained	in	!!.	

	

3. Longer	amino	acid	sequences.	Longer	amino	acid	sequences	may	contain	even	more	
short	peptide	sequences,	and	the	same	approach	used	for	long	peptide	sequences	
can	be	used	here.	

Step	4.	Selecting	a	set	of	vaccine	elements	

Finally,	we	pose	the	vaccine	design	problem	as	a	type	of	network	flow	problem	through	the	
graph	defined	in	Step	3.	In	particular,	the	minimization	problem	can	be	posed	as	an	integer	

																																																													
3	Jensen,	K.	K.;	Andreatta,	M.;	Marcatili,	P.;	Buus,	S.;	Greenbaum,	J.	A.;	Yan,	Z.;	Sette,	A.;	Peters,	B.	&	
Nielsen,	M.	Improved	methods	for	predicting	peptide	binding	affinity	to	MHC	class	II	molecules.	
Immunology,	2018,	154,	394-406.	
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linear	program	(ILP);	thus,	it	can	be	provably,	optimally	solved	using	conventional	ILP	
solvers.	

Handling	the	minimax	problem.	As	previously	described,	our	goal	is	to	choose	the	set	of	
vaccine	elements	which	minimize	the	log	likelihood	of	no	response	for	each	patient.	

min 
!
max
!∈!

log!(! = −|!! , !! ,!)
!!∈!(!!)!!∈!

	

We	ignore	any	interactions	among	vaccine	elements,	so	the	minimax	problem	simplifies	as	
follows.	

min 
!
max
!∈!

log!(! = −|!! , !!)
!!∈!(!!)!!∈!

	

In	practice,	we	can	remove	V	from	the	conditioning	set.	Thus,	the	terms	inside	the	
summation	are	exactly	those	calculated	in	Step	3	as	the	weights	on	the	edges	in	the	graph.	

Standard	ILP	solvers	cannot	directly	solve	this	minimax	problem;	however,	we	use	the	
standard	approach	of	a	set	of	surrogate	variables	to	address	this	problem.	In	particular,	we	
define	!!! 	to	be	the	log	likelihood	of	no	response	for	citizen	!!.	That	is,	
!!! ≔ log!(! = −|!! , !!)!!∈!(!!)!!∈! .	Further,	we	define	! ≔ max!!∈! !!!;	that	is,	z	is	
the	maximum	log	likelihood	that	any	citizen	does	not	respond	to	the	vaccine	(or,	
alternatively,	the	minimum	log	likelihood	that	any	citizen	will	respond	to	the	vaccine).	
Finally,	then,	our	aim	is	to	minimize	z.	

ILP	formulation.	Our	ILP	formulation	consists	of	three	types	of	variables:	

• !!!:	one	binary	indicator	variable	for	each	vaccine	element	which	indicates	whether	
it	is	included	in	the	vaccine	for	the	given	population.	We	usually	index	vaccine	
elements	with	i.	

• !!!:	one	continuous	variable	for	each	citizen	in	the	population	which	gives	the	log	
likelihood	of	no	response	for	that	citizen.	We	always	index	citizens	with	j.	

• !!!:	one	continuous	variable	for	each	HLA	allele	which	gives	the	log	likelihood	of	no	
response	for	that	allele.	We	always	index	alleles	with	k.	

• !:	one	continuous	variable	which	gives	the	maximum	log	likelihood	that	any	citizen	
does	not	respond	to	the	vaccine.	(Our	goal	will	be	to	minimize	this	value.)	

	

Additionally,	the	ILP	uses	the	following	constants:	

• !!,!:	the	log	likelihood	that	vaccine	element	!! 	does	not	cause	a	response	for	allele	
k.	

• !!!:	the	“cost”	of	vaccine	element	!!.		

• !:	the	maximum	cost	of	vaccine	elements	which	can	be	selected.	
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Finally,	the	ILP	uses	the	following	constraints:	

• !!! =  !!,! ⋅! !!!:	one	constraint	for	each	allele	which	gives	the	log	likelihood	that	at	
least	one	selected	peptide	results	in	a	positive	response	for	that	allele	

• !!! =  !!!!!∈!(!!) :	one	constraint	for	each	citizen	which	gives	the	log	likelihood	
that	at	least	one	selected	peptide	results	in	a	positive	response	for	at	least	one	allele	
for	that	citizen.	(That	is,	this	is	the	likelihood	of	a	positive	response	for	this	citizen.)	

• ! ≥ !!!! ⋅ !!!:	the	vaccine	elements	we	select	cannot	exceed	the	budget	

• ! ≥ !!! 	:	as	discussed	above,	we	use	z	as	an	approach	to	solve	the	minimax	problem.	
These	constraints	imply	that	z	is	the	minimum	log	likelihood	that	any	individual	
patient	will	respond	to	the	vaccine.	
	

Objective:	The	objective	of	the	ILP	is	to	minimize	z.	

The	setting	of	the	binary	!!!	variables	corresponds	to	the	optimal	choice	of	vaccine	elements	
for	the	given	population.	

Relationships	to	max-flow	and	other	problems	with	provably	efficient	solutions.	This	is	
highly-related	to	a	number	of	efficiently	solvable	network	flow	problems.	Our	problem	is	
essentially	a	min-flow	problem	with	multiple	sinks,	where	each	citizen	is	a	sink;	however,	
our	aim	is	to	minimize	the	flow	to	each	individual	sink	rather	than	the	flow	to	all	sinks.	In	
particular,	rather	than	the	“sum”	operator	typically	used	to	transform	multiple	sink	flow	
problems	into	a	single-sink	problem,	we	would	need	a	(non-linear)	“min”	operator.	Thus,	
efficient	min-flow	formulations	are	not	applicable	in	this	setting.	

	

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.21.052084doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.052084

