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Abstract 
The pandemic from the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) led 
to hundreds of thousands of deaths, including >15,000 in New York City (NYC). This pandemic 
highlighted a pressing clinical and public health need for rapid, scalable diagnostics that can 
detect SARS-CoV-2 infection, interrogate strain evolution, and map host response in patients. To 
address these challenges, we designed a fast (30 minute) colorimetric test to identify SARS-
CoV-2 infection and simultaneously developed a large-scale shotgun metatranscriptomic 
profiling platform for nasopharyngeal swabs. Both technologies were used to profile 338 clinical 
specimens tested for SARS-CoV-2 and 86 NYC subway samples, creating a broad molecular 
picture of the COVID-19 epidemic in NYC. Our results nominate a novel, NYC-enriched SARS-
CoV-2 subclade, reveal specific host responses in ACE pathways, and find medication risks 
associated with SARS-CoV-2 infection and ACE inhibitors. Our findings have immediate 
applications to SARS-CoV-2 diagnostics, public health monitoring, and therapeutic 
development. 
 
Keywords: severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus 
disease 2019 (COVID-19), loop-mediated isothermal amplification (LAMP), quantitative reverse 
transcription polymerase chain reaction (qRT-PCR), next-generation sequencing (NGS), RNA-
seq, global health. 
 
Introduction 
In March 2020, the World Health Organization (WHO) declared a novel pandemic of the 
coronavirus disease 2019 (COVID-19), an infection caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) (He et al., 2020). Since then, New York City (NYC) has emerged 
as the global epicenter of this pandemic, with nearly one million cases and hundreds of 
thousands of deaths attributed to COVID-19 as of April 22, 2020, according to John’s Hopkins 
University (JHU) Coronavirus Resource Center (https://coronavirus.jhu.edu). 
 
The presenting symptoms of COVID-19 resemble those of common viral respiratory infections.  
As a result, molecular diagnosis is required to reliably distinguish SARS-CoV-2 infection from 
influenza and the agents of the common cold (Guan et al., 2020, Zhou et al., 2020). Current 
approaches to molecular testing are mostly limited to hospital laboratories and are largely 
reserved for the most severe cases, with limited accessibility to the general population. As a 
result, the prevalence of SARS-CoV-2 in the population is mostly unknown, particularly among 
mild or asymptomatic cases. Though several novel, scalable biotechnological innovations for 
viral testing have recently emerged (e.g., CRISPR-Cas12a (Broughton et al., 2020) or CRISPR-
Cas13 (Metsky et al., 2020) on paper-based detection systems, or loop-mediated isothermal 
amplification (LAMP) (Tanner et al., 2015, Zhang et al., 2020, Yu et al., 2020, Schmid-Burgk 
et. al., 2020) these have not been validated against gold-standard clinical assays or next-
generation sequencing (NGS).  
 
The lack of rapid and widely available SARS-CoV-2 diagnostics has fundamentally limited the 
public health approach to COVID-19, including the implementation of contact tracing and 
accurate estimation of infection fatality rates. In addition, the persistence of SARS-CoV-2 across 
a range of surfaces (e.g. glass, metal) for up to nine days in experimental conditions (van 
Doremalen et al., 2020) and hospital areas (Ong et al., 2020) raises the possibility that fomite 
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transmission may play a role in COVID-19 spread. A key question is whether the environmental 
surface distribution of SARS-CoV-2 in high-traffic areas (e.g. subways) may have driven its 
rapid emergence in certain regions (e.g., NYC). 
 
Dynamic tracking of the evolution of the COVID-19 pandemic has been enabled by genomic 
viral surveillance resources such as Global Initiative on Sharing All Influenza Data (GISAID), 
the JHU Dashboard, and Nextstrain (https://nextstrain.org/ncov) (Gardy et al., 2015, Dong et al., 
2020, Meyers et al., 2020, Hadfield et al., 2018). Nevertheless, the fraction of cases that have 
undergone full-length viral genome sequencing are still low (<0.5% of documented cases), 
underscoring the need for additional profiling, particularly in global infection epicenters such as 
NYC. Full-length viral genome sequences are required to track strain evolution, infer the 
temporal and geographic trajectories of spread, and correlate clinical features (e.g. disease 
severity, comorbidities, and viral load) with specific genotypes. Indeed, such genomic 
epidemiology efforts were crucial to confirm early community spread of SARS-CoV-2 in the 
U.S. States of Washington, California, and Connecticut (Zhao et al., 2020, Gonzalez-Reiche et 
al., 2020, Fauver et al., 2020) as well as in China (Lu et al., 2020). However current approaches 
to viral profiling (targeted sequencing of SARS-CoV-2) fail to provide information on host 
immune response or microbial co-infections, both which might modify presentation of COVID-
19 and provide directions for therapeutic intervention.  
 
To address these gaps in technology and disease knowledge, we designed and optimized a rapid 
LAMP assay to detect SARS-CoV-2 infection from nasopharyngeal swab specimens and 
oropharyngeal swab lysates. We then developed a large-scale shotgun metatranscriptomics 
platform to comprehensively profile nasopharyngeal swab samples collected from patients with 
total RNA sequencing (RNA-seq). Both technologies were applied to specimens from 338 
confirmed or suspected COVID-19 patients at New York-Presbyterian Hospital-Weill Cornell 
Medical Center (NYPH-WCMC) and 86 environmental samples collected from high-transit areas 
in the NYC subway in early March 2020. Using these data, we validated the rapid LAMP assay 
against viral loads obtained with total RNA-seq and gold standard qPCR. We used full-length 
viral profiles to define a novel, NYC-enriched SARS-CoV-2 subclade. Finally, we integrated 
host and viral expression data with clinical metadata from NYPH-Columbia University Irving 
Medical Center (NYPH-CUIMC) to link perturbations in the angiotensin-converting enzyme 
pathway to SARS-CoV-2 viral loads and clinical outcomes. Our results propose novel molecular 
approaches for detecting and tracking SARS-CoV-2 infection, provide new molecular insights 
into the evolution of the COVID-19 outbreak in NYC, and implicate specific host factors and 
drug interactions in the biology of this disease.  
 
Results 
 
Rapid, single tube detection of SARS-CoV-2  
We developed a colorimetric assay to quickly detect and quantify SARS-CoV-2 viral load in 
patient and environmental samples, utilizing a set of six LAMP primers and simple single tube 
protocol (Figure 1b). Primers were designed to create two nested loops and amplify within the 
SARS-CoV-2 nucleocapsid gene (N gene), which enabled a 30-minute reaction workflow. 
Related pathogens, high prevalence disease agents, and normal or pathogenic microbiota that are 
reasonably likely to be encountered in the clinical samples were evaluated to identify the percent 
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homology between the primer sequences and these other organisms, and the probes were also 
designed to avoid known polymorphisms (see Methods). 
 
To validate the assay, we first evaluated two synthetic RNAs (see Methods) whose sequences 
matched the viral sequences of patients from Wuhan, China and Melbourne, Australia (Supp. 
Fig. 1). The first control (MT007544.1) was used to test the analytical sensitivity via the limit of 
detection (LoD), titrated from 1 million molecules of virus (106) down to a single copy, using 
serial log-10 dilutions. The reaction output was measured at 0-, 20-, and 30-minute intervals 
(Figure 1c,  Supp. Figure 2a) before the samples were heated to 95oC for inactivation. The LoD 
was found to be between 10–100 viral total copies, and this was then replicated to show a similar 
LoD of 10–100 viral copies on the second synthetic control from the patient from Wuhan (Supp. 
Figure 2b). 
 
We evaluated the reproducibility, clinical sensitivity, and clinical specificity of the LAMP assay 
across a set of serial titrations. Across these experiments, LAMP fluorescence correlated closely 
with SARS-CoV-2 RNA viral copies (Figure 1d), with an overlap of the median signal from 
negative controls at lower levels (25 total copies per reaction) of viral RNA (n=10). This 
translated to a 100% reproducibility at 1,000 and 500 total copies of viral RNA, 90% 
reproducibility at 100 copies, and 80% reproducibility at 50 copies (Supp. Figure 3a). This 
indicates an LoD threshold (95% reproducibility at two times the LoD) that is likely near 200 
copies of RNA, with a maximum sensitivity of 10-50 copies of the viral RNA.  
 
To optimize the LAMP assay for clinical samples, we first tested the reaction on a range of 
sample types, dilutions, and reaction volumes. We used a set of 201 COVID-19 samples that 
were tested for SARS-CoV-2 by qRT-PCR, including 69 nasopharyngeal (NP) swab samples 
that tested positive (clinical positives, qRT-PCR Ct<40) and 132 samples that tested negative 
(clinical negatives, qRT-PCR Ct ≥ 40) (see Methods). Clinically positive samples showed a 
much higher fluorescence than negative samples, with superior performance observed with 
higher (10µL vs 5µL) input volumes (Supp. Figure 3b). Clinically positive samples that failed 
to generate LAMP fluorescence were associated with lower viral genome abundance (high cycle 
threshold [Ct] value qRT-PCR). We obtained similar performance on bulk oropharyngeal swab 
lysate (Supp. Figure 3c-e), including increasing reaction sensitivity as a function of viral copy 
number. This required only a 30-minute lysis time for the oral collections and 30-minute LAMP 
reaction time. These results indicate robust performance of the LAMP assay across a broad range 
of purified nucleic acids as well as crude cellular lysates (see Methods).  
 
Having optimized the LAMP assay, we next evaluated its efficacy as a diagnostic across the 201 
clinically-annotated samples. Quantitative LAMP fluorescence data were used to build a 
Receiver Operator Characteristic (ROC) plot and evaluate the clinical sensitivity and specificity 
of the assay. At the optimal threshold based on the reading from the Quantifluor relative 
fluorescence units (RFUs, 11,140), we observed an overall sensitivity of 95.6% and specificity of 
99.4% (Figure 1e). With increasing viral load, as measured by qRT-PCR Ct values, the LAMP 
assay showed an increased diagnostic sensitivity (Supp. Fig. 4). The highest viral load (Ct <20) 
showed 100.0% sensitivity and 97.4% specificity, compared with the sensitivity at the lowest 
viral load at 80.0% (Ct >28, RFU below 7010). These same LAMP assay thresholds yielded 
consistent test positivity for synthetic RNA positive controls (Twist Biosciences) as well as 
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clinical spike-in carrier RNAs (20/20) (Supp. Fig. 4), and consistent signal from clinical viral 
positives in Vero 6 cells (100.0%, 12/12) and blank clinical buffer negatives (100.0% 8/8). 
 
Shotgun metatranscriptomics platform for viral, microbiome, and host genomics 
 
To provide orthogonal validation of our LAMP assay and further investigate the biological 
characteristics of clinical SARS-Cov2+ positive and negative samples, we developed a shotgun 
metatranscriptomics platform utilizing total RNA-seq (RNA-sequencing with ribosomal RNA 
depletion) to comprehensively profile human, microbial, fungal, and viral RNAs. We aligned 
total RNA-seq reads to several NCBI databases and classified those of non-human origin using 
Kraken2 (Wood et al., 2019). Applying this platform to a full set of 338 COVID-19 specimens 
(including the 199 tested with LAMP), we obtained an average of 63.2M read pairs per total 
RNA-seq library.  
 
The total RNA-seq data provided a broad view of the host transcriptome, the SARS-CoV-2 virus, 
as well as other domains of life. Libraries were dominated by reads that mapped to either human, 
bacterial, or SARS-CoV-2 genomes, in that order, but with lower proportion of reads mapping to 
fungi, archaea, or other viruses (Figure 2c, 2d). The reads that mapped to SARS-CoV-2 from 
total RNA-seq were sufficient to provide >10x coverage of the viral genomes for 118/132 
(89.4%) of patient samples (Figure 3a), with robust (>1000X) sequencing depth of the genome 
for the high viral load (<Ct 25). Indeed, when downsampling the sets of reads/patient (50M 
down to 0.5M), we observed consistent detection of viral genomes and coverage across the entire 
viral genome in total RNA libraries from clinical positive samples (Figure 3b).  
 
Clinical positive samples showed higher viral content (0.1%-62.2% of total RNA) than clinical 
negative samples (p-value < 2.2E-16, Wilcoxon rank-sum test). Comparing quantitative estimates 
of viral load from all three assays (LAMP, total-RNA Seq), we observed consistent profiles 
between the total RNA-seq viral abundance and the quantification by qRT-PCR and LAMP 
(Rseq_vs_Ct = -0.84, Rseq_vs_lamp = 0.82, Rlamp_vs_Ct = -0.80) (Figure 2b, Supp. Figure 5). Indeed, 
97% of clinical negative samples (199/205) demonstrated fewer than 0.01% of total RNA-seq 
reads mapping to the SARS-CoV-2 reference. Three of the remaining six demonstrated high 
SARS-CoV-2 read proportion (>0.01%), high SARS-CoV-2 genome coverage (>99%), and high 
LAMP fluorescence, suggesting that these were qRT-PCR false negatives (Supp. Figure 6). The 
remaining three showed lower coverage (97%-99%) of the SARS-CoV-2 genome and low signal 
with LAMP. These data provide evidence that false negatives from qRT-PCR are likely rare (3-
6/205, or 1.4-2.8%), but may require orthogonal assays to reliably detect.   
 
Analysis of total RNA-seq sequences enabled mapping of co-infections and colonization with 
commensal species across both clinical positives and negatives in our sample set. We identified 
additional RNA viruses and organisms that distinguished high, medium, and lower viral load 
patients (Supp Table 1), with overall similarity observed across patients in the bacterial RNA 
fractions (Supp. Figure 7a). However, there were distinct variations in known respiratory 
viruses, including human coronaviruses 229E, NL63, and HKU1, as well as influenza A, 
rhinovirus (A and C), and respiratory syncytial virus (Supp Figure 7a). As expected, most 
patients (129/133) that presented with the SARS-CoV-2 virus lacked reads associated with other 
respiratory viruses. A subset of patients (4/133, 3.0%) also harbored Influenza A. These cases 
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were enriched in the lower titer (bottom third) of COVID-19 positive (3/4) patients. One patient 
carried SARS-CoV-2, human metapneumovirus, and coronavirus NL63 at the same time (Supp 
Figure 7a,b). These results indicate that a positive test for common respiratory viruses does not 
rule out the presence of SARS-CoV-2. There was also an associated depletion of several species 
of Streptococcus, Veillonella, and Prevotella in the high viral patient category (Supp Figure 7c) 
that was co-incident with SARS-CoV-2 infection, indicating a possible disruption of the host 
microbiome at the airway site of the NP swab collection.  
 
Environmental sampling of SARS-CoV-2 in the NYC subway 
Having validated a rapid LAMP assay and shotgun metratranscriptomics platform, we deployed 
both to investigate the environmental distribution of SARS-CoV-2 in high-transit areas of the 
NYC subway antecedent to the dawn of the NYC pandemic. We collected 86 samples from 
handrails, kiosks, and floors in Grand Central and Times Square subway stations between March 
6 and 13th, 2020. Each sample was collected using a sterile and DNA/RNA free swab, following 
the MetaSUB sampling protocols for nucleic acid stabilization (Danko et al., 2020). None of 
these 86 samples reached significant levels of LAMP fluorescence, suggesting that these high 
transit surfaces were likely free of SARS-CoV-2 virions.  
 
To further investigate these 86 environmental samples for the presence of SARS-CoV-2, we 
generated total RNA-seq libraries and investigated the distribution of non-human sequences. 
These samples demonstrated a mix of fungal and archaeal species that was consistent with 
underground subway origin (Danko et al., 2020) (Supp. Table 1). However, we did not observe 
significant counts or proportions (Figure 2a) of SARS-CoV-2 reads, which was particularly 
clear with dual-index library preparations (Supp Figure 8). However, a broad range of other 
bacterial and viral species was found, including a large set of phages (e.g. Streptomyces phage 
VWB), desiccation-tolerant bacteria (e.g Deinococcus radiodurans), and more abundant 
bacterial and archaeal RNA than the clinical samples (Supp. Table 1). Of note, these were 
checked against a database of putative false positives (Supp. Table 2), which was created from 
in silico fragmentation of the SARS-CoV-2 genome and mapping against the same database. 
Taken together, these results indicate that high transit surfaces were not likely to harbor 
significant levels of SARS-CoV-2 in the early phases of the NYC epidemic.  
 
Shotgun metatranscriptomes yield full-length SARS-CoV-2 genomes  
We then investigated clinical samples with sufficient coverage across the 30kb SARS-CoV-2 
genome (>10x) to identify genetic variants and place NYC strains onto phylogenetic tree of the 
global outbreak. We identified variants both through alignment and de novo assembly of Kraken-
classified SARS-CoV-2 reads. In both cases, single nucleotide variants (SNVs) and indels 
(insertions/deletions) were called relative to the SARS-CoV-2 reference sequence 
(GCF_009858895.2) and then compared with 4,964 sequenced samples in GISAID (downloaded 
on 4/12/2020) using the Nextstrain database (Hadfield et al., 2018).  
 
Among our data, we found 692 instances of variants across 89 unique variant positions across the 
93 samples with sufficient quality assemblies for placement into the Nextstrain-derived 
maximum likelihood phylogenetic tree (see methods). Though the vast majority (>80%) of 
variants were present across most (>99%) SARS-CoV-2 reads aligning to a given reference 
position, a small subset (7%) were polymorphic with robust read coverage (>=20 reads 
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supporting each allele and variant allele frequency 0.1-0.9), suggesting that microdiversity may 
play some role in SARS-CoV-2 evolution (Figure 4). 
 
Analyzing groupings obtained from the Nextstrain-derived maximum likelihood phylogenetic 
tree, we found a high proportion (>83%) of our samples were associated with A2a, a large 
Western European derived clade that comprises nearly half of the sequences in GISAID. These 
results validate recently published findings (Gonzalez-Reiche et al., 2020). In addition, we found 
additional samples from clades with mixed Asian and European sources (A1a, 7% of cases; B1, 
3% of cases; B, 1% of cases; 4% of cases unassigned). Among these, we identified a clear 
predominance (90%) of the "L" strain, which is defined by a reference base at position 28143 
(ORF8) and previously associated with severe cases in Wuhan (Tang et al., 2020) (Figure 4b).  
 
The only indel across the 89 genetic variants detected across our full-length assemblies was a 9 
bp in-frame deletion (p.141_143KSD) in the gene encoding non-structural protein 1 (NSP1).  
NSP1 is a putative SARS-CoV-2 virulence factor that is highly divergent across 
betacoronaviruses (Narayanan et al., 2015). This deletion was found via assembly in two of 93 
NYPH-WCM samples, and showed robust read support with near 100% variant allele fraction 
across hundreds of high-quality alignments (Figure 4c). An identical deletion was observed in 
14 other samples in the GISAID database, spanning samples from England, Iceland, and Canada.  
This included 12 samples that were labeled as part of clade A2a by Nextstrain (Figure 4c). This 
deletion removes three amino acids, including a variant position (143Y>F) in comparison to the 
SARS-CoV genome (Figure 4d). These residues occur in a conserved portion of the C-terminal 
region of NSP1, which has been linked to host chemokine dysregulation and translational 
inhibition in SARS-CoV (Narayanan et al., 2015). 
 
A novel SARS-CoV-2 subclade enriched in NYC case 
Given the predominance of clade A2a among NYC cases (in our data and previous studies), we 
asked whether specific variants were enriched in NYC A2a samples relative to A2a samples 
from other regions. Comparing variant frequencies between A2a cases in our data and non-NYC 
cases in GISAID, we identified six enriched loci with FDR<0.1 (Fisher's exact test, one-tailed) 
that were over-represented in NYC A2a samples (Figure 5a). All six of these variants were 
significantly enriched (Bonferroni-adjusted p-value <0.05) in a second analysis comparing A2a 
GISAID cases from NYC vs. the rest of the world (Figure 5a). Visualizing these variants across 
the Nextstrain derived phylogenetic tree (Figure 5b), demonstrated that the highest frequency of 
these variants (1059C>T, 25563G>T), defined a novel subclade of A2a, which we call A2a-
25563. This subclade comprised 82% (281 / 344) of (NYPH-WCMC and GISAID) NYC 
samples, and 92.7% (281/303) of the A2a portion of NYC cases. Interestingly, while both of the 
NYPH-WCMC A2a cases harboring the aforementioned NSP1 9-bp deletion were in A2a-25563, 
many of the remaining cases were distributed across other subclades. Unlike the 6 SNVs used to 
define A2a-25563, this deletion appeared to be highly polyphyletic with 7 unique phylogenetic 
clusters associated with the deletion across a variety of clades (Figure 4c, Figure 5b). 
 
Investigating the geographical and temporal distribution of non-NYC samples in A2a-25563, we 
found a global distribution with likely origin in Western Europe (Figure 5c, 5d). The first noted 
case of A2a-25563 in GISAID was in Belgium on 2/21/2020, but since then, this putative 
subclade has represented a minority (20%) of Western European cases. While the prevalence of 
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A2a-25563 in NYC appeared to be consistently high across sampling dates, it constituted only a 
moderate proportion of cases from the Western USA (<50%) in early March with an increase 
(>78%) in late March (Figure 5d). The SNV's defining this subclade were non-synonymous 
variants targeting genes encoding the non-structural protein 2 (NSP2), the viral replicase, and 
ORF3a, a poorly characterized SARS-CoV-2 protein with putative roles in inflammation (Siu et 
al., 2019). This subclade defining ORF3a site (p.Gln57His) was distinct from that which defines 
the previously characterized L strain (p.Leu84Ser) (Tang et al., 2020).  
 
Defining the SARS-CoV-2 Host Transcriptome  
We leveraged the comprehensive nature of the total RNA-seq profiles to define the host 
transcriptome during SARS-CoV-2 infection. We first integrated the LAMP, qRT-PCR, and total 
RNA-Seq viral load estimates to identify a final set of 93 SARS-CoV-2 positive (COVID-19 
positive) and 204 negative (COVID-19 negative) cases with coverage across the host and viral 
genomes. Differentially expressed genes (DEGs) associated with SARS-CoV-2 infection were 
calculated using DESeq2. (see Methods). Overall, 5,982 significant DEGs (q<0.01, >1.5-fold 
change) were found for the COVID-19 positive samples (Supp. Table 3) , spanning 2,942 up-
regulated DEGs and 3,040 down-regulated DEGs, which could be separated into high, medium, 
and low viral response categories based on the three detection methodologies (qRT-PCR, NGS, 
and LAMP) (Figure 6b). To test for the possibility of cell proportion changes due to infection, 
we used Bisque to predict the cell types for all COVID samples, which showed consistent cell 
distributions of mostly goblet and ciliated airway cells for all samples (Supp. Figure 9)  
 
Differentially expressed host genes indicated a wide range of antiviral responses, including some 
a common interferon response across all ranges of viral levels (Figure 6b). The host 
transcriptome that exhibited the greatest amount of DEGs were those with the highest viral titer. 
Notably, host epithelial cells showed an increase in angiotensin converting enzyme 2 (ACE2) 
expression (q-value=0.006), which is the SARS-CoV-2 cellular receptor (Hoffmann et al., 2020). 
This critical gene for viral entry exhibited a dose-dependent expression concomitant with the 
higher levels of SARS-CoV-2 virus, along with IFI27 (Interferon Alpha Inducible Protein 27) 
and IFI6 (Interferon Alpha Inducible Protein 6) (Figure 6c). Other interferon-related genes 
included IFIT1, an interferon-induced antiviral RNA-binding protein that specifically binds 
single-stranded RNA bearing a 5'-triphosphate group (PPP-RNA) and SHFL (Shiftless Antiviral 
Inhibitor of Ribosomal Frameshifting). The DEGs also included HERC6 (HECT Containing E3 
Ubiquitin Protein Ligase Family Member 6), which aids Class I MHC-mediated antigen 
processing and Interferon-Stimulated Genes (ISG) (Figure 6c, 6d), underscoring the impact of 
the virus on these cells’ immune response (Oudshoorn et al., 2012. Also, a subset of cytokines 
(CXCL10, CXCL11, CCL8) showed the highest spike of expression in the higher viral load sub-
group (Supp. Figure 10), matching previous results from animal models and infected cells 
(Blanco-Melo et al., 2020). 
 
Down-regulated genes and those with a negative enrichment score (NES) were functionally 
distinct (Figure 6d). These included ALAS2, a gene which makes erythroid ALA-synthase 
(Ajioka et al,. 2006) that is found in developing erythroblasts (red blood cells). ALA-synthase 
plays an important role in the production of heme TRIM2 E3 ubiquitin ligase induced during late 
erythropoiesis, which indicated a connection to hematological and iron (heme) regulation during 
infection (Figure 6d). Accordingly, genes in a related biological network were significantly 
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enriched based on Gene Ontology (GO) pathways for iron regulation (q-value =0.002, Supp. 
Table 4). Both the up-regulated and down-regulated gene expression differences in were distinct 
from those of house-keeping genes (Supp. Figure 11), which stayed mostly stable during 
infection. 
 
ACEI usage correlates with severe COVID-19 disease 
Given our observation of increased ACE2 gene expression in patients with high SARS-CoV-2 
viral load, we broadly investigated the interplay of receiving pharmacologic angiotensin 
converting enzyme inhibition (ACEI) for hypertension and clinical features of COVID-19 
disease. Since ACE2 expression can be increased in patients taking ACEIs, the observed 
correlation of viral titer with ACE2 expression may be attributed to the pre-infection use of such 
inhibitors, which is common in older patients and those with comorbidities (Fang et al., 2020). 
To address this, we analyzed an observational cohort of 8,278 patients with suspected SARS-
CoV-2 infection from NYPH-CUIMC were analyzed for their usage of ACEIs (4,574 who tested 
positive). We found that use of ACEIs was strongly associated with testing positive in patients 
suspected of SARS-CoV-2 infection (Odds Ratio, OR=3.06, and 95% Confidence Interval, CI= 
2.38-3.94, p=2.44E-18). This result was also consistent when corrected for age, sex, and IL-6, 
where exposure to ACEIs has an OR=1.54, and when corrected for other reported clinical 
covariates (1.18-2.01, p=1.41E-03); patients exposed to ACEIs were 1.85 (1.40-2.44,p=1.71E-05) 
times more likely to test positive. In the univariate analysis, ACEI usage conferred an increased 
risk of intubation and mortality for SARS-CoV-2 positive patients (Table 1) (intubation: 
HR=2.63 95%CI: 2.01-3.43, p=1.22E-12) (Figure 6e) and mortality: HR=1.68 95%CI: 1.22-2.31, 
p=1.42E-03 (Figure 6f).  
  
In a multivariate analysis that included age, sex, and IL-6 levels, a significant association 
between exposure to ACEIs and those requiring mechanical respiration was also found 
(HR=1.83 95%CI: 1.39-2.40, p=1.27E-05). Additionally, this association held when correcting for 
previously reported risk factors for SARS-CoV-2 morbidity and mortality with an HR=1.56 
95%CI: 1.18-2.07, p=1.83E-03 (Supp. Figure 12a). Moreover, we confirmed previously reported 
risk factors for both mechanical respiration and mortality. For requirement of mechanical 
respiration, we found significant effects from male sex (p=6.18E-03), diabetes (p=1.00E-03), and 
IL-6 (p=5.85E-113). In addition, for mortality we found significant effects from age (p=8.05E-72), 
male sex (p=6.13E-04), diabetes (p=6.66E-05), and IL-6 (p=1.26E-12). Finally, in a post-hoc 
comparative analysis between specific ACEIs, we found that benazepril was associated with 
significantly increased risk of mortality (N=32, HR=2.37 95%CI: 1.05-5.35, p=3.70E-02) (Supp. 
Figure 12b).  
 
Discussion 
These data demonstrate unique host transcriptome profiles during viral infection with SARS-
CoV-2, as well as clade-specific mutational landscapes of the virus, both representing the early 
phase of the U.S. pandemic (March 2020). Total RNA-seq (ribo-depleted RNA) used here 
enabled a comprehensive molecular map for the virus and host, including complete genotypes 
(including insertions and deletions) across the length of the viral genome and coding and non-
coding RNA gene expression quantification. Moreover, we show that LAMP is a quick (30-
minute) and effective assay that could be readily deployed to aid current and future viral testing 
and surveillance, since it is comparable to RNA-seq and qRT-PCR and can be used with 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.20.048066doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.048066


 

oropharyngeal swab lysate. Widespread testing is critical to help inform individual quarantine 
efforts and overall management of highly infectious and long-shedding viruses such as SARS-
CoV-2, and these data, methods, and results can help guide future clinical and research efforts. 
 
During a large-scale pandemic with exponential spread, such as COVID-19, scalable methods for 
diagnosis and screening are crucial for both mitigation and containment (Lan et al., 2020, Liu et 
al., 2020).  While hospital-grade, core lab devices can achieve massive throughput (thousands of 
samples per day), a key limitation of these assays is accessibility of testing facilities (even 
roadside testing stations) to patients and the logistics of sample transport and timely test 
reporting. These limitations become even more stark in the context of widespread quarantines 
and nationwide lockdowns, where requiring patients to travel (even for viral testing) incurs 
significant personal and public health risks. The most urgent diagnostic need in this situation is 
for scalable rapid point-of-care tests that can be potentially implemented in the home. Our 
validation of a rapid one-tube colorimetric SARS-CoV-2 assay with both qRT-PCR and total 
RNA-seq provides a potential solution to this problem. Further work will be needed to assess 
whether this LAMP assay can detect the presence of SARS-CoV-2 at lower (but clinically 
relevant) viral concentrations in specimen types that are less cumbersome to collect than naso- / 
oro- pharyngeal swabs (e.g. saliva, stool). As we demonstrate, this LAMP SARS-CoV2 can be 
also applied for environmental sampling, which may be crucial in the containment phase of this 
pandemic. Specifically, LAMP positivity may quickly indicate if an area is infectious and a 
negative result (with appropriate confirmation) will possibly represent a lower risk. Indeed, these 
tools and methods can help create a viral “weather report” if broadly used and partnered with 
continual validation. 
 
Total RNA-sequencing data enabled a complete genetic map of the viruses in a significant subset 
of our samples. Our phylogenetic analysis nominates an A2a subclade (A2a-25563, defined by 
25563G>T) which comprises the majority of known NYC samples (including those sequenced 
outside of this study) (Gonzalez-Reiche et al., 2020). Though remaining NYC cases show a wide 
distribution across all identified clades, the predominance (>80% in NYC) of such a narrowly 
defined set of sequences within NYC from a rare (≤20%) Western European subclade is striking. 
These results suggest either (1) a very early introduction by a single patient harboring A2a-
25563; or (2) multiple A2a-25563 founder events; or (3) disproportionate community 
transmission of strains within this subclade. The latter possibility could be consistent with A2a-
25563 harboring differential fitness with respect to transmissibility or virulence relative to other 
A2a viruses. Future studies correlating viral genotypes with patient outcomes in larger cohorts 
will be necessary to determine whether any of these A2a-25563 associated variants, including the 
9 bp in-frame deletion in NSP1 (p.141_143KSD), functionally influence viral transmission or 
disease severity. The polyphyletic pattern of NSP1 p.141_143KSD, comprising both patients 
within and beyond A2a-25563, including clades outside of A2a, raises the possibility that this 
variant arose multiple times and may be under positive selection. Given the small number of 
these variants observed in our analysis (14), larger and more statistically powered datasets will 
be required to evaluate this hypothesis.   
 
Although much of the pathophysiology of the novel coronavirus, SARS-CoV-2, remains 
unknown, studies have reported the virus using the receptor ACE2 for entry into target cells 
(Hoffman et al., 2020; Lu et al., 2020). Further validating this, we found expression of the ACE2 
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gene was significantly upregulated in the samples with higher viral load, as well as some 
cytokine genes, which matches observations found in other betacoronaviruses (Sajuthi et al., 
2020). ACE inhibitors are commonly used in COVID-19 patients with comorbidities of 
hypertension, diabetes mellitus, and coronary heart diseases (Fang et al., 2020, Ferrario et al., 
2005), indicating to physicians that patients on these medications may be more susceptible to 
SARS-CoV-2 infection. Indeed, since epidemiological studies have reported increased mortality 
and morbidity in COVID-19 patients with hypertension, more research needs to be done to 
address other confounding variables including other comorbidities and treatment with ACE 
inhibitors or angiotensin receptor blockers (Patel and Verma, 2020).  
 
Although these data alone cannot establish causality between infection and ACE2 expression 
regulation, they provide some testable hypotheses. For example, if some patients are more 
susceptible because they are already expressing high levels of ACE2, this could help with 
targeting ACE2 in these patients as a prophylactic method. However, if the cells respond to 
infection with ACE2 expression, and this leads to the cytokine storm seen in patients, then this 
could be used as a downstream treatment (post-infection), for when ACE2 interacts with 
TMPRSS2, such as the ongoing trials with camostat mesylate (Hoffman et al., 2020). Moreover, 
SARS-CoV-2 has been found to induce phosphorylation of STAT1 and increases in ISG 
proteins, a mechanism not previously seen in SARS-CoV, suggesting a potential molecular 
mechanism behind the upregulation of interferon response (Lokugamage et al., 2020).  
 
Finally, it is notable that the majority of the testing for SARS-CoV-2 so far has relied on 
nasopharyngeal specimen collection, yet preliminary results here and elsewhere demonstrate that 
COVID-19 prediction from oral collection could be a more optimal path forward (Woelfel et al., 
2020). However, further studies comparing nasopharyngeal, oropharyngeal, and buccal 
collection approaches, as well as a comparison of different swab types, are needed. Depending 
on the availability of reagents and resources, as well as automation, a LAMP-based approach on 
such sample types could allow facilities to increase testing capabilities by orders of magnitude. 
Since viral pandemics can have significant, long-lasting detrimental impacts for affected 
countries, it is crucial to deploy methods that can track and profile cases (e.g. RNA-seq, LAMP, 
qRT-PCR) and provide a comprehensive view of host and viral biology. These methods can help 
mitigate the medical and socioeconomic harm from viral outbreaks, as well as establish 
protective surveillance networks that can help defend against future outbreaks. 
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Materials and Methods 
Sample Collection and Processing  
Patient specimens were collected with patients’ consent at New York Presbyterian Hospital- 
Weill Cornell Medical Center (NYPH-WCMC) and then processed for qRT-PCR. 
Nasopharyngeal (NP) swab specimens were collected using the BD Universal Viral Transport 
Media system (Becton, Dickinson and Company, Franklin Lakes, NJ) from symptomatic 
patients.  
 
Extraction of Viral RNA and qRT-PCR detection  
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Total viral RNA was extracted from deactivated samples using automated nucleic acid extraction 
on the QIAsymphony and the DSP Virus/Pathogen Mini Kit (QIAGEN). One step reverse 
transcription to cDNA and real-time PCR (RT-PCR) amplification of viral targets, E (envelope) 
and S (spike) genes and internal control, was performed using the Rotor-Gene Q thermocyler 
(QIAGEN). 
 
Twist Synthetic RNAs 
We used two fully synthetic RNAs made by in vitro transcription (IVT) from Twist Biosciences, 
which were synthesized in 5kb pieces with full viral genome coverage of SARS-CoV-2. They 
were sequence verified to ensure >99.9% viral genome coverage, and come as 1,000,000 copies 
per µL, 100µL per tube. The two controls are from Wuhan, China (MN908947.3) and 
Melbourne, Australia (MT007544.1). Reference sequence designs came from NCBI: 
https://www.ncbi.nlm.nih.gov/nuccore/MT007544 and 
https://www.ncbi.nlm.nih.gov/nuccore/MN908947.3. 
 
Reverse Transcriptase, quantitative real-time PCR (RT-PCR) 
Clinical samples were extracted as described above and then tested with qRT-PCR using primers 
for the E (envelope) gene, which detects all members of the lineage B of the beta-CoVs, 
including all SARS, SARS-like, and SARS-related viruses, and a second primer set for the S 
(spike) gene, which specifically detects the SARS-CoV-2 virus. The reaction also contains an 
internal control that served as an extraction control and a control for PCR inhibition. 
 
Samples were annotated using qRT-PCR cycle threshold (Ct) value for SARS-CoV-2 primers. 
Subjects with Ct less than or equal to 18 were assigned "high viral load" label, Ct between 18 
and 24 were assigned "medium viral load" and Ct between 24 and 40 were assigned "low viral 
load" classes, with anything above Ct of 40 was classified as negative. We also predicted a 
combined viral load score using Ct, GloMax QuantiFluor readout from LAMP experiments and 
fraction of SARS-CoV-2 matching NGS reads in a sample. For this score (40-Ct), (LAMP 
readout) and (log10(SARS-CoV-2 fraction + 1e-6)) were all normalized between zero and one 
individually, and summed together using a combination weight of 5 for Ct, 3 for LAMP and 2 
for NGS. 
  
LAMP Primer Sequences 
Primers were designed using PrimerExplorer (v4.0), as per guidelines in Zhang et al., 2020. This 
specifically utilized the LAMP-compatible primers for the on the COVID-19 reference genome 
(NCBI). LAMP’s inherent specificity (using 4-6 primers vs. 2 for PCR amplification) in 
combination with this in-silico analysis revealed there is limited opportunity for cross-reactivity 
to allow for false-positive reporting or affect performance of the N-gene primers for SARS-CoV-
2 detection (Supp Table 5). Overall, the primers had less than 80% homology with the vast 
majority of tested pathogen sequences. For any organisms where a primer hit >80% homology, 
only one of the primers (forward or reverse) had significant homology making an amplified 
product extremely unlikely. Overall, the results of this analysis predict no significant cross-
reactivity or microbial interference. We also assessed the potential impact of sequence variation 
in circulating strains that might lead to poor amplification. In the thousands of sequences 
deposited in GISAID (Shu and McCauley, 2017), only one site in the priming region was 
observed to be polymorphic. The polymorphism (T30359C) was only observed in 106 of 6753 
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(<2%) sequences with coverage of this region. This variant overlaps the priming site of the LB 
primer but is not near a 3-prime end and is not anticipated to cause amplification failure. 
 
Nucleocapsid Gene: (N, 5’-3’): 
GeneN-F3 TGGCTACTACCGAAGAGCT 
GeneN-B3 TGCAGCATTGTTAGCAGGAT 
GeneN-FIP TCTGGCCCAGTTCCTAGGTAGTCCAGACGAATTCGTGGTGG 
GeneN-BIP AGACGGCATCATATGGGTTGCACGGGTGCCAATGTGATCT 
GeneN-LF GGACTGAGATCTTTCATTTTACCGT 
GeneN-LB ACTGAGGGAGCCTTGAATACA 
 
Primer Sequences: rActin (5′-3′) 
ACTB-F3 AGTACCCCATCGAGCACG 
ACTB-B3 AGCCTGGATAGCAACGTACA 
ACTB-FIP GAGCCACACGCAGCTCATTGTATCACCAACTGGGACGACA 
ACTB-BIP CTGAACCCCAAGGCCAACCGGCTGGGGTGTTGAAGGTC 
ACTB-LoopF TGTGGTGCCAGATTTTCTCCA 
ACTB-LoopB CGAGAAGATGACCCAGATCATGT 
 
The LAMP Reaction Setup 
For each well or Eppendorf tube, we utilized a set of six primers (above) for Gene N, the M1800 
LAMP Master Mix (NEB), water, and 11.5µL of the sample. The protocol is as follows: 
 

1. Reagents added: 
a. 12.5 µL M1800 LAMP mix (NEB) 
b. 1 µL LAMP primers (Gene N) 
c. 1-11.5 µL of sample 
d. Remaining volume (to 25 µl) H2O 

2. Vortex, spin down; 
3. Place on Thermocycler at 65oC for 30 minutes with lid at 105 oC; 
4. Remove tubes, place on ice for 5 seconds; 
5. Visualize over lab bench/ice/paper. 

 
Light Intensity and Data Processing  
Completed reactions were analyzed with the Promega GloMax Explorer (Promega GM3500) 
fluorometer using the QuantiFluor ONE dsDNA system (Promega E4871). This system recorded 
light intensity from each well using an emission filter of 500-550nm, an excitation filter set at 
blue 475 nm, and a high sensitivity setting on the Glomax software. Values were then tabulated 
and compared with controls (positive and negative). The intensity threshold of 2.5x negative 
control was used as the threshold for positive detection. 
 
DNAse treatment, rRNA depletion, and RNAseq library construction 
All samples’ total nucleic acid (TNA) were treated with DNAse 1(Zymo Research, Catalog # 
E1010), which cuts both double-stranded and single-stranded DNA. Post-DNAse digested 
samples were then put into the NEBNext rRNA depletion v2 (Human/Mouse/Rat), Ultra II 
Directional RNA (10ng), and Unique Dual Index Primer Pairs were used following the vendor 
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protocols from New England Biolabs (except for the first flowcell, see supplelmental figures). 
Kits were supplied from a single manufacturer lot. Completed libraries were quantified by Qubit 
or equivalent and run on a Bioanalyzer or equivalent for size determination. Libraries were 
pooled and sent to the WCM Genomics Core, HudsonAlpha, or New York Genome Center for 
final quantification by Qubit fluorometer (ThermoFisher Scientific), TapeStation 2200 (Agilent), 
and QRT-PCR using the Kapa Biosystems Illumina library quantification kit.  
 
Taxonomic Classification of Sequence Data 
All complete genome or chromosome level assemblies from RefSeq database for archaea, 
bacteria, protozoa, fungi, human and viruses including SARS-CoV and SARS-CoV-2 genomes 
were downloaded and used for building a classification database for Kraken2 (k=35, ℓ=31) 
(O'Leary et al., 2016; Wood et al., 2019).  
 
To get an approximation for the positive and negative classification rate, the BBMap random-
reads script was used to simulate 10 million 150bp paired-end Illumina reads from the database 
sequences (Segata et al., 2016). For the negative test all sequences in the database excluding 
SARS-CoV and SARS-CoV-2 genome were removed from the sequences and the simulated 
reads were mapped with the Kraken2 database (Supp Table 1).  
 
For the positive test, the same process was repeated using only SARS-CoV-2 genome (Supp 
Table 1). Positive results show >99% of SARS-CoV-2 reads uniquely map to either SARS-CoV 
or SARS-CoV-2, with the remaining 1% are ambiguous, potentially matching multiple taxa 
(Supp Table 2). All sequences were classified using the Kraken2 database. To remove the 
potential contamination of reads that are homologous across multiple species we used Kraken2 
outputs to filter sequences to either human (uniquely matching Homo sapiens and no other taxon 
in our database), SARS-CoV-2 (either matching SARS-CoV or SARS-CoV-2 due to homology 
between these two viruses), and remaining reads that may be coming from unclassified, archaeal, 
bacterial, viral, fungal, protozoan or ambiguously mapping reads to human or SARS-CoV (Li, 
2015). 
 
Reference- and Fragment-based Viral Mapping and Assembly 
Reads unambiguously mapping to SARS-CoV or SARS-CoV-2 were aligned to the Wuhan-Hu-1 
(Genbank accession MN908947.3) reference using bwa mem (Li, 2013). Variants were called 
using iVar, and pileups and consensus sequences were generated using samtools (Li et al., 2009; 
Grubaugh et al., 2019; Greenfield et al., 2020). Any sample with more than 30,000 SARS-CoV-
2 mapping reads and >99% coverage above 10x depth were taken as reliable samples, which 
resulted in 95 samples (90 positive, 2 negative, 2 positive controls and 1 negative control). 92 
clinical samples were compared to 4872 SARS-CoV-2 sequences from GISAID (as of April 10, 
2020) (9, 10). All sequence filtering, alignments, phylogenetic inference, temporal ordering of 
sequences and geographic reconstruction of likely transmission events were done using 
nextstrain (Katoh and Standley, 2013; Sagulenko et al., 2018; Hadfield et al., 2018). 
 
Fragment assembly was also performed using IRMA (Sehpard et al., 2016). The Wuhan-Hu-1 
genome (Genbank accession MN908047.3) was used as a reference with the poly-A tail trimmed 
to reduce the likelihood of false low-complexity matching. An HMM model of this reference 
sequence was created using the native modelfromalign script. IRMA was run with the COV 
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module with the following parameters adjusted from the default: minimum read length = 25bp; 
minimum read pattern count = 5; minimum read count = 2; minimum count for alternative 
finished assembly = 20. Consensus assemblies were aligned to the Wuhan-Hu-1 reference using 
MAFFT (Katoh and Standley, 2013) with default settings, and sequence identity and coverage 
metrics were calculated using Mview (Brown et al., 1998). Phylogenetic trees were created using 
nextstrain's augur as described above, and visualized using the ggtree package in R (Yu, 2020). 
 
Viral SNV Calling 
Subsequent to alignment, SNV were identified by xAtlas (Farek et al., 2018) (parameters: -g -m 
10 -n 10) producing a gVCF per sample. The individual call sets were merged using bcftools (Li, 
2011) (merge -g) and allele counts were added with bcftools view (-q 0.01) . Population-level 
variants across all samples were converted in a presence/absence matrix using a customized 
script where every SNV was counted as present if it was supported by at least 5% of the reads. 
This matrix was loaded in R and underwent hierarchical clustering using the function dist with 
the euclidean method and hclust using the average method. All samples were further analyzed 
using Manta (Chen et al., 2016), and subsequently summarized and filtered using the 
SURVIVOR pipeline (Jeffares et al., 2017). Subsequently, SV calls were re-genotyped using 
SVTyper (doi:10.1038/nmeth.3505) and a population-level VCF was generated using 
SURIVOR merge (allowing for 100bp maximum distance). Events were filtered for only 
<1000bp insertions and deletions that were homozygous in a sample. 
 
Human Transcriptome Analysis 
The reads that mapped unambiguously to the human reference genome via Kraken2 were used to 
detect the host transcriptional response to the virus. Reads matching Homo sapiens were trimmed 
with TrimGalore, aligned with STAR (v2.6.1d) to the human reference build GRCh38 and the 
GENCODE v33 transcriptome reference, gene expression was quantified using featureCounts, 
stringTie and salmon using the nf-core RNAseq pipeline (Pertea et al., 2015; Malinen et al., 
2005; Johnson et al., 2007; Robinson et al., 2010; Naccache et al., 2014; Zamani et al., 2017; 
Ewels et al., 2019). Sample QC was reported using fastqc, RSeQC, qualimap, dupradar, Preseq 
and MultiQC (Okonechnikov et al., 2016; Andrews, 2015; Ewesl et al., 2016; Sayols et al., 
2016; Wang et al., 2012). Samples that had more than 10 million human mapped reads were 
used for differential expression analysis. Reads, as reported by featureCounts, were normalized 
using variance-stabilizing transform (vst) in DESeq2 package in R (Love et al., 2014) for 
visualization purposes in log-scale. DESeq2 was used to call differential expression with either 
Positive cases vs Negative, or viral load (High/Medium/Low/None) as reported by either qRT-
PCR cycle threshold (Ct) values or the combination viral load method as explained before. 
Genes with BH-adjusted p-value < 0.01 and absolute log2 fold-change greater than 0.58 (at least 
50% change in either direction) were taken as significantly differentially regulated (Benjamini 
and Hochberg, 1995). The complete gene list for all comparisons are given in Supp Table 3. 
Resulting gene sets were ranked using log2 fold-change values within each comparison and put 
into GSEA to calculate gene set enrichment for molecular signatures database (MSigDB), MGI 
Mammalian Phenotypes database and ENCODE transcription factor binding sets (Liberzon et 
al., 2011; Subramanian et al., 2005; Sergushichev, 2016; Smith et al., 2018). Any signature with 
adjusted p-value < 0.01 and absolute normalized enrichment score (NES) >= 1.5 were reported 
(Supp Table 3). 
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Cell Deconvolution Analysis 
Bulk RNAseq count data was deconvoluted into cell composition matrices using the Bisque 
algorithm (https://www.biorxiv.org/content/10.1101/669911v1.full) on a reference single cell 
RNAseq data from upper respiratory epithelium obtained from nasal brushes 
(https://www.nature.com/articles/s41591-019-0468-5). 
 
Cross-reactivity Analysis 
Primers were compared with a list of sequences from organism from the same genetic family as 
SARS-CoV-2 and other high-priority organisms listed in the United States Food and Drug 
Administration’s Emergency Use Authorization Template 
(https://www.fda.gov/media/135900/download). Using the sequence names in the EUA template, 
the NCBI taxonomy database was queried to find the highest quality representative sequences for 
more detailed analysis. Primers were compared to this database using Blast 2.8.1 and the 
following parameters (word size: 7, match score: 2, mismatch score: -3, gap open cost: 5, gap 
extend cost: 2). Up to 1000 hits with e-value > 10 were reported.  
 
Inclusivity Analysis 
Unique, full-length, human-sample sequences were downloaded from the GISAID web interface. 
These sequences were aligned to NC_045512.2 (Wuhan SARS-CoV-2) using minimap2 -x asm5 
and visually inspected using IGV 2.8.0 with allele frequency threshold set to 0.01. 
 
ACE Inhibitor Cohort Analysis  
We compared usage of ACE inhibitors in an observational cohort analysis of 8,278 patients with 
suspected SARS-CoV-2 infection (4,574 of which tested positive). ACE inhibitors are 
commonly taken continuously for several years (Bonarjee et al., 2001). We defined a cohort of 
ACE inhibitor-exposed patients as those that have an ACE inhibitor prescription order sometime 
after January 1st, 2019. We compared the frequency of ACE inhibitor exposure in three cohort 
comparisons:  
i. SARS-CoV-2 tested positive patients versus SARS-CoV-2 tested negative patients, 
ii. SARS-CoV-2 positive patients who require mechanical ventilation versus those who did not, 
and 
iii. SARS-CoV-2 positive patient survival versus death. 
 
In addition, we perform one post-hoc comparison to evaluate the individual effects of particular 
ACE inhibitors among SARS-CoV-2 positive patients who are exposed to ACE inhibitors. 
 
Cohort and Data Source  
Our cohort data for SARS-CoV-2 suspected patients is extracted from the electronic health 
records at New York-Presbyterian Hospital-Columbia University Irving Medical Center (NYPH-
CUIMC). We used data collected starting on March 10th, 2020 through April 16th, 2020. In 
addition, we used data from 279,487 patients, who were not tested for SARS-CoV-2 infection, 
with available electronic health records from January 1st, 2019 through September 24th, 2019 to 
represent a comparison population of patients. In both cases, data extracted included disease 
diagnoses, laboratory measurements, medication and pharmacy orders, and patient 
demographics. We derived mortality from a death note filed by a resident or primary provider 
that records the date and time of death. Intubation was used as an intermediary endpoint and is a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.20.048066doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.048066


 

proxy for a patient requiring mechanical respiration. We used note types that were developed for 
patients with SARS-CoV-2 infection to record that this procedure was completed. We validated 
outcome data derived from notes against the patient’s medical record using manual review. 
 
Experimental Statistical Methods 
We conducted univariate analysis of the frequency differences of ACE inhibitor exposure and 
multivariate regression analysis to account for established risk factors for SARS-CoV-2 
outcomes (i.e. age, sex, and baseline IL-6 upon admission (Zhou et al., 2020). We use logistic 
regression for analysis for comparing cohort (i) as this cohort is retrospective analysis on patients 
with definitive outcomes. We perform survival analysis using a Cox proportional hazards model 
for cohort comparisons (ii) and (iii) as some patients from these cohorts are currently being 
treated and their outcomes are unknown (i.e., censored). We cannot determine from our data the 
date of infection. For the study start date for the patient, we use the date of testing positive minus 
seven days. Quantitative variables (i.e., age and the first IL-6 measurement) are scaled to [0,1] to 
facilitate comparison of model coefficients to those of dichotomous variables. Prior to 
conducting our multivariate analysis, we evaluated and removed correlated covariates. We 
include a model built with all covariates as well in the supplemental tables.  
 
Comorbidity Definitions 
Risk factors were assigned using OMOP CDM concept IDs 317576 for “Coronary 
Arteriosclerosis”, 201820 for “Diabetes mellitus”, and 437525 for “Overweight”. In each case, 
the concept ID and all descendant concepts were used to define the risk factor phenotype, and 
individuals were assigned the phenotype if they were assigned any of the codes. 
 
Statistical and visualization Software 
All analyses were done in using Python 3.7 and all models were fit using R 3.6.3. Survival 
analyses (Cox regressions and survival curves) were performed with the survival package for R, 
version 3.1-12. Statistics and visualization of single nucleotide variants and indels were 
completed in R. Visualization of phylogenies was completed using Auspice and the ‘ape’ library 
for R. 
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Figures and Legends 
Butler, Mozsary, Meydan, Danko, Foox et al., Host, Viral, and Environmental Transcriptome 
Profiles of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)  
 

 
 
Figure 1. Sample Processing, the Loop-Mediated Isothermal (LAMP) Reaction and 
Synthetic RNA Validation. (A) Clinical and environmental samples collected with 
Nasopharyngeal (NP) and isohelix swabs respectively, were tested with RNA-sequencing, qRT-
PCR, and LAMP. (B) The test samples were prepared using an optimized LAMP protocol from 
NEB, with a reaction time of 30 minutes. (C) Reaction progress was measured for the Twist 
COVID-19 synthetic RNA (MT007544.1) from 1 million molecules of virus (106), then titrated 
down by log10 dilutions. The colorimetric findings of the LAMP assay are based on a yellow to 
pink gradient with higher copies of SARS-CoV-2 RNA corresponding to a yellow color. The 
limit of detection (LoD) range is shown with a gradient after 30 minutes between 10 and 100 
viral copies (lower right). (D) Replicates of the titrated viral copies using LAMP, as measured by 
Quantifluor fluorescence. (E) The sensitivity and specificity of the LAMP assay from 201 
patients (132 negative and 69 positive for SARS-CoV-2, as measured by qRT-PCR). Thresholds 
are DNA quantified by the Quantifluor. 
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Figure 2. Full transcriptome profiles of SARS-CoV-2 Patients with NGS, qRT-PCR, and LAMP. (a) 
Clinical samples tested by qRT-PCR (Positive, dark red or Negative, light grey) were sequenced and run 
through the LAMP assay. These results were compared to the buffer blanks (Negative Control), dark 
grey, Synthetic RNAs or Vero 6 cell extracts with SARS-CoV-2 infection (Positive Controls, light red), 
and Subway Samples (Environmental, blue). Read proportions are shown on the y-axis. (b) SARS-CoV-2 
abundance, as measured with NGS and percentage of reads (y-axis) is compared to the Ct Threshold for 
qRT-PCR (x-axis), with lower Ct values representing higher viral abundance, and the LAMP reaction 
output (Fluorimeter values, black to yellow scale). (c,d) Read mapping to archaea (red), bacteria (green), 
fungi (yellow), human (blue), and SARS-CoV-2 (orange), and other viruses (grey), across the clinical 
controls (CN, CP), environmental samples, qRT-PCR negative, and qRT-PCR positive samples. 
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Figure 3: Viral genomes from RNA-seq data and titration of coverage (a) The coverage plot 
across the SARS-CoV-2 genomes (viral coordinate on bottom, colored by sample) from a 
representative set of clinical positive samples. Sample names with the suffixes CN and N are 
clinical negative (buffer), P are qRT-PCR positive, and CP are Vero 6 cells with virus. (b) 
Downsampling (right annotation) of the samples and mapping to the SARS-CoV-2 genome to 
gauge the percent coverage (y-axis) as a function of the viral quantification by qRT-PCR (Ct 
thresholds, low <20, medium 20-30, and high>30). (c) Average coverage statistics for the low, 
medium, and high Ct samples, as well as the mean coverage for each of these samples. (d) The 
cycle threshold (x-axis) vs. the coverage of the genome (y-axis and color depth) for the total 
RNA-seq. 
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Figure 4: Variation and phylogenetics of NYC COVID-19 Cases. (a) The phylogenetic 
placement of these COVID samples is shown on the tree (left) and the global map of known 
COVID genomes (right). Genetic variants called from the RNA-seq data show a range of 
variants that are distinct from the Wuhan reference strain, and the samples from this study, 
highlighted in blue, show enrichment for European and Asian alleles. (b) Proportion of the L 
(green) and S strain (yellow) are shown for the NYC viruses. Phylogeny of samples from this 
study on the left and total GISAID samples on the right, with a map of variants in this study's 
samples in the middle, colored by event type and sized by number of nucleotides impacted. 
Annotation track on the bottom shows frequency of alternate alleles in this study and in the 
GISAID database. (c) The  9-bp deletion in ORRF1b (NSP1) that was detected in samples from 
two patients was confirmed in the GISAID database (below). (d) Comparison of the ORF1b of 
the SARS-CoV-2 and SARS-CoV genomes with the 9-bp deletion region shown enlarged. 
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Figure 5: Variant and Subclade Analysis. (a) Six variant alleles were found to be significantly enriched 
by population allelic fraction within this set of 93 WCM/NYP cases as compared with non-NYC strains 
of Nextstrain clade A2a (1059:C>T P = 6.26e-22, 11916:C>T P = 3.09e-9, 18998:C>T P= 2.51e-7, 
20755:A>C P = 1.32e-4, 25563:G>T P = 9.6e-23, 29540:G>A P = 2.51e-7). These variants demonstrated 
similar PAF enrichment within all other NYC strains as compared to non-NYC clade A2a (1059:C>T P = 
4.35e-84, 11916:C>T P = 2.16e-43, 18998:C>T P= 1.34e-25, 20755:A>C P = 1.67e-4, 25563:G>T P = 2.60e-
83, 29540:G>A P = 1.34e-46). (b) (left) Phylogenetic tree produced by the Nextstrain analysis with clade 
affiliations and nodes corresponding to WCM/NYP  in red and other NYC cases in green. (right) 
occurrence of the six NYC-enriched alleles and the 9 nucleotide deletion across genomes. (c) Raw counts 
of cases present within this A2a-25563 subclade demonstrated a predominance of European and North 
American cases, with Western Europe and New York together comprising the majority of strains. 
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Figure 6: Host transcriptome responses and risk to SARS-CoV-2. (top row) Samples were 
quantified by a range of viral detection methods, including LAMP (Quantifluor), RNA-seq 
(log10 SARS-CoV-2 % of reads), and qRT-PCR (Ct values) to create a three-tier range of viral 
load for the positive samples (right) compared to the clinically-annotated negative samples 
(class, red or grey). (bottom) The differentially expressed genes of COVID+ patients compared 
to COVID- patients showed up-regulated (orange) genes as well as down-regulated (purple) 
genes. (b) Up-regulated genes, with boxplots across all samples, include IFI6, ACE2, SHFL, 
HERC6, IFI27, and IFIT1, based on data from (c), which is the total set of DEGs. The full set is 
shown in an intersecting heat map, with a core set of up-regulated genes (orange) distinct form 
the set of down-regulated genes (purple), compared to genes that are not significantly differently 
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expressed (grey) in any comparison (DESeq2, q-value <0.01, |logFC| >0.58). (d) Significantly 
different gene ontology (GO) pathways between COVID-POS and COVID-NEG patients include 
interferon response and host response to infection, as well as some ion and heme transport 
mechanisms. (e)Survival curves for requiring mechanical respiration (identified by intubation 
procedure notes) (e) and mortality (f). Patients with a history of ACE inhibitor exposure were 
more likely to require intubation (HR=2.63 95%CI 2.01-3.43, p=1.22E-12; (e) and less likely to 
survive (HR=1.68 95%CI: 1.22-2.31, p=1.42E-03; (f). Because several individuals were 
intubated shortly before they first tested positive for SARS-CoV-2 infection, each first positive 
test was set back by seven days to account for testing delays. 
 
 
 
 
Table 1. Baseline characteristics of SARS-CoV-2 suspected cohort. General population refers to 
a comparison cohort of individuals administered drugs at NYP/CUIMC in 2019 who were not 
later tested for SARS-COV-2 infection.  

 
General 

Population Tested COV+ COV+/Intubated COV+/Died 

N (% of tested) 279487 8278 (100%) 4574 (55.3%) 493 (6%) 423 (5.1%) 

ACEi 20017 (7.2%) 370 (4.5%) 290 (6.3%) 69 (14%) 42 (9.9%) 

Median age (95%) 28.8 (1.4-49.3) 55.7 (0.5-91.3) 
62.1 (23.3-
92.5) 65.1 (19.3-89.3) 79.2 (49-96.1) 

Male 118555 (42.4%) 3806 (46%) 2413 (52.8%) 308 (62.5%) 251 (59.3%) 

Black/ African-
American 80449 (28.8%) 917 (11.1%) 531 (11.6%) 71 (14.4%) 59 (13.9%) 

Caucasian 24267 (8.7%) 1392 (16.8%) 682 (14.9%) 89 (18.1%) 89 (21%) 

Asian or Pacific 
Islander 9 (0.003%)  88 (1.1%) 30 (0.7%) 3 (0.6%) 2 (0.5%) 

Other race 167 (0.06%) 1934 (23.4%) 1170 (25.6%) 165 (33.5%) 164 (38.8%) 

Missing race 174595 (62.5%) 3947 (47.7%) 2161 (47.2%) 165 (33.5%) 109 (25.8%) 

Hispanic/Latino 36905 (13.2%) 1750 (21.1%) 1088 (23.8%) 171 (34.7%) 159 (37.6%) 

Non-
Hispanic/Latino 87562 (31.3%) 1547 (18.7%) 746 (16.3%) 85 (17.2%) 87 (20.6%) 

Other listed 
ethnicity 155020 (55.5%) 1034 (12.5%) 579 (12.7%) 72 (14.6%) 68 (16.1%) 

Hypertension 104925 (38.4%) 2168 (26.2%) 1368 (29.9%) 221 (44.8%) 260 (61.5%) 

CAD/CHD 155561 (56.9%) 816 (9.9%) 503 (11%) 84 (17%) 115 (27.2%) 
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Diabetes 46908 (17.2%) 1274 (15.4%) 834 (18.2%) 151 (30.6%) 174 (41.1%) 

Overweight 39192 (14.3%) 452 (5.5%) 259 (5.7%) 43 (8.7%) 38 (9%) 

No risk factors 110460 (40.4%) 5830 (70.4%) 3052 (66.7%) 248 (50.3%) 150 (35.5%) 

Median IL-6 (50%) - 30.6 (8-94.1) 31.1 (8-94.9) 68.2 (16-178) 68 (18-153.8) 
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Supplemental Figures 
 

 
 
Supplemental Figure 1: LAMP Primer Design. PrimerDesigner (v4) was used to create a set 
of six primers that would specifically target the nucleocapsid gene (N) in the COVID-19 
genome. Primer sequences are listed in the methods section. 
 

 
 
Supplemental Figure 2. Additional Testing and Titration of the LAMP Assay with 
Synthetic and Clinical Samples. Samples were prepared using the LAMP protocol with a 
reaction time of 30 minutes. Reaction progress was measured (a) from 0, 20, and 30 minutes. (b) 
This was repeated for both Twist COVID-19 synthetic RNAs (MT007544.1, top and 
MN908947.3, middle) from 1 million molecules of virus (106), then titrated down by log10 
dilutions. Limit of Detection (LOD) range is shown with a gradient after 30 minutes between 10 
and 100 viral copies. (bottom) A clinically positive sample that was not detectible by Qubit 
(<0.05 ng/mL) was nonetheless detected by LAMP, in accordance with detection of low viral 
titer samples. 
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Supplemental Figure 3. Reproducibility, sensitivity, and specificity for the LAMP Assay. 
(a) Testing with a synthetic SARS-CoV-2 RNA that was serially titrated and measured in 
replicates (n=10) showed 100% and 95% reproducibility at 1,000 and 500 copies, respectively, 
with lower rates at lower viral titers. (b) Replicates of a clinically positive (by qRT-PCR) sample 
at 10 uL (blue) compared to 5uL (green) showed high concordance, with greater sensitivity with 
increased reaction volume. (c) Whole oropharyngeal swab lysates from clinical positive (Cp-
value >0) and negative samples (Cp = NA) were used to test the LAMP reaction. (d) The 
standard curve with synthetic RNA was also tested relative to absolute number of copies (x-axis) 
and the Cp value (y-axis). (e) The Cp value for the LAMP positive (+, right) and negative (-, left) 
were compared to the Cp value from qRT-PCR (y-axis). 
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Supplemental Figure 4. Ct and RFU (Relative Fluorescence Units) Thresholds for the 
LAMP Assay. With increasing viral load, as measured by qRT-PCR, the LAMP assay shows an 
increased sensitivity (y-axis) and specificity (y-axis). For high and medium viral count samples 
(Ct < 28, red and green line), we see 100% sensitivity, and for low viral count, we see 81% 
sensitivity and 100% specificity (blue). Across all data (purple), we see 95.6% sensitivity and 
99.4% specificity. RFU thresholds are shown as numbers. 
 
 
 
 

 
 
Supplementary Figure 5. Correlation between LAMP Reaction Output and qRT-PCR. 
Clinical samples tested by qRT-PCR (Positive, dark red or Negative, light grey) were run with 
the LAMP assay and compared to the buffer blanks (Negative Control), dark grey, Synthetic 
RNAs or Vero 6 cell extracts with SARS-CoV-2 infection (Positive Controls, light red), and 
Subway Samples (Environmental, blue, lower right). The DNA abundance, as measured with the 
GloMax Quantifluor (y-axis) is compared to the Ct Threshold for qRT-PCR (x-axis), with lower 
Ct values representing higher viral abundance. 
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Supplementary Figure 6. Coverage of COVID samples by Index and Sample Type. Clinical 
samples tested by qRT-PCR (Positive, P, Negative, N) were compared to the buffer blanks 
(Negative Control, N and neg), Synthetic RNAs or Vero 6 cell extracts with SARS-CoV-2 
infection (CP and pos) and Subway Samples (Environmental, ENV). The %identity to the 
SARS-CoV-2 reference (y-axis) is shown relative to the proportion of reads that mapped from 
NGS (x-axis). The unique, dual-index runs (left panels) are shown relative to the single-index 
runs (right panels). The initial set of single-index libraries were associated with a non-negligible 
background of viral load in clinical negative samples, this effect was eliminated with the dual-
indexing approach for all remaining samples. 
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Supplemental Figure 7: Metatranscriptome profiles of the patient cohorts. (top row, all 
panels) Samples were quantified by a range of viral detection methods, including LAMP 
(Quantifluor), RNA-seq (log10 SARS-CoV-2 % of reads), and qRT-PCR (Ct values) to create a 
three-tier range of viral load for the positive samples (right) compared to the clinically-annotated 
negative samples (class, red or grey). (bottom) The detected microbial species (horizontal lines) 
are plotted as a z-score of their divergence from the patient cohort (vertical lines). (a) Common 
respiratory pathogens plotted as a log10 abundance of mapped reads, with each organism as a line 
and each vertical column as a patient. (b) The same plot as (a), but with z-score for statistical 
divergence. (c) The same layout of samples as (a), but with bacteria annotated from the Human 
Microbiome Project (HMP) as normal airway (blue, top portion), oral (yellow, middle set), or 
both oral and airway flora (green, bottom). 
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Supplemental Figure 8. Proportion of RNA-seq reads mapping SARS-CoV-2. Clinical 
samples tested by qRT-PCR (Positive, dark red or Negative, light grey) were sequenced and 
compared to the buffer blanks (Negative Control), dark grey, Synthetic RNAs or Vero 6 cell 
extracts with SARS-CoV-2 infection (Positive Controls, light red), and Subway Samples 
(Environmental, blue). Read totals are shown on the y-axis. Differences between single index 
barcodes are plotted across each of the plates of samples that were processed. 
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Supplemental Figure 9. Cellular sub-type deconvolution from nasopharyngeal (NP) swabs. 
The Bisque algorithm (https://github.com/cozygene/bisque) was used to separate the cellular 
sub-type gene expression signatures present in the total RNA-seq data from the NP swabs. (a) 
The fraction of cells estimated for each cell type (y-axis) was calculated for the samples that 
tested positive by RT-qPCR (P, positive on the right) as well as negative by RT-qPCR (N, 
negative on the left), with proportions shown for goblet cells (blue), ciliated cells (green), basal 
cells (red), dendritic cells (purple), ionocytes (orange), club cells (yellow), luminal macrophages 
(brown), neutrophils (pink), and B-cells (grey). (b) The same data is in (a) shown as the square 
root for visibility of low incidence cell types. 
 
 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.20.048066doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.048066


 
Supplemental Figure 10. Cytokine and interferon profiles of the host transcriptome. Top 
rows: samples were quantified by a range of viral detection methods, including LAMP 
(Quantifluor), RNA-seq (log10 SARS-CoV-2 % of reads), and qRT-PCR (Ct values) to create a 
three-tier range of viral load for the positive samples (right) compared to the clinically-annotated 
negative samples (class, red or grey). (bottom) The differentially expressed genes of COVID+ 
patients compared to COVID- patients showed up-regulated (orange) genes as well as down-
regulated (purple) genes. (a) Chemokine profiles for the samples (x-axis) is plotted for each 
related gene (y-axis), and the same plotting function shows in (b) the interform and interleukin 
gene profiles of IL6.  
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Supplemental Figure 11. Housekeeping host genes relative to SARS-CoV-2 infection. 
Clinical samples were sequenced with RNA-seq and quantified to a set of genes for their 
expression levels. Samples with no virus (grey) were compared to those with low (yellow), 
medium (orange), and high (red) expression levels, based on qRT-PCR. 
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Supplemental Figure 12. ACEI Multivariate and Comparative Analyses. (a) Regression 
coefficients for variables indicating exposure/history of exposure to ACE inhibitors for each of the three 
cohort comparisons: (left) test outcome in a cohort of patients suspected of SARS-CoV-2 infection, 
(middle) requirement of mechanical respiration in patients who tested positive, (right) mortality in 
patients who tested positive. Univariate analyses are shown as red circles. The green triangles coefficients 
are when correcting for age, sex, and baseline IL-6 levels take upon admission. The blue squares are from 
a model that includes age, sex, and IL-6 as well as comorbidities including CAD/CHD, diabetes, obesity, 
and self-reported race and ethnicity. (b) Comparison of the effects of different ACE inhibitors. We 
directly compared the effects of specific ACE inhibitors among those patients with evidence of exposure 
to ACE inhibitors. We found two significant associations: benazepril was significantly associated with 
higher mortality (HR=2.37 95%CI 1.05-5.35, p=3.70E-02) and trandolapril was associated with 
requirement of mechanical ventilation (HR=15.85 95% CI: 2.11-119.08, p=7.25E-03). N.D. indicates that 
a result was not displayed due to low sample size and, therefore, very large errors. 
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Supplementary Table 1: Metatranscriptome Profiles of All Samples. Appended. 
 
 
 
Supplementary Table 2: Taxonomic Mis-assignment Filter. The entire SARS-CoV-2 genome 
was fragmented (wgsim) and then re-mapping to the entire Kraken2 database. These species 
were then used to flag putative false positives from SARS-CoV-2 genome segments that are 
similar to other organisms. 
 

 
 
 
 
Supplementary Table 3: Differentially Expressed Genes in COVID-19+/- patients. 
Appended. 
 
Supplemental Table 4: Gene Ontology Pathways. 
Appended 
 
Supplementary Table 5: COVID-19 Rapid Colorimetric LAMP Detection Test: N Primers 
Specificity 
Appended 
 
Supplementary Table 6: GISAID COVID-19 Acknowledgments 
Appended 
 

Taxonomic group (domain, phylum, class, order, family, genus, species, strain) TaxonName % match
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Severe acute respiratory syndrome-related coronavirus Severe acute respiratory syndrome-related coronavirus (SARS) 95.0813%
d__Viruses|o__Nidovirales|f__Coronaviridae|s__Bat coronavirus BM48-31/BGR/2008 Bat coronavirus BM48-31/BGR/2008 0.3937%
d__Eukaryota|k__Metazoa|p__Chordata|c__Mammalia|o__Primates|f__Hominidae|g__Homo|s__Homo sapiens Homo sapiens 0.0170%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Alphacoronavirus|s__Rhinolophus ferrumequinum alphacoronavirus HuB-2013 Rhinolophus ferrumequinum alphacoronavirus HuB-2013 0.0164%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Betacoronavirus 1 Betacoronavirus 1 0.0099%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Murine coronavirus Murine coronavirus 0.0089%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Rousettus bat coronavirus GCCDC1 Rousettus bat coronavirus GCCDC1 0.0059%
d__Viruses|o__Nidovirales|f__Coronaviridae|s__Bat coronavirus Bat coronavirus 0.0049%
d__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium botulinum Clostridium botulinum 0.0045%
d__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium perfringens Clostridium perfringens 0.0037%
d__Bacteria|p__Fusobacteria|c__Fusobacteriia|o__Fusobacteriales|f__Fusobacteriaceae|g__Fusobacterium|s__Fusobacterium varium Fusobacterium varium 0.0027%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Alphacoronavirus|s__Myotis ricketti alphacoronavirus Sax-2011 Myotis ricketti alphacoronavirus Sax-2011 0.0025%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacterales|f__Erwiniaceae|g__Buchnera|s__Buchnera aphidicola Buchnera aphidicola 0.0024%
d__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Thermoactinomycetaceae|g__Thermoactinomyces|s__Thermoactinomyces vulgaris Thermoactinomyces vulgaris 0.0023%
d__Bacteria|p__Firmicutes|c__Bacilli|o__Lactobacillales|f__Streptococcaceae|g__Streptococcus|s__Streptococcus pyogenes Streptococcus pyogenes 0.0023%
d__Bacteria|p__Proteobacteria|c__Alphaproteobacteria|o__Rickettsiales|f__Anaplasmataceae|g__Ehrlichia|s__Ehrlichia sp. HF Ehrlichia sp. HF 0.0018%
d__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Bacillaceae|g__Bacillus|s__Bacillus cereus Bacillus cereus 0.0017%
d__Bacteria|p__Bacteroidetes|c__Bacteroidia|o__Bacteroidales|g__Candidatus Azobacteroides|s__Candidatus Azobacteroides pseudotrichonymphae Candidatus Azobacteroides pseudotrichonymphae 0.0017%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Rousettus bat coronavirus HKU9 Rousettus bat coronavirus HKU9 0.0015%
d__Viruses|s__Beihai picorna-like virus 116 Beihai picorna-like virus 116 0.0015%
d__Bacteria|p__Proteobacteria|c__Epsilonproteobacteria|o__Campylobacterales|f__Helicobacteraceae|g__Helicobacter|s__Helicobacter pylori Helicobacter pylori 0.0014%
d__Bacteria|p__Proteobacteria|c__Betaproteobacteria|o__Burkholderiales|f__Oxalobacteraceae|g__Janthinobacterium|s__Janthinobacterium sp. B9-8 Janthinobacterium sp. B9-8 0.0014%
d__Eukaryota|p__Apicomplexa|c__Aconoidasida|o__Haemosporida|f__Plasmodiidae|g__Plasmodium|s__Plasmodium coatneyi Plasmodium coatneyi 0.0014%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacterales|f__Yersiniaceae|g__Serratia|s__Serratia symbiotica Serratia symbiotica 0.0013%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Pseudomonadales|f__Moraxellaceae|g__Acinetobacter|s__Acinetobacter baumannii Acinetobacter baumannii 0.0013%
d__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Clostridium|s__Clostridium septicum Clostridium septicum 0.0013%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Tylonycteris bat coronavirus HKU4 Tylonycteris bat coronavirus HKU4 0.0012%
d__Bacteria|p__Firmicutes|c__Bacilli|o__Bacillales|f__Staphylococcaceae|g__Staphylococcus|s__Staphylococcus cohnii Staphylococcus cohnii 0.0012%
d__Bacteria|p__Firmicutes|c__Clostridia|o__Clostridiales|f__Clostridiaceae|g__Caloranaerobacter|s__Caloranaerobacter azorensis Caloranaerobacter azorensis 0.0012%
d__Bacteria|p__Cyanobacteria|o__Nostocales|f__Calotrichaceae|g__Calothrix|s__Calothrix sp. NIES-2098 Calothrix sp. NIES-2098 0.0012%
d__Viruses|o__Nidovirales|f__Coronaviridae|g__Betacoronavirus|s__Bat Hp-betacoronavirus Zhejiang2013 Bat Hp-betacoronavirus Zhejiang2013 0.0011%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacterales|f__Erwiniaceae|g__Erwinia|s__Candidatus Erwinia haradaeae Candidatus Erwinia haradaeae 0.0011%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Thiotrichales|f__Thiotrichaceae|g__Thioploca|s__Thioploca ingrica Thioploca ingrica 0.0011%
d__Bacteria|p__Proteobacteria|c__Alphaproteobacteria|o__Rhodospirillales|f__Acetobacteraceae|g__Bombella|s__Bombella sp. KACC 21507 Bombella sp. KACC 21507 0.0011%
d__Bacteria|p__Cyanobacteria|o__Chroococcales|f__Aphanothecaceae|g__Candidatus Atelocyanobacterium|s__Candidatus Atelocyanobacterium thalassa Candidatus Atelocyanobacterium thalassa 0.0011%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacterales|f__Erwiniaceae|g__Wigglesworthia|s__Wigglesworthia glossinidia Wigglesworthia glossinidia 0.0010%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Enterobacterales|f__Enterobacteriaceae|g__Enterobacter|s__Enterobacter hormaechei Enterobacter hormaechei 0.0010%
d__Bacteria|p__Proteobacteria|c__Gammaproteobacteria|o__Alteromonadales|f__Colwelliaceae|g__Colwellia|s__Colwellia sp. PAMC 20917 Colwellia sp. PAMC 20917 0.0010%
d__Bacteria|p__Proteobacteria|c__Betaproteobacteria|o__Neisseriales|f__Neisseriaceae|g__Neisseria|s__Neisseria flavescens Neisseria flavescens 0.0010%
d__Bacteria|p__Bacteroidetes|c__Flavobacteriia|o__Flavobacteriales|f__Flavobacteriaceae|g__Lutibacter|s__Lutibacter profundi Lutibacter profundi 0.0010%

Supplementary Table 2 : Other Taxonomic Alignments for SARS-CoV-2 (High-risk false positives)
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