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Abstract 8 

The Theory of Island Biogeography (TIB) promoted the idea that species richness within sites 9 

depends on site connectivity, i.e. its connection with surrounding potential sources of 10 

immigrants. TIB has been extended to a wide array of fragmented ecosystems, beyond 11 

archipelagoes, surfing on the analogy between habitat patches and islands and the patch-12 

matrix framework. However, patch connectivity often little contributes to explaining species 13 

richness in empirical studies. Before interpreting this trend as questioning the broad 14 

applicability of TIB principles, one first needs a clear identification of methods and contexts 15 

where strong effects of patch structural connectivity are likely to occur. Here, we use spatially 16 

explicit simulations of neutral metacommunities to show that patch connectivity effect on local 17 

species richness is maximized under a set of specific conditions: (i) patch delineation should 18 

be fine enough to ensure that no dispersal limitation occurs within patches, (ii) patch 19 

connectivity indices should be scaled according to target organisms’ dispersal distance and 20 

(iii) the habitat amount around sampled sites (within a distance adapted to organisms’ 21 

dispersal) should be highly variable. When those three criteria are met, the absence of effect 22 

of connectivity on species richness should be interpreted as contradicting TIB predictions. 23 
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Introduction 27 

Since the Theory of Island Biogeography (TIB) [1], it is commonly acknowledged that species 28 

presence within local community depends on their ability to immigrate, and that geographic 29 

isolation of communities can negatively affect species richness. Initially devised for insular 30 

ecosystems, TIB principles have been extended to terrestrial ecosystems (see [2,3] for reviews 31 

and critical appraisal). This led to studying how the availability of suitable habitat nearby, called 32 

“patch structural connectivity” [4], can act as a source of immigrants and affect species 33 

richness within local communities. Extending TIB relied on adopting a “patch-matrix” 34 

description of habitat in space, where one decomposes the map of some suitable habitat into 35 

patches that correspond to potential communities (analogous to islands in an archipelago), the 36 

rest of space being considered unhospitable for the species under study. 37 

Most of the tests regarding the species diversity patterns predicted by the TIB have focused 38 

on the shape of the species richness – patch area curve, and studied how patches’ connectivity 39 

can modulate this relationship [5]. There is unfortunately no systematic review or meta-analysis 40 

about the species richness – patch connectivity relationship per se. Scattered empirical studies 41 

from the literature suggest that connectivity effects on species richness are variable in the field. 42 

The direction and strength of the relationship seems to depend, among other factors, on the 43 

dispersal distance [6,7], the trophic level [8–10] and the degree of generalism [11,12] of 44 

considered species groups, as well as on the perturbation history of sites [13]. 45 

Clearer syntheses are available when considering the effect of patch connectivity on individual 46 

species presences rather that species richness in itself. A meta-analysis of 1’015 empirical 47 

studies within terrestrial systems, Prugh et al. [14] evidenced that patch structural connectivity, 48 

measured as distance to the nearest patch, tends to have weak predictive power on species 49 

presence within patches (median deviance explained equaled about 20%). Another review of 50 

122 empirical studies [15], which covered terrestrial and aquatic systems and analyzed the 51 

presence or abundance of 954 species, evidenced that the effects of local environmental 52 

conditions within a patch on species presence or abundance occurred more frequently (71% 53 

of species analyses) than the effects of patch structural connectivity (55% of species analyses). 54 

Former studies thus tend to suggest that patch structural connectivity seems to be a non-robust 55 

and relatively weak predictor of species richness, which potentially questions the role of 56 

immigration as an important process in community assembly within fragmented habitats. 57 

According to Prugh et al. [14], the limited success of patch connectivity indices may come from 58 

several conceptual flaws of applying the TIB framework to non-archipelago landscapes: (i) 59 

inadequately using structural connectivity indices based on surrounding habitat rather than 60 
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functional connectivity indices based on surrounding populations (i.e. habitat being actually 61 

occupied by target species); (ii) inadequately delineating patches for species harboring 62 

multiple life stages with contrasted requirements (e.g., juveniles living in aquatic habitats and 63 

adults living in terrestrial habitats); (iii) overlooking the type of matrix surrounding the habitat 64 

patch, hence questioning the validity of the patch-matrix framework for terrestrial systems. In 65 

the same vein, Cook et al. [16] also suggested that an important fraction of species found in 66 

patches could also survive and even thrive in the matrix, hence explaining the failure of TIB 67 

applications to non-archipelago landscapes.  68 

However, the limited success of patch structural connectivity indices may also stem from 69 

several methodological limits. Thornton et al. [15] mentioned for instance the problem of using 70 

inadequate patch structural connectivity metrics, emphasizing that buffer indices are generally 71 

more performant than widely used isolation metrics (a point that was also raised by several 72 

other studies [17,18]). Second, inadequate scaling of indices with respect to target organisms 73 

dispersal distance may also drive down the explanatory power of patch connectivity indices 74 

upon species presence/absence, community diversity and presumably species richness. The 75 

higher the dispersal distance of species, the larger the scaling of indices should be to reach 76 

the best possible explanatory power, as demonstrated by several simulation studies [19,20]. 77 

Third, patches are often built through lumping together sets of contiguous habitat pixels on a 78 

land cover map, following a “vector map” perspective [21]. However, this approach brings no 79 

guarantee that the resulting spatial entities have the appropriate size to constitute potential 80 

communities for target organisms, and considering entities with inadequate spatial resolution 81 

with respect to target processes is known to erode expected patterns [22]. Fourth, empirical 82 

studies about connectivity effects may have suffered from a lack statistical power [15], 83 

especially when structural connectivity little fluctuates among patches. 84 

Interpreting the limited predictive power of patch structural connectivity as an explanatory 85 

failure of the TIB framework is valid only when methods used and landscape context should 86 

theoretically foster large effect sizes. Therefore, before questioning the first principles of the 87 

TIB framework, one first needs identifying which methods for measuring patch structural 88 

connectivity and which properties of the habitat spatial distribution of studied systems should 89 

yield strong effects of patch structural connectivity on local species richness.  90 

In our analysis, we focused on how the patch delineation, the type of patch connectivity index, 91 

the scaling of indices with species dispersal distance, and the variability of indices within 92 

landscapes affect the explanatory power of patch structural connectivity on local species 93 

richness. We aimed at deriving good practices with respect to these four points. In particular, 94 

we made three predictions. First, we expected the predictive power of connectivity indices to 95 
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be optimal when patch delineation matches the geographical scale of studied communities, in 96 

such a way that there is no within-patch dispersal limitation. Second, we expected that the 97 

scaling of patch connectivity indices maximizing the explanatory power would positively 98 

correlate with species dispersal distance, as suggested by previous findings. Third and last, 99 

we expected a higher variability of connectivity indices among patches to yield a stronger patch 100 

connectivity effects on local species richness. 101 

We used a virtual ecologist approach [23] relying on metacommunity simulations in a spatially-102 

explicit model to test these predictions. Virtual datasets stemming from such models constitute 103 

an ideal context to assess the impact of our factors of interest, since they offer perfect control 104 

of the spatial distribution of habitat and the ecological features of species. In particular, we only 105 

included processes related to the TIB (immigration, ecological drift; [24]), thus maximizing our 106 

ability to study how methodological choices and landscape features affect the explanatory 107 

power of patch structural connectivity. We anticipated that explanatory powers generated by 108 

this approach would necessarily be an over-estimation of what occurs in real ecosystems, 109 

where many processes unrelated to TIB may also be at work. This implies in particular that 110 

settings negatively affecting the explanatory power of patch structural connectivity in our 111 

simulation study have very little chance to yield strong explanatory power in empirical studies, 112 

and cannot be used to criticize the predictions of TIB. 113 

Materials and methods 114 

Landscape generation - We considered binary landscapes made of suitable habitat cells and 115 

inhospitable matrix cells. We generated virtual landscapes composed of 100×100 cells using 116 

a midpoint-displacement algorithm [25] which allowed us covering different levels of habitat 117 

quantity and fragmentation. The proportion of habitat cells varied according to three modalities 118 

(10%, 20% of 40% of the landscapes). The spatial aggregation of habitat cells varied 119 

independently, and was controlled by the Hurst exponent (0.1, 0.5, and 0.9 in increasing order 120 

of aggregation; see Fig. S1 for examples). Ten replicates for each of these nine landscape 121 

types were generated, resulting in 90 landscapes. Higher values of the Hurst exponent for a 122 

given value of habitat proportion increased the size of sets of contiguous cells and decreased 123 

the number of distinct sets of contiguous cells (Fig. S2). Higher habitat proportion for a constant 124 

Hurst exponent value also resulted in higher mean size of sets of contiguous cells. 125 

Neutral metacommunity simulations - We simulated spatially explicit neutral metacommunities 126 

on virtual heterogeneous landscapes. We resorted to using a spatially explicit neutral model 127 

of metacommunities, where all species have the same dispersal distance. We used a discrete-128 

time model where the metacommunity changes by steps. All habitat cells were occupied, and 129 
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community dynamics in each habitat cell followed a zero-sum game, so that habitat cells 130 

always harbored 100 individuals at the beginning of a step. One step was made of two 131 

consecutive events. Event 1: 10% of individuals die in each cell – they are picked at random. 132 

Event 2: dead individuals are replaced by the same number of recruited individuals that are 133 

randomly drawn from a multinomial distribution, each species having a weight equal to 0.01×i 134 

+ ∑k Aik exp(-dkf /λs) where i is the relative abundance of species i in the regional pool, Aik is 135 

the local abundance of species i in habitat cell k, dkf is the distance (in cell unit) between the 136 

focal habitat cell f and the source habitat cell k, λs is a parameter defining species dispersal 137 

distances and the sum is over all habitat cells k of the landscape.  138 

The regional pool was an infinite pool of migrants representing biodiversity at larger spatial 139 

scales than the focal landscape, it contained 100 species, the relative abundances of which 140 

(is) were sampled once for all at the beginning of the simulation in a Dirichlet distribution with 141 

concentration parameters i equal to 1 (with i from 1 to 100). 142 

Distances between habitat pixels (dkf) were defined as the Euclidean distance on a torus, to 143 

remove unwanted border effects in metacommunity dynamics. Metacommunities were 144 

simulated with three levels of species dispersal distance: λs = 0.25, 0.5, 1 cell, which 145 

corresponded to median dispersal distance of 0.6, 0.7, 0.9 cell and average dispersal distance 146 

of 0.6, 0.8, 1.2 cells. The 95% quantile of dispersal distance corresponded to 1.2, 1.7, 3.1 cells 147 

respectively. 148 

For a given landscape replicate, metacommunity replicates were obtained by recording the 149 

state of a metacommunity at various dates in one forward in time simulation, with 1000 burn-150 

in steps and 500 steps between each replicate. The recorded state of the metacommunity 151 

included the abundances of each species in each habitat cell. We performed 10 replicates for 152 

each dispersal distance value and in each simulated landscape. In total, we obtained 2,700 153 

metacommunity replicates (3 Hurst exponent values × 3 habitat proportions × 3 species 154 

dispersal distances × 10 landscape replicates × 10 metacommunity replicates). 155 

Patch connectivity indices – For each habitat cell of the 90 simulated landscapes, we computed 156 

three types of patch connectivity indices (Table 1; Fig. 1A): Buffer, dF and dIICflux. Buffer 157 

indices corresponded to the proportion of area covered by habitat within circles of different 158 

radius (rbuf = 1, 2, 4, 5, 8 cells) around the focal cell. 159 

  160 
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Table 1 — Patch connectivity indices considered in the study 161 

Index Definition Ref. 

Buffer buf𝑘 =
𝑎

𝜋𝑟2
∑ 1𝑑𝑖𝑘≤𝑟

𝑛
𝑖=1
𝑖≠𝑘

  [17] 

dIICflux dIICflux𝑘 =
100

𝐼𝐼𝐶
[2 ∑

𝑎𝑘𝑎𝑖

1+nl𝑖𝑘

𝑛
𝑖=1
𝑖≠𝑘

]  [28] 

dF dF𝑘 = 2 ∑ 𝑤𝑖𝑘
𝑛
𝑖=1
𝑖≠𝑘

  [21,26] 

Notations: 𝑛: total number of nodes (patches or cells) in a graph;  𝑎: area of a cell; 𝑎𝑖: area of patch 𝑖; 𝑟: radius of Buffer; nl𝑖𝑗: 162 
shortest path between nodes 𝑖 and 𝑗 in a binary graph; IIC= ∑ ∑ 𝑎𝑖𝑎𝑗 (1 + nl𝑖𝑗)⁄𝑛

𝑗=1
𝑛
𝑖=1 : integral index of connectivity of a graph; 𝑑𝑖𝑗: 163 

Euclidean distance between nodes 𝑖 and 𝑗; 𝑤𝑖𝑗: probability weight of the link between nodes 𝑖 and 𝑗 in a weighted graph. 164 

The computation of dIICflux and dF relied on delineating habitat “patches”. We alternatively 165 

considered two delineation approaches (Fig. S3): patches were defined either as single habitat 166 

cells in the landscape (“fine” patch delineation) or as groups of contiguous habitat cells 167 

(“coarse” patch delineation). With fine patch delineation, each patch corresponded to a single 168 

community. With coarse patch delineation, patches contained as many communities as cells 169 

forming the patches. For each approach, pairs of patches obtained were then connected by 170 

links. Links’ weights wij between nodes i and j in the network decreased according to the 171 

formula exp(-dij/λc), where dij is the Euclidean distances between nodes i and j and λc is a scale 172 

parameter [21,26]. λc may be interpreted as the hypothesized scale of dispersal distance of 173 

target organisms in the landscape (which may differ from the “true” simulated scale of dispersal 174 

distance, which is λs). We considered four scale parameter values (λc = 0.25, 0.5, 1 and 2 175 

cells). dF quantified the sum of edges weights between the focal patch and all the other 176 

patches. dIICflux considered a binary graph, where each node pair was considered either 177 

connected (1) or not (0) relatively to a minimal link weight wmin = 0.005. Scale parameters λc = 178 

0.25, 0.5, 1 and 2 cells thus lead to connect all pairs of habitat cells separated by a distance 179 

inferior to 1.3, 2.6, 5.3 and 10.6 cells respectively. dIICflux captured a notion of node centrality, 180 

like dF, but based on topological distance in the graph rather than Euclidean distance. All 181 

indices were computed with Conefor 2.7 (command line version for Linux, furnished by S. 182 

Saura, soon publicly available on www.conefor.org; [27]). 183 

Altogether, in each habitat cell of each simulated landscape, we computed 5 Buffer indices + 184 

8 dF indices + 8 dIICflux indices = 21 patch connectivity indices per sampled cell. 185 

Sampling design - For each simulated landscape, we defined a set of sampled cells, including 186 

habitat cells away from each other’s for a minimal distance of 12 cells, to reduce spatial auto-187 

correlation (e.g. Fig. 1A). We also reduced potential landscape border effect by excluding cells 188 
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near landscape borders (to a distance inferior or equal to eight cells, equivalent to the longest 189 

radius used for Buffer index, see below). Each landscape counted in average 25 sampled cells 190 

(CI-95% = [23, 27]). 191 

Figure 1 – Example of analysis of the explanatory power of Buffer index in a virtual 192 
dataset. Panel A: a virtual landscape obtained through midpoint displacement algorithm, with 193 
controlled habitat proportion (here 0.4) and Hurst exponent (here 0.1). Brown cells stands for 194 
unhospitable matrix. Green cells denote habitat cells. Lighter cells harbor a higher patch 195 
connectivity Buffer index (here computed with radius 8 cells). Blue circles show sampled cells. 196 
Panel B: relationship between Buffer index and species richness in sampled cells for a 197 
metacommunity replicate within the landscape of panel A. The relationship was analyzed using 198 
a quadratic model (red curve), and the R2 of the model, R2spec, was recorded for future 199 
analyses. The species dispersal distance used to simulate the metacommunity replicate 200 
presented here was λs = 1 cell. 201 

 202 

General approach – For each of the 2700 metacommunity recorded states, we computed 203 

species richness within habitat cells belonging to the sampling design. We thus obtained 21 × 204 

2700 = 56,700 relationships between a connectivity index and species richness. For each 205 

relationship, we computed the maximum proportion of species richness variance explained by 206 

a quadratic function of the connectivity index (e.g. Fig. 1B). We called “explanatory power” of 207 

the connectivity index this proportion below, and we computed it by recording the R2 coefficient 208 

of the linear model Species richness ~ Patch connectivity + (Patch connectivity)2. We denoted 209 

these R2 coefficients as “R2spec”. We applied linear models on this set of R2spec values to test 210 

our three predictions, as detailed below. 211 

Testing prediction 1: patch delineation effect – Our first prediction was that the explanatory 212 

power of connectivity indices should be optimal when patch delineation matches the 213 

geographical scale of studied communities, hence ensuring no within-patch dispersal 214 
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limitation. In our simulations, the size of habitat cells within a land cover map matches the 215 

community size of species, therefore we predicted that lumping contiguous habitat cells 216 

together into larger patches would deteriorate the explanatory power of indices with respect to 217 

species richness. We tested this prediction by exploring the effect of patch delineation on R2spec 218 

for dF and dIICflux indices. Buffer indices were not considered in this analysis because they 219 

did not depend on patch delineation. 220 

In each of the 2,700 simulated dataset, we recorded R2spec for dF or dIICflux computed with a 221 

fine patch delineation. Both dF and dIICflux had four possible scaling values, potentially 222 

yielding four distinct R2spec values per index for the same virtual dataset. Here, we aimed at 223 

controlling for the variation of R2spec due to index scaling (which are analyzed separately in the 224 

next section).To do so, we focused on the highest value out of the four distinct R2spec values 225 

in the present analysis. We thus obtained 2,700 datasets × 2 indices = 5,400 R2spec values. 226 

Then we considered patch connectivity indices computed with a coarse patch delineation. In 227 

each of the 2,700 simulated dataset, we fitted a linear model with species richness as a 228 

dependent variable. We used the connectivity index (dF or dIICflux) and the area of the patch 229 

containing the sampled cell as independent variables. We included patch area in the analysis 230 

to ensure fair comparison with the fine patch delineation analysis. Here again, we included 231 

quadratic terms (dF2 or dIICflux2, and area2). We recorded R2spec of the models and kept only 232 

the highest values across possible scaling parameters, which yielded again 2,700 × 2 = 5,400 233 

R2spec values. 234 

We then analyzed the 10,800 R2spec values generated above with one linear model per index 235 

type (dF or dIICflux), where the dependent variable R2spec was modelled as a function of the 236 

patch delineation (“coarse” or “fine”) in interaction with landscape Hurst exponent, habitat 237 

proportion and species dispersal distance (all these independent variables being considered 238 

as factors). We expected R2spec to be significantly higher at fine patch delineation, which we 239 

tested using the model R2spec ~ patch delineation. We also expected the positive effect of 240 

switching from coarse to fine patch delineation to increase when Hurst exponent (i.e. habitat 241 

aggregation) or habitat proportion increase, because patches (sets of contiguous cells here) 242 

become larger on average, leading to stronger dispersal limitation effects within patches. We 243 

tested this second hypothesis using two models with interactions: R2spec ~ patch delineation × 244 

Hurst exponent and R2spec ~ patch delineation × habitat proportion. At last, we expected the 245 

positive effect of switching from coarse to fine patch delineation to decrease when species 246 

dispersal distance increases, because dispersal limitation within patches weakens. We tested 247 

this last hypothesis using the model: R2spec~patch delineation × dispersal. 248 
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Testing prediction 2: index scaling effect – Our second prediction was that the scaling of patch 249 

connectivity indices maximizing the explanatory power upon species richness should increase 250 

with dispersal distance of target organisms. We tested it by recording, in the 2,700 simulated 251 

datasets, R2spec for Buffer, dIICflux and dF patch connectivity indices computed with a fine 252 

patch delineation at each scaling parameter value. We thus obtained 2,700 datasets × 3 253 

indices × 4 or 5 scaling parameter values [4 for dF and dIICflux, 5 for Buffer] = 35,100 R2spec 254 

values. We then built one linear model per index type (Buffer, dF or dIICflux), where R2spec was 255 

the dependent variable, modelled as a function of species dispersal distance in interaction with 256 

index scale parameter R2spec ~ dispersal × scaling value. For each species dispersal distance, 257 

we could then identify the scaling of indices maximizing R2spec, which we call the “optimal” 258 

scaling. We expected the optimal scaling of indices to increase with the dispersal distance of 259 

species, following previously published results in the literature [19,20]. 260 

Testing prediction 3: connectivity variability effect – Our third and last prediction was that a 261 

higher variability of patch connectivity indices among sampled sites should increase the 262 

explanatory power of connectivity metrics upon species. We tested it by recording, in the 2,700 263 

simulated datasets, the maximal value of R2spec across scaling parameter value for Buffer, 264 

dIICflux and dF patch connectivity indices computed with a fine patch delineation. This 265 

generated 2’700 virtual datasets × 3 index types = 8100 R2spec values. Then we explored 266 

separately for each index at each species dispersal distance how the coefficient of variation of 267 

patch connectivity indices affected R2spec. For each index, we computed the average value of 268 

R2spec with optimal scaling across the 10 metacommunity replicates associated to one 269 

landscape and one dispersal distance level (avR2spec below). We computed the corresponding 270 

average coefficient of variation of the patch connectivity index with optimal scaling (avCV). 271 

Thus, we obtained 3 Hurst exponent × 3 habitat proportion × 3 dispersal distance × 10 272 

landscape replicates = 270 pairs of avCV and avR2spec values. We analyzed the relationship 273 

between these quantities using the linear model logit(avR2spec) ~ log(avCV). We expected 274 

landscapes with higher avCV to yield higher avR2spec. 275 

We additionally tested whether the effects of habitat aggregation and habitat proportion on 276 

R2spec were completely mediated by the coefficient of variation of the connectivity index. To do 277 

so, we added the interaction of habitat aggregation and habitat proportion in the above-278 

mentioned linear model (i.e. considering logit(avR2spec)~log(avCV)+ Hurst exponent × habitat 279 

proportion). A significant improvement of the model fit would have suggested that habitat 280 

aggregation and habitat proportion modulated the explanatory power of connectivity indices 281 

beyond their effect on its coefficient of variation among sampled sites. 282 
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Codes for landscape generation and metacommunity simulation, virtual datasets combining 283 

simulation outputs and patch connectivity indices and codes of the analyses of virtual datasets 284 

presented above have been made available on an online repository (doi: 285 

10.5281/zenodo.3756712). 286 

Results 287 

The median of the 56,700 R2spec values obtained from our simulations was 0.65, suggesting 288 

that the explanatory power of patch connectivity indices was generally strong. However, the 289 

explanatory power fluctuated a lot around the median value: 2.5% of R2spec values were below 290 

0.07 while another 2.5% were above 0.94. 291 

Prediction 1: patch delineation effect – For both dF and dIICflux, using a fine patch delineation 292 

yielded higher R2spec than using a coarse patch delineation (dF: +0.19 on average, s.e.=0.005, 293 

p<2e-16; dIICflux: +0.08 on average, s.e.=0.006, p<2e-16). 294 

For dF index, high Hurst exponent (high habitat aggregation) significantly increased the 295 

positive effect of refining patch delineation on R2spec compared to medium or low Hurst 296 

exponent (F-test; F=3.8, p=0.02). However, this modulation had a limited effect size: for high 297 

Hurst exponent, R2spec increased by +0.21 (s.e.=0.009) with fine delineation, while it increased 298 

by +0.18 (s.e.=0.009) for medium or low Hurst exponent. A larger proportion of habitat in the 299 

landscape significantly increased the positive effect of refining patch delineation on R2spec (F-300 

test; F=16.6, p=6e-8): the effect of refining patch delineation on R2spec reached +0.23 301 

(s.e.=0.009) for a habitat proportion of 0.4 while it equaled +0.16 (s.e.=0.009) only for a habitat 302 

proportion of 0.1 (Fig. 2A). Higher species dispersal distance decreased the positive effect of 303 

refining patch delineation on R2spec (F-test; F=192, p<2e-16): the effect of refining patch 304 

delineation on R2spec reached +0.28 (s.e.=0.008) when species had low dispersal distance 305 

while it equaled +0.07 (s.e.=0.008) when species had high dispersal distance (Fig. 2B). 306 

For dIICflux index, a higher Hurst exponent increased the positive effect of refining patch 307 

delineation on R2spec (F-test; F=11.5, p=9e-6): the effect of refining patch delineation equaled 308 

+0.12 (s.e.=0.01) in highly aggregated landscapes with a Hurst exponent of 0.9. By contrast, 309 

the effect of refining patch delineation equaled +0.07 only (s.e.=0.01) in landscapes with a 310 

Hurst exponent of 0.1 (Fig. 2C) and +0.06 (s.e.=0.01) in landscapes with an intermediary Hurst 311 

exponent of 0.5. Habitat proportion and species dispersal distance did not significantly affect 312 

the effect of refining patch delineation on R2spec.  313 
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Figure 2 — Hurst exponent, habitat proportion and species dispersal distance 314 
modulating the effect of refining patch delineation on the explanatory power of patch 315 
connectivity indices. Bars show the average R2spec over simulated datasets for distinct levels 316 
of habitat proportion (panel A), species dispersal distance (panel B) and Hurst exponent (panel 317 
C), with asymptotic 95% confidence intervals (half width = 1.96 x standard error). Panel A and 318 
B come from the analysis of the dF index while Panel C comes from the analysis of dIICflux, 319 
hence the different color. 320 

 321 

Prediction 2: index scaling effect –For Buffer, dF and dIICflux, the scaling parameter value 322 

yielding the highest R2spec increased with species dispersal distance (Fig. 3). Because of our 323 

high number of simulations, the mean R2spec obtained with optimal scaling was always 324 

significantly higher than mean values obtained with other scaling values. However, mean 325 

R2spec rarely departed from the optimal scaling performance by more than one standard 326 

deviation, and it only happened for scaling parameter values very different from the optimal 327 

scaling (Fig. 3). Therefore, the magnitude of the variation of mean R2spec between scaling 328 

parameter value could be considered as small compared to the intrinsic variability of R2spec for 329 

a given scaling parameter value.  330 

The range of scaling parameters explored was not sufficient to obtain precise quantitative 331 

relationships between species dispersal distance and index scaling. For Buffer and dF indices, 332 

the optimal value sometimes lied at the higher boarder of the explored range for medium or 333 

high species dispersal distance, suggesting that the true optimal scaling value may actually be 334 

higher than the explored range. For dIICflux index, the optimal scaling value lied at the lower 335 

border of the explored range for low and medium species dispersal distances, suggesting that 336 

the true optimal scaling may actually be lower than the explored range. However, these results 337 

were sufficient to reveal that the relationship between species dispersal distance and optimal 338 

scaling is variable among the three types of index tested. In particular, the optimal scaling of 339 

Buffer radius (rbuf) corresponded to about 8 times the true scale of species dispersal distance 340 

(λs; Fig. 3A). The optimal scaling of dF indices (λc) seemed to lie between 2 and 4 times the 341 

true scale of species dispersal distance (Fig. 3B), while the optimal scaling parameter of 342 
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dIICflux indices (λc) seemed to be about 0.5 times the true scale of species dispersal distance 343 

(Fig. 3C). 344 

Figure 3 — Combined effects of species dispersal distance and scaling parameter of 345 
patch connectivity indices on indices explanatory power. Panels A, B and C correspond 346 
to Buffer, dF and dIICflux indices respectively. Colors indicate the average explanatory power 347 
(R2spec) of the considered connectivity index across all the simulations with given species 348 
dispersal distance (λs; x-axis) and scaling parameter (rbuf in panel A λc in panels B and C; y-349 
axis). For each species dispersal distance, we marked with a black dot the “optimal” scaling 350 
parameter value, i.e. the scaling parameter value yielding the highest R2spec among the 351 
explored values. We connected these dots to show, for each type of connectivity index, the 352 
species dispersal distance – scaling parameter relationship maximizing R2spec in our 353 
simulations (beware that scales of axes are not linear). Because of our high number of 354 
simulations, the mean R2spec obtained with optimal scaling is always significantly higher than 355 
mean R2spec obtained with other scaling values. However, the difference between mean R2spec  356 
for different scaling values was often small: for each species dispersal distance, we marked 357 
with circles the scaling parameter values that yield R2spec values such that mean plus one 358 
standard deviation is higher than the mean R2spec obtained with optimal scaling. 359 

 360 

Global performance of indices — When considering only connectivity indices with optimal 361 

scaling at fine patch delineation, a 95% of the 8,100 corresponding R2spec values lied between 362 

0.35 (2.5% percentile) and 0.96 (97.5% percentile), with median value of 0.79. Buffer and dF 363 

stood out as the most performant index on average. The average R2spec of Buffer was 364 

R2spec=0.79 (s.e.=0.003). Average R2spec for dF differed from Buffer by -0.01, which was not 365 

significant. By contrast, the average R2spec for dIICflux index significantly differed from Buffer 366 

by -0.11 (t-test; t=-27, p<2e-16). 367 

Prediction 3: connectivity variability effect — The linear model logit(avR2spec)~log(avCV) 368 

always detected a significant positive relationship between the coefficient variation and the 369 

explanatory power of connectivity indices (Fig. 4), with p < 2e-16 for Buffer, and p = 2e-9 and 370 

4e-4 for dF and dIICflux respectively. The effect size of the coefficient of variation was markedly 371 

stronger for Buffer (estimate of 2.1 in the linear model with 0.17 s.d.) than for dF (estimate of 372 

0.6 with 0.10 s.d.) and dIICflux (estimate of 0.3 with 0.09 s.d.). The R2 of the linear model 373 
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logit(avR2spec)~log(avCV) was stronger for Buffer (0.34) than for dF (0.13) and dIICflux (0.04), 374 

suggesting that the explanatory power of Buffer index is more tightly linked to its coefficient of 375 

variation than the two other indices. In line with this finding, adding the interaction of habitat 376 

aggregation and habitat proportion in the linear model (i.e. considering 377 

logit(avR2spec)~log(avCV)+ Hurst exponent × habitat proportion) did not significantly improve 378 

the fit for Buffer index (p=0.2 on a F-test),. By contrast, it did for the two other indices (p=2e-2 379 

and p=4e-7 on a F-test for dF and dIICflux respectively). Note that, reciprocally, adding the 380 

coefficient of variation avCV always significantly improved the fit compared to a model with 381 

Hurst exponent × habitat proportion only (p<2e-16, p=2e-10 and p=5e-8 on a F-test for Buffer, 382 

dF and dIICflux respectively). 383 

Figure 4 - Explanatory power of patch connectivity indices (R2spec) as a function of the 384 
coefficient of variation of patch connectivity index. Panels A, B and C correspond to Buffer, 385 
dF and dIICflux index respectively. Symbols corresponds to species dispersal distance. The 386 
y-coordinate presents the average value of R2spec with optimal scaling across the 10 387 
community replicates associated to one landscape and one dispersal distance level. The x-388 
coordinate presents the corresponding average coefficient of variation (CV) of the patch 389 
connectivity index with optimal scaling. Thus there are 3 Hurst exponents × 3 habitat 390 
proportions × 3 dispersal distances × 10 landscape replicates = 270 dots in each panel. The 391 
red curve present the fit of the linear model logit(R2spec)~log(CV) over these dots. The light-392 
red envelope present a 95%-confidence interval around the fit. 393 

 394 

Discussion 395 

Our study aimed at clarifying how patch delineation procedure, scaling of connectivity indices 396 

and connectivity variability among habitat patches could affect the explanatory power of three 397 

patch connectivity indices on species richness within patch. Our goal was to identify methods 398 

and landscape contexts that would foster strong patch connectivity – species richness 399 

relationships and thus provides relevant tests of the TIB framework. We expected that a virtual 400 

study would offer favorable settings to monitor the effect of patch connectivity on patch species 401 

richness in that they only modelled dispersal processes (combined with demographic 402 

stochasticity), and would therefore maximize our ability to study how methodological choices 403 

and landscape features affect the explanatory power of patch structural connectivity. This 404 
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expectation was verified in our results: the explanatory power of connectivity indices was 405 

generally high but showed marked contrast among simulations, hence allowing us to identify 406 

clear patterns when testing our three main predictions. 407 

Prediction 1: patch delineation effect – We expected the predictive power of connectivity 408 

indices to be optimal when patch delineation matches the geographical scale of studied 409 

communities, hence ensuring no within-patch dispersal limitation. To test this prediction, we 410 

compared the explanatory power of connectivity indices (R2spec) when considering each 411 

elementary cell as a patch (the appropriate delineation with respect to simulations) versus 412 

when considering sets of contiguous cells as patches. R2spec values were higher at fine patch 413 

delineation, where no dispersal limitation occurred within patches. The coarser patch 414 

delineation considering sets of contiguous habitat as patches led to important drop of R2spec 415 

values, reaching about -0.2 when species harbored strong dispersal limitation (Fig. 2B). Our 416 

prediction was therefore corroborated. 417 

In the light of our results, we suggest that even when target habitats form “intuitive” patches 418 

(e.g. forest patches in agricultural landscapes), one should define a priori a grid with 419 

appropriate mesh size and use it to decompose the habitat map in elementary units, used for 420 

both community sampling and computation of connectivity indices. In particular, we discourage 421 

comparing community sampling and patch connectivity obtained at different spatial resolutions, 422 

which is often the case in empirical studies where species richness is derived from sampling 423 

covering only a small fraction of large patches obtained from coarse delineation (e.g. 424 

vegetation quadrats, birds point counts or insect traps). Our results suggest that using mesh 425 

size equal to the scale of dispersal distance for target organisms should allow strong patch 426 

connectivity - species richness relationships.  427 

Whether using smaller mesh size should erode species richness – connectivity relationship 428 

remains an open question. It is however obvious that very fine patch delineation can make 429 

connectivity indices computation challenging, since it can increase by several orders of 430 

magnitude the number of spatial units. This particularly affect indices stemming from graph 431 

theory that need to determine shortest paths between all pairs of spatial units. Here we have 432 

been able to compute dIICflux in all the virtual landscapes at fine patch delineation (up to 4000 433 

habitat units in a single landscape). Consequently, indices based on binary networks seem to 434 

pass the test of computational time. By contrast, we were unable to compute analogous indices 435 

in weighted networks (e.g., dPCflux; [30]). 436 

Determining a priori the appropriate mesh size corresponding to the scale of dispersal distance 437 

for the group of species under study is not straightforward, especially since in real communities 438 

– contrary to our simulations – movement capacity and dispersal distance are heterogeneous 439 
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among species. Beyond the binary comparison between coarse and fine patch delineation that 440 

we proposed here, one should now explore the sensitivity of patch connectivity indices 441 

explanatory power to varying mesh size (as suggested by Mazerolle and Villard [29] in real 442 

empirical studies). This would allow assessing whether some degree of uncertainty on that 443 

parameter is acceptable.  444 

Prediction 2: index scaling effect – Our second prediction was that the scaling of patch 445 

connectivity indices maximizing the explanatory power upon species richness should increase 446 

with dispersal distance of target organisms. We found that the scaling of patch connectivity 447 

indices leading to maximal explanatory power on species richness (the “scale of effect” sensu 448 

Jackson and Fahrig [19]) increased with the dispersal distance of target organism, in line with 449 

our prediction, and previous findings obtained from virtual studies [19,20]. This is a strong 450 

argument to prefer patch connectivity indices with a scaling parameter that can be modulated 451 

to match the dispersal distance of organisms rather that indices that cannot be adapted like 452 

distance to nearest patch. It also confirms that the scale of effect should capture some 453 

quantitative features of species dispersal distance, as it is often contended in the empirical 454 

literature (e.g., [31,32]).  455 

However, the scale of effect should not be used as a quantitative estimate of dispersal distance 456 

for two reasons. First, we observed that scaling parameter values around the optimal one often 457 

generated a small drop of explanatory power, suggesting that the explanatory power was not 458 

highly sensitive to errors on scaling parameter value. Therefore, finding the scaling parameter 459 

that maximizes the correlation is probably not an accurate method to obtain estimate of species 460 

dispersal distance. This is consistent with the fact that, in empirical systems, buffer radii 461 

maximizing the explanatory power over species presence or abundance can spread over a 462 

large array of distances without significant drop of explanatory power, sometimes covering 463 

several orders of magnitude (e.g., [33]). Second, the quantitative relationship between the 464 

scale of effect and species dispersal distance was variable among indices tested. Rather, the 465 

relationship between the scale of effect and the scale of species dispersal distance may be 466 

used to roughly rank species or groups of species according to their dispersal distance. It can 467 

also contribute, when some a priori information is available about the dispersal distance of 468 

target organisms, to defining the range of scaling parameter values in which the scale of effect 469 

should be searched for. 470 

Here we considered neutral metacommunities where all the species have the same dispersal 471 

distance. This greatly simplified the analysis of the relationship between the scale of effect of 472 

indices and species dispersal distances. However, species dispersal distances in real 473 

communities are known to be heterogeneous [34,35]. One may therefore question how our 474 
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findings can transfer to real empirical studies. The fact that, for a given species dispersal 475 

distance and a given index, a broad range of scaling parameters have an explanatory power 476 

similar to the scale of effect could here turn out to be an advantage: a scaling parameter value 477 

adapted to the average dispersal distance of species in the community might be fairly adapted 478 

to all the species in the community. Of course, this should not be valid anymore if species 479 

dispersal distances are highly heterogeneous among species. 480 

Global performance of indices – Our study allowed us to compare the explanatory power of the 481 

three type of connectivity indices considered here. Buffer and dF indices lead to high and very 482 

similar performance when used with appropriate scaling. This stemmed from the fact that these 483 

two indices are highly correlated (average correlation across landscapes above 0.95; Fig. S4). 484 

In our study, Buffer resembled dF index when its radius was about 4 times the dF scaling 485 

parameter value. [17] had already evidenced that correlations between IFM index (a 486 

generalization of the dF index; [38]) and buffers could reach 0.9 in a real landscape (their study 487 

did not focus on how the scaling of both indices could affect the correlation). Buffer and dF 488 

indices are both weighted sums of surrounding habitat cells contribution, where weights 489 

decreases with Euclidean distance following some kernel function. The only difference 490 

between the two indices is that Buffer is based on a step function while dF is based on a 491 

smoothly decreasing exponential kernel. We therefore interpret our results as the fact that 492 

changing the decreasing function used as a kernel may little affect the local connectivity as 493 

long as scaling is adjusted. This may explain why Miguet et al. [39] found that: (i) switching 494 

from buffer to continuously decreasing kernel little affected AIC or pseudo-R2 of models used 495 

to predict species abundances; (ii) neither continuously decreasing nor step function was 496 

uniformly better to explain species abundance across four case studies; (iii) different 497 

continuous shapes of kernel had quite indiscernible predictive performance. 498 

The dIICflux index had a lower explanatory power than Buffer and dF indices on average (-499 

0.12 on Rspec). This difference in global performance was made possible by the fact that 500 

dIICflux harbored a different profile than dF and Buffer in landscapes (Fig. S4), because it 501 

considers topological rather than Euclidean distance to compute connectivity. The use of five 502 

scaling values only in our analysis calls for some caution in the interpretation of the dIICflux 503 

lower explanatory power. The optimal scaling value of dIICflux for low and intermediate 504 

dispersal distances seemed to lie below the lower limit of the range explored in our study. 505 

Consequently, the explanatory power of this index might be underestimated compared to the 506 

other ones and partly explain why it seems less efficient in predicting species richness. 507 

Part of the relative success of dF and Buffer over dIICflux may also stem from the fact that we 508 

did not include different resistance values to habitat and matrix cells. When heterogeneous 509 
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resistance occurs, landscape connectivity including displacement costs (e.g. least cost path, 510 

circuit theory) can be markedly different from prediction based on Euclidean distance only [40], 511 

and may better capture the movement of organisms in real case study [41,42]. This probably 512 

also applies to patch connectivity. By connecting only cells that contain habitat, dIICflux and 513 

other indices based on topological distance within a graph could prove more performant when 514 

matrix has high resistance cost, and we may not find the same superiority of Euclidean indices 515 

as in our simulations. 516 

Prediction 3: connectivity variability effect – Our third and last prediction was that a higher 517 

variability of patch connectivity indices among sampled sites should increase the explanatory 518 

power of connectivity metrics upon species. We found a consistent positive relationship 519 

between the coefficient of variation of the patch connectivity indices and explanatory power, 520 

hence corroborating our expectation. The coefficient of variation of Buffer was sufficient to 521 

explain the fluctuation of explanatory power among landscapes with distinct habitat proportion 522 

or aggregation. Hence, the coefficient of variation of Buffer index with optimal scaling provides 523 

a remarkably simple and practical tool to assess whether a landscape has potential to reveal 524 

an effect of connectivity on species richness. Importantly, the relationship between the 525 

coefficient of variation and the explanatory power was looser for the two other index types 526 

explored (dF and dIICflux), and habitat aggregation and proportion seemed to affect the 527 

explanatory power beyond their effect on those indices’ variability. Thus, Buffer stands out as 528 

the appropriate index to assess connectivity variability in the context of our study. Whether this 529 

specificity holds when (i) broader range of scaling parameter values are explored for 530 

topological indices like dIICflux or (ii) landscapes harbor heterogeneous resistance is an open 531 

question that calls for more virtual studies. From an empirical perspective, our results 532 

emphasized the pivotal role of Buffer coefficient of variation and now call for defining 533 

appropriate thresholds on this coefficient to observe an effect on species richness. This 534 

requires meta-analyses of formerly published studies, accounting for taxa and habitat 535 

specificities. 536 

Conclusion 537 

Our results suggest that finding a strong effect of some patch structural connectivity on local 538 

species richness can occur only if: (i) spatial units used as patches are sufficiently small to 539 

prevent internal dispersal limitation within patches, which can be obtained by using a raster 540 

perspective with appropriate mesh size for patch delineation; (ii) the scaling of the patch 541 

connectivity index is adapted to the dispersal distance of species considered, which can be 542 

obtained by screening scaling parameters over a range of values defined from a priori 543 
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knowledge about species dispersal distance; (iii) a Buffer index with optimal scaling harbors a 544 

high variability among sampled patches. When those three criteria are met, the absence of 545 

effect of connectivity on species richness should be interpreted as contradicting TIB 546 

predictions. Buffer indices particularly stood out in our analysis, as they efficiently summarized 547 

landscape effects on species richness and show higher explanatory power than other index 548 

types. When used with appropriate scaling, they seem a robust choice to recommend for 549 

empirical applications. However, new virtual studies including heterogeneous resistance within 550 

landscapes are necessary to ascertain this point. 551 
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Supplementary figures 675 

Figure S1: Simulated landscapes with contrasted aggregation and habitat proportion 676 
obtained from the midpoint displacement algorithm. Habitat is pictured in green, matrix in 677 
brown. Columns correspond to distinct levels of habitat proportion: panels A and C correspond 678 
to low habitat proportion (10%), panels B and D correspond to high habitat proportion (40%). 679 
Lines correspond to distinct habitat aggregation: panels A and B correspond to low habitat 680 
aggregation (Hurst exponent = 0.1), panels C and D correspond to high habitat aggregation 681 
(Hurst exponent = 0.9). 682 
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Figure S2: Average size and number of sets of contiguous cells within simulated 685 
landscapes. Colors correspond to distinct combinations of Hurst exponent (“Hu” in the labels) 686 
and habitat proportion (“p” in the labels). Ellipses correspond to 95%-CI of a fitted bivariate 687 
Student distribution. 688 
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Figure S3: Lumping of contiguous cells generating the coarse patch delineation 692 
perspective. Panel A shows a habitat map where fine delineation of patches has been applied. 693 
Panel B shows the same habitat map where coarse patch delineation has been applied, i.e. 694 
sets of contiguous cells has been lumped together. Contiguity is based on the Von Neuman 695 
neighborhood of cells. 696 
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Figure S4: Dendrogram of Pearson correlation coefficients among patch structural 698 
connectivity indices across all landscapes. We presented correlations among Buffer, dF 699 
and dIICflux using ascending hierarchical classification. Within each of the 90 simulated 700 
landscapes, we computed the values of the 13 indices (accounting for distinct scaling values) 701 
in all habitat cells, which yielded 13 vectors of length 1000 to 4000 depending on the habitat 702 
proportion. We scaled each of the 13 vectors to mean 0 and variance 1, divided them by the 703 
square root of the number of habitat cells in the landscapes and computed pairwise Euclidean 704 
distances among them. We thus obtained one 13×13 distance matrix among patch connectivity 705 
indices in each of the 90 landscapes. Note that the distance between two indices corresponds 706 

to √2 − 2𝑟, where r is the Pearson correlation between the indices across all habitat cells of 707 
the considered landscapes. We then averaged the 90 distance matrices to obtain one single 708 
13×13 distance matrix as a basis for classification. We ran an ascending non-supervised 709 
classification (hclust function of R base package), using the complete method for group 710 
merging. A monophyletic group G with common ancestor located at value r means that any 711 
pair of indices within G has a correlation above r. Indices labels in the dendrogram are made 712 
of three parts separated by underscores “_”. The first part of the name indicates the type of the 713 
index (“buf”, “dF”, “dIICflux”). The second part of the name indicates the scale parameter of 714 
the index (“d025”, “d050”, “d100”, “d200”  corresponding to λc = 0.25, 0.5, 1, 2 cells respectively, 715 
and “1”, “2”, “4”, “6”, “8” corresponding to Buffer radius rbuf in cells). The last part in meaningless 716 
here. 717 
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