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Abstract

New treatments for diseases caused by antimicrobial-resistant microorganisms can be
developed by identifying unexplored therapeutic targets and by designing efficient drug
screening protocols. In this study, we have screened a library of compounds to find
ligands for the flavin-adenine dinucleotide synthase (FADS) -a potential target for drug
design against tuberculosis and pneumonia- by implementing a new and efficient virtual
screening protocol. The protocol has been developed for the in silico search of ligands of
unexplored therapeutic targets, for which limited information about ligands or
ligand-receptor structures is available. It implements an integrative funnel-like strategy
with filtering layers that increase in computational accuracy. The protocol starts with a
pharmacophore-based virtual screening strategy that uses ligand-free receptor
conformations from molecular dynamics (MD) simulations. Then, it performs a
molecular docking stage using several docking programs and an exponential consensus
ranking strategy. The last filter, samples the conformations of compounds bound to the
target using MD simulations. The MD conformations are scored using several
traditional scoring functions in combination with a newly-proposed score that takes into
account the fluctuations of the molecule with a Morse-based potential. The protocol
was optimized and validated using a compound library with known ligands of the
Corynebacterium ammoniagenes FADS. Then, it was used to find new FADS ligands
from a compound library of 14,000 molecules. A small set of 17 in silico filtered
molecules were tested experimentally. We identified five inhibitors of the activity of the
flavin adenylyl transferase mononucleotide of the FADS, and some of them were able to
inhibit growth of three bacterial species: Corynebacterium ammoniagenes,
Mycobacterium tuberculosis, and Streptococcus pneumoniae, where the former two are
human pathogens. Overall, the results show that the integrative VS protocol is a
cost-effective solution for the discovery of ligands of unexplored therapeutic targets.
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Author summary

Developing cures for antimicrobial-resistant microorganisms is a pressing necessity.
Addressing this problem requires the discovery of novel therapeutic targets -for example,
bacterial proteins with no human homologues- and the development of cost-effective
drug screening protocols. In this work, we tackled the problem on both sides. We
developed an efficient and successful integrative computational protocol for screening
inhibitory-molecules for unexplored targets. We used it to discover five novel inhibitors
of flavin-adenine dinucleotide synthase (FADS), a promising protein target of pathogens
causing tuberculosis and pneumonia.

Introduction 1

Given the growing incidence of infections caused by antimicrobial resistant pathogens, 2

international institutions, such as the World Health Organization [1], have informed 3

about the lack of potential therapeutic options for these pathogens, and have named a 4

list of pathogens for which is critical to develop novel antimicrobial agents. The 5

development of such treatments should involve efficient drug design protocols and the 6

discovery of new molecular targets to fight antimicrobial resistance. A straightforward 7

and effective way to increase the chances of success of the drug-screening pipeline is 8

through the implementation of efficient virtual screening (VS) protocols. These 9

methods provide powerful tools to reduce the costs of drug discovery by reducing the 10

number of compounds to be tested in experimental trials [2–5]. Moreover, VS protocols 11

increase the success rate (i.e., active compounds found) and reduce the false negatives 12

in high-throughput compound screening [2, 3, 6–12]. 13

Efficient VS protocols have to be able to screen large compound libraries in short 14

computational times. Therefore, these protocols usually implement a funnel-like 15

strategy, which start from fast but less accurate methods (where a large number of 16

molecules are filtered) and more accurate and time-consuming tools are used in the last 17

steps [13–15]. Usually, pharmacophore-based tools are implemented in the first stages of 18

VS, given their ability to quickly screen large compounds libraries [16–18]. While more 19

sophisticated tools such as docking or molecular dynamics (MD) are implemented in the 20

latter steps to predict ligand affinities [11,13,19–26]. 21

Special attention deserve the tools used in the first steps of the VS, because these 22

impact the ability of the protocol to explore large compound libraries and the chemical 23

space of the compounds, such as the pharmacophore-based strategies [16–18,27–30]. 24

Despite the usefulness of these methods, which accelerate the first steps of the VS, these 25

strategies have some limitations. Several pharmacophore-based methods require 26

knowing ligand or ligand-receptor structures for their training, limiting the chemical 27

space of the filtered molecules to that associated with the training set [16]. Recently, 28

the flexi-pharma method, a VS strategy that uses pharmachophores from MD 29

conformations was developed to overcome these limitations [31]. However, in general, 30

new protein targets, which have limited structural information available, such as the 31

bifunctional enzyme flavin-adenine dinucleotide synthase (FADS), are challenging for 32

the funnel-like VS strategies. 33

FADS is a potential target for drug design against antimicrobial-resistant organisms, 34

such as the human pathogens Mycobacterium tuberculosis and Streptococcus pneumoniae. 35

FADS is a bi-functional and bi-modular enzyme that catalyzes the synthesis of two 36

essential co-factors: flavin mononucleotide (FMN) and flavin-adenine dinucleotide 37

(FAD). These are essential for a large number of proteins participating in energy 38

transformation or metabolic processes, in prokaryotic and eukaryotic organisms [32–34]. 39

For FADS, the synthesis of FMN and FAD occurs at the C-terminal module (the RKF 40
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module) and N-terminal module (FMNAT module) of FADS, respectively [35–38]. The 41

RFK module has a similar structure and sequence to the equivalent enzyme in 42

eukaryotic organisms. However, because the FMNAT module lacks both sequence and 43

structural similarity with the equivalent enzymes in eukaryotic systems, the prokaryotic 44

FADSs have emerged as potential antimicrobial targets [35,39–41]. 45

The most characterized FADS is the enzyme of Corynebacterium ammoniagenes 46

(CaFADS), which is considered a good representative model for the FADS of the human 47

pathogen Mycobacterium tuberculosis (MtFADS) [40,41]. However, limited structural 48

information about this enzyme is available. Moreover, no experimental structures of the 49

FADS-FMNAT module in complex with substrates are reported. The only 50

ligand-CaFADS FMNAT module structures correspond to theoretical or computational 51

models [35,42]. 52

The objective of this work is to discover molecules able to inhibit the FMNAT 53

activity of FADS using a novel integrative VS protocol. This promising protocol 54

addresses some of the limitations found with traditional VS, for example, it does not 55

require knowledge of ligands or ligand-receptor structures, and its attributes enable a 56

better exploration of the chemical space of large compound libraries. 57

This manuscript is organized as follows. First, we describe the integrative 58

computational protocol, which includes several filtering layers: i) flexi-pharma 59

screening [31], ii) consensus docking screening [43], iii) MD sampling and scoring, and 60

iv) compound activities measured by experimental assays. The protocol is tested and 61

optimized using a library of 1993 compounds from which 39 compounds are true ligands 62

of the CaFADS [41]. Subsequently, the optimized protocol is implemented over a library 63

of 14000 compounds. A final list of 17 filtered compounds is tested experimentally. We 64

discover that five molecules are able to inhibit the FMNAT-FADS activity, five bind to 65

the FMNAT-FADS and five present growth inhibitory activity against Corynebacterium 66

amoniagenes, Mycobacterium tuberculosis or Streptococcus pneumoniae. We conclude 67

that the VS protocol and the new inhibitory compounds can contribute to further 68

development of novel therapeutic strategies against antimicrobial-resistant pathogens 69

such as Mycobacterium tuberculosis and Streptococcus pneumoniae. 70

Materials and methods 71

Computational Methods 72

FAD structure 73

The Cartesian coordinates of the FMNAT module (M1-H186) of CaFADS were taken 74

from the crystal structure with PDB code 2X0K [35]. These were used for the MD 75

simulations in the flexi-pharma or molecular docking stage. 76

Flexi-pharma method 77

The flexi-pharma protocol [31] has three substages: run an MD simulation of the 78

ligand-free receptor target, generate a set of pharmacophores from each MD 79

conformation, and assign a vote to each molecule every time it matches at least one 80

pharmacophore from each MD conformation. 81

First, an MD simulation of ligand-free receptor is performed. To generate the 82

pharmacophore set from each MD conformation, we use Autogrid4.2 [44] to calculate 83

the affinity maps of several atom-types: hydrogen bond donor, hydrogen bond acceptor, 84

hydrophobic, aromatic and charged atoms. Some atom-type affinity grids are first 85

discarded if they show a flat distribution of the affinity values of the map (for this work, 86

the affinity maps that have a histogram with kurtosis larger than 3). Then, we define a 87
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grid-percentage threshold to determine the hotspots (clusters of grid-cells) for each atom 88

type. The threshold is a percentage of the total number of cells in the grid with negative 89

affinity energy. We cluster the selected cells to generate a pharmacophoric feature 90

(given by a center, a radius of gyration, an atom type and in some cases a direction). A 91

pharmacophore is built by combining three features. The pharamcophore set consists of 92

all possible combinations of triplets of features from different active spaces (i.e., centers 93

of the affinity grids) together with a volume exclusion term. The Pharmer [45] program 94

is used to screen the compound library with the created pharmacophore set. 95

Flexi-pharma gives a score to each compound by means of a voting strategy. If any 96

molecule, from the compounds library, matches any pharmacophore obtained from a 97

specific MD frame, then the molecule obtains a vote. The total number of votes is used 98

as a score of the molecule. For more details about the flexi-pharma method see ref. [31]. 99

Molecular docking 100

The molecular docking was carried out using the programs: Autodock4.2 [44,46,47], 101

Vina [48], and Smina [49]. For these programs, the sampling space was defined using a 102

grid box of 15× 15× 15 Å centered at the oxygen of the amide group of the catalytic 103

residue ASN125 [50]. The number of requested poses was 50. 104

Autodock4.2 [44,46,47] was used with a grid spacing of 0.25 Å. The search was 105

performed using the Lamarckian genetic algorithm implemented in Autodock, with a 106

starting population of 50 individuals, using 25000000 energy evaluations and 27000 107

generations. The resultant poses were clustered using the RMSD of the atomic 108

positions, with a tolerance of 2.0 Å, using the default clustering method. In addition, 109

to the sampling space and the number of poses, Vina [48] and Smina [49] were used 110

with the default parameters. For Smina, the Vinardo [51] scoring function was used. 111

Molecular dynamics simulations 112

The best pose for each compound from the docking stage, obtained with the 113

Autodock4.2 program, was used as the initial conformation for the MD simulation. The 114

compounds were protonated, at pH 7.0, using Open Babel software [52]. The 115

PROPKA [53] module from the PDB2PQR software package [54,55] was used to 116

determine the protonation state of all ionizable groups at pH 7.0. The final models were 117

solvated with a dodecahedral water box, centered at the geometric center of the 118

complex. To neutralize the systems, Na+ ions were added when necessary. The 119

AMBER99SB-ILDN [56] force field was used to model the protein with the TIP3P 120

water model [57]. The GAFF force field [58] parameters were obtained for the 121

compounds using Antechamber [58, 59]. ACPYPE [60] was used to change the topology 122

files from amber to GROMACS [61,62], which was used for all the MD simulations. The 123

systems were minimized until the maximum force was ≤ 1000 kJ/mol·nm with the 124

steepest descent algorithm. MD simulations were carried out with periodic boundary 125

conditions. A spherical cutoff of 1.2 nm for the non-bonded interactions was applied 126

together with a switch function acting between 1.0 and 1.2 nm. The non-bonded pair 127

list was updated every 20 steps. The particle mesh Ewald method was used to compute 128

long-range electrostatic force terms, and the leapfrog algorithm to propagate the 129

equations of motion. All bond lengths and angles involving hydrogen atoms were 130

constrained using the LINCS algorithm [63]. Equilibration consisted of 100 ps of NVT 131

followed by 100 ps of NPT simulation at 310 K, with a time step of 2 fs was done. 132

During equilibration the coordinates of protein and of ligand heavy atoms were 133

restrained using a constant force of 100 kJ/mol·nm. Finally, MD simulations between 5 - 134

15 ns were carried out using the GROMACS 5.1.3 program [61,62] with a time step of 2 135

fs, without restraints, in an isothermal-isobaric (NPT) ensemble at 310.15 K and 1 atm. 136
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Exponential consensus ranking 137

A consensus methodology was used to combine the results from different scoring 138

functions both for the docking and MD VS stages. We used an exponential consensus 139

ranking (ECR) methodology [43]. This method assigns a score p(rji ) to each molecule i 140

for each scoring function j using an exponential function p(rji ) = exp (
−rji
α )/α, which 141

depends on the rank of the molecule (rji ) given by each individual docking program. α 142

is the expected value of the exponential distribution, which we have set to 50% of the 143

total molecules at each stage. The final score P (i) is defined as the sum of the 144

exponential functions for all of the programs, P (i) =
∑
j p(r

j
i ) = 1

α

∑
j exp (

−rji
α ). 145

Validation metrics 146

The enrichment factor (EFx%) is a measure of the change on the ligand/decoys 147

proportion in a molecular dataset, after filtering it to the x%. EFx% is defined as the 148

ratio between ligands (Hits) found at a certain threshold (x%) of the best ranked 149

compounds and the number of compounds at that threshold (Nx%) normalized by the 150

ratio between the hits contained in the entire dataset (Hits100%) and the total number 151

of compounds N100%: 152

EFx =
Hitsx%

Nx%
× N100%

Hits100%
. (1)

Values of EFx% higher than 1 indicate an enrichment of the compound library. 153

The enrichment plot (EP) measures the performance of a filtering method at 154

different levels of a compound library reduction. In an EP, the percentage of ligands 155

found in the top x% of ranked compounds vs the top x% of filtered compounds is 156

plotted [64]. 157

To asses to the error of the flexi-pharma EPs, a bootstrapping analysis with 158

replacement was used. The selected MD frames were iteratively re-sampled with 159

replacement 100 times. Thus, 100 EPs were obtained for each trajectory. From these 160

the average and the error of the EPs were calculated (similarly as in ref. 31). 161

Experimental Methods 162

Chemicals 163

The selected compounds were acquired from Molport and dissolved in 100% DMSO to 164

prepare stock solutions at 50 mM and 10 mM. According to the manufacter indications, 165

the purity of the compounds was >95%, and had been determined by high performance 166

liquid chromatography (HPLC), thin layer chromatography (TLC), NMR, IR or basic 167

titration. 168

Protein purification and quantification 169

CaFADS was produced as a recombinant protein in Escherichia coli BL21(DE3) and 170

purified as previously described in ref. 40. Protein purity was tested by 15% 171

SDS-PAGE. Protein content in pure samples (in 20 mM PIPES, pH 7.0) was quantified 172

using the theoretical extinction coefficient (ε) 279 nm = 27.8 mM−1·cm−1. 173

Differential Scanning Fluorescence 174

Interaction of compounds with CaFADS was evaluated using fluorescence thermal 175

denaturation, on the bases of the shifts in denaturation midpoints of thermal curves of 176

the protein [65]. Denaturations were performed in a Stratagene Agilent Mx3005p qPCR 177
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instrument (Santa Clara, US) following SYPR Orange (ThermoFisher Scientific) 178

emission fluorescence (excitation at 492 nm and emission at 610 nm), which greatly 179

increases when this probe binds to protein hydrophobic regions becoming solvent 180

exposed upon thermal unfolding. Solutions containing 2 µM CaFADS with the studied 181

compound in an increasing 5-250 µM concentration range (2% residual final 182

concentration of DMSO) and 5xSYPR Orange in 20 mM PIPES pH 7.0, 10 mM MgCl2, 183

with a 100 µL total volume were dispensed into 96-well microplates (BRAND® 96-well 184

plates pure grade™). After an initial 1 min incubation at 25◦C within the equipment, 185

unfolding curves were registered from 25 to 100◦C at 1◦C·min−1. Control experiments 186

with CaFADS samples with/without DMSO were routinely performed in each 187

microplate. For those compounds shifting midpoint denaturation temperature, Tm, the 188

dissociation constant, Kd, was predicted by fitting the data to the equation [66] 189

∆Tm
Tm

=
NRT 0

m

∆H0
ln
(

1 +
[L]

Kd

)
, (2)

which estimates the extent of the ligand-induced protein stabilization/destabilization. 190

∆Tm = |Tm − T 0
m|) with T 0

m and Tm being the midpoint denaturation temperatures in 191

the absence and the presence of ligand, respectively, and ∆H0 the unfolding enthalpy of 192

the protein in the absence of ligand. 193

Evaluation of the compound’s ability to inhibit the CaFADS enzymatic 194

activity 195

To determine the compound’s ability to inhibit the RFK and/or the FMNAT activities 196

of CaFADS, both enzymatic activities were quantitatively measured in the absence and 197

presence of the compounds following previously described protocols [41]. Reaction 198

mixtures contained 50 mM ATP, 5 µM RF in 20 mM PIPES, pH 7.0, 0.8 mM MgCl2, 199

when assaying the RFK activity, and 50 mM ATP, 10 µM FMN in 20 mM PIPES, pH 200

7.0, 10 mM MgCl2 when measuring the FMNAT reaction. Each compound was tested 201

at 250 µM (0.5% residual final concentration of DMSO) for each of the two enzymatic 202

reactions. The samples were pre-incubated at 25◦C, the reaction was then initiated by 203

the addition of ∼ 40 nM CaFADS (final concentration) and allowed for 1 min. Finally, 204

the reaction was stopped by boiling the samples for 5 min and the denatured protein 205

was eliminated through centrifugation. The transformation of RF into FMN and FAD 206

(RFK activity) and of FMN into FAD (FMNAT activity) was evaluated through flavins 207

separation by HPLC (Waters), as previously described [37]. All the experiments were 208

performed in triplicate. To evaluate the potency of compounds as inhibitors, we took 209

advantage of the decrease in quantum yield of fluorescence when FMN is transformed 210

into FAD, which allows to follow such transformation in a continuous system. 211

Measurements were carried out using a microplate reader Synergy™HT multimode plate 212

reader (Biotek) with BRAND 96-well plates pure GradeTM. Reaction mixtures 213

contained 5 µM RF or FMN, and 50 µM ATP in 20 mM PIPES, pH 7.0, 10 mM MgCl2, 214

and the inhibitor compound in a 5-250 µM concentration range (2% residual final 215

concentration of DMSO). Reactions were initiated through addition of 0.4 µM CaFADS, 216

being the final reaction volume 100 µL. Flavin fluorescence (excitation at 440 nm and 217

emission at 530 nm) was registered at 25◦C, every 50 s during 15 min. The fluorescence 218

change per time unit (∆F/∆t) was calculated as the slope of the resulting fluorescence 219

decays recorded between 0 and 6 min (linear decay of the fluorescence). Controls which 220

contained the reaction mixture without the enzyme and without any potential CaFADS 221

inhibitory compound were included in the assay and referred as the 0% and 100% of 222

enzymatic activity, respectively. IC50 was calculated as the concentration of compound 223

required for a 50% inhibition of the enzymatic activity. 224
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Determination of the antibacterial activity of the compounds 225

The minimum inhibitory concentration (MIC) of the inhibitors was determined by the 226

resazurin serial broth microdilution method [67] according to the Clinical and 227

Laboratory Standards Institute guidelines. Compounds were tested against a panel of 228

bacterial strains including Gram positives, Gram negatives and acid fast bacteria (see 229

Table SI 3). Serial 2-fold dilutions of the inhibitors were performed in cation-adjusted 230

Mueller-Hinton broth (Difco) in 96-well polypropylene flat-bottom plates, with a final 231

volume of 100 µL per well. Subsequently, liquid cultures of the bacterial strains in 232

logarithmic phase were adjusted to 106 CFU/ml in Mueller-Hinton broth, and 100 µL of 233

this suspension were added to each well, resulting in a final inoculum of 5·105 CFU/ml. 234

Plates were incubated for 18 hours at 37◦C. Then, 30 µL of 0.4 mM filter-sterilized 235

resazurin (Sigma-Aldrich) was added to each well, and results were revealed after 4 h of 236

further incubation at 37◦C. When testing the compounds against mycobacteria, 237

Middlebrook 7H9 (Difco) supplemented with 10% ADC (0.2% dextrose, 0.5% V fraction 238

BSA and 0.0003% bovine catalase) (BD Difco) and with 0.5% glycerol (Scharlau) was 239

used as culture media, and plates were incubated 4 days for Mycobacterium smegmatis 240

and 7 days for M. tuberculosis. Resazurin (blue) is an indicator of bacterial growth, 241

since metabolic activity of bacteria reduces it to resorufin (pink). The minimum 242

inhibitory concentration (MIC) is the lowest concentration of compound that does not 243

change the resazurin colour from blue to pink. 244

Evaluation of the cytotoxicity of the compounds in eukaryotic cell lines 245

The (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used 246

to determine the effect of the compounds in cell growth and viability of HeLa 247

(ATCC®CCL-2) and A549 (ATCC®CCL-185) eukaryotic cell lines. Both cell lines 248

were routinely cultured in high-glucose DMEM (Lonza) supplemented with 10% fetal 249

bovine serum, 4 mM glutamine GlutaMAX™ (Gibco) and 1x non-essential amino acids 250

(Gibco), under 5% CO2 at 37◦C in a humidified atmosphere. For the MTT assay, cells 251

were initially seeded in 96-well flat-bottom plates at a density of 104 cells per well and 252

cultured for 24 h. Cultures were routinely tested for mycoplasma presence. The 253

compounds were dissolved in fresh culture medium, added in a 4-512 µM concentration 254

range (1% DMSO final concentration), and incubated with the cells for 24 h. Finally, 255

formazan crystals were dissolved with pure DMSO and MTT absorbance was measured 256

at 570 and 650 nm. Untreated cells were included as control of 100% viability. Assays 257

were done in quadruplicate. 258

Results and Discussion 259

Virtual screening protocol 260

The VS protocol aims to find active compounds, from large compound libraries, towards 261

receptors for which little or no information about ligands or ligand-receptor structures is 262

available. This is the case of the CaFADS. To achieve this goal, we implemented a 263

funnel-like protocol with four filtering stages (Figure 1). It includes three main VS 264

stages plus an experimental stage. In the following, we present the principal ideas for 265

the integrative VS protocol. 266
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Fig 1. Main stages of the funnel-like VS protocol. The protocol consists of four
stages: i) flexible pharmacophore-based VS (flexi-pharma) [31], ii) docking and
exponential consensus ranking (ECR-docking) [43], iii) MD simulations with consensus
ranking -that includes a new Morse-based ligand-flexibility score-, and iv) biological
experimental binding and activity assays. At each stage, the compound library was
filtered. The protocol was optimized and validated over a library of 1993 compounds,
which was previously tested over CaFADS [41]. On the left, we show an example of the
reduction of this library going from 100% to 0.25% through the successive steps.

Flexi-Pharma: pharmacophore filtering from ligand-free receptor 267

conformations 268

Pharmacophore-based VS strategies are computationally efficient. These strategies are 269

able to explore large compound libraries using pharmacophores: an ensemble of 270

physico-chemical features that ensure the optimal interactions within the active site of a 271

specific biological target [16]. Therefore, the first stage of the protocol implements a 272

phamacophore-based VS strategy [31]. The method flexi-pharma defines 273

pharmacophores from ligand-free receptor conformations from MD simulations. It 274

implements a rank-by-vote strategy, assigning a vote to each compound that matches an 275

MD conformation. The use of multiple conformations allows for a better exploration of 276

the pharmacophoric space. The voting strategy enables the filtering of the molecules at 277

any percentage of the dataset. Details for the flexi-pharma strategy are presented in the 278

Methods and in ref. 31. 279

ECR-docking: exponential consensus ranking of docking VS 280

The second stage of the protocol consists of a docking-based VS. Molecular docking 281

aims to find the most favorable binding conformation of a molecule (i.e., pose) upon 282

binding to a pocket of a protein target [68,69], and assigns a docking score to each 283

molecule. The docking score is an empirical or physics-based estimation of the affinity 284

of the molecule towards the biological target. Therefore, with molecular docking, it is 285

possible to screen and rank molecules from compound libraries. However, it has been 286

shown that the docking results might be system or structure dependent [43,70], possibly 287

due to algorithm-parameterization biases, which are trained over particular benchmark 288

systems. To overcome this limitation, we use a consensus strategy that combines the 289

results from different docking programs to obtain a consensus rank using a sum of 290

exponential functions (ECR method) [43]. Below and in the Supplementary 291

Information, we explain different docking-scoring alternatives that we used to find the 292

optimal enrichment for the FMNAT-FADS ligand screening. 293

MD-ranking VS 294

MD simulations were used to estimate the compound affinities and the stability of the 295

predicted complexes filtered from the docking stage. The MD starting configuration was 296

selected from the best pose obtained with Autodock4.2 [44, 46, 47] in the previous stage. 297

Inspired by conformational-prediction tools that take into account flexibility [71,72], we 298

used two measures for the stability and affinity of the ligand bound to the receptor in 299

the MD ensemble. The first measure generates a consensus rank using multiple scoring 300

functions over the MD conformations. We called this scoring function-based rank (see 301

below for details). The second measure is based on the root mean square deviation 302

(RMSD) of the ligand’s atomic positions along the MD trajectory. This is used with a 303

Morse potential to define a score that measures the ligand’s flexibility (see below for 304

details). Finally, the scoring function-based rank and the Morse-based rank are 305
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Fig 2. Morse-based score. A score that uses a Morse potential (Eq. 3) was
implemented for scoring the flexibility of the ligand inside the pocket using MD
simulations. The input variable is the standard deviation of the RMSD of the ligand’s
atomic positions around the binding site. Ligands that show large RMSD variations are
considered very flexible -with dissociation tendencies (i.e., unstable)- and their behavior
is penalized (right of vertical black dashed arrow). Ligands with small RMSD
fluctuations are considered rigid leading to a conformational penalization (left of black
vertical dashed arrow). The Morse potential was implemented with a force constant
k = 1 kcal/mol.nm2, a depth of the well of ω = 1 kcal/mol, and the minimum is
localized at r0 = 0.242 Å.

combined using the ECR method. We use this analysis to select the percentage of 306

best-ranked molecules for the activities assays. In the following, we describe the scoring 307

function-based rank and the Morse-based rank. 308

Scoring function-based rank. We used four scoring functions: 309

Autodock4.2 [44,46,47], Vina [48], Vinardo [51] and CY score [73], which were 310

calculated over each MD conformation. For each scoring function, an average score over 311

all the conformations is calculated for each molecule. This can then be used to rank the 312

molecules. The ranks from the four scoring functions are used with the ECR 313

method [43] to obtain a consensus rank by combining their individual ranks. 314

Morse-based rank. We used the standard deviation of the RMSD of the ligand’s 315

atomic positions around the binding site as an indicator of the ligand’s flexibility. Those 316

ligands showing a small standard deviation of the RMSD at the binding site indicate a 317

very rigid complex, which leads to a conformational penalization. On the other hand, 318

molecules with high RMSD standard deviation, indicate a dissociation tendency, which 319

leads to an affinity penalization. These behaviors can be characterized using a Morse 320

potential (Eq. 3 and Figure 2) 321

VM (r) = ω(1− exp−a(r−r0))2, (3)

where ω is the depth of the well, r0 is the position of the minimum, a =
√

k
2ω and k is a 322

constant that defines the width of the well. For the Morse-base score, we used VM (r) 323

from Eq. 3, where the dependent variable r is the standard deviation of the RMSD 324

along the MD trajectory, and r0 is the standard deviation corresponding to a normal 325

distribution with null entropy (i.e., r0 = 0.242 Å). The Morse potential was 326

implemented with a force constant k = 1 kcal/mol.nm2 and a depth of the well ω = 1 327

kcal/mol. Thus, RMSD values lower or higher than 0.242 Å are penalized with 328

Morse-based score. We used this to rank the molecules according to the VM (r) score. 329

We note that most molecules have a RMSD standard deviation greater than 0.242 Å, 330

therefore, the parameters k and ω used in the score do not have a great impact in the 331

final Morse-based rank. 332

VS parameter dependence 333

Although the presented VS protocol is sufficiently general to be applied over any 334

receptor target, there are several parameters and setups that can be optimized. 335

Moreover, because -in its complete form- it has not been tested, we considered it 336

necessary to first validate and optimize the VS protocol over a benchmark library with 337

known inhibitors of the CaFADS - FMNAT activity [41]. The results are presented in 338

the following section. 339
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Fig 3. Flexi-pharma VS stage over the Pretswick library ®. Average
enrichment plot of the Pretswick library using the flexi-pharma stage over MD
conformations of ligand-free CaFADS. The affinity-grid threshold value is 0.1% and 600
equidistant frames obtained from an MD of 60 ns were used [42]. The flexi-pharma
number of votes for each molecule was used as a score to calculate the EPs.
Bootstrapping analysis was performed by sampling with replacement 100 times to obtain
the average EP and its standard deviation. The violet line shows the screening threshold
(≈ 30%) for the selection of molecules to be filtered and passed onto the second stage.

VS protocol FADS validation: Prestwick Chemical Library ® 340

To validate and optimize the VS protocol for screening potential ligands of CaFADS, a 341

molecular library (Prestwick Chemical Library ®) was used. A previous study showed 342

that 39 of its 1993 compounds are able to bind to the CaFADS with FMNAT inhibitory 343

activity [41]. To study the performance, we measure the enrichment factor (EF) and the 344

enrichment plots (EP) [64] (see the Methods). In the following, we present the results 345

for each stage of the VS protocol applied over the Prestwick Chemical Library ®. 346

Flexi-pharma FADS optimization and validation 347

In Figure 3, we present the EP obtained after the application of the flexi-pharma stage 348

over the Prestwick compound library ®. Since the flexi-pharma method uses MD 349

conformations of the ligand-free receptor, we used 600 equidistant frames from 60 ns of 350

MD of the ligand-free CaFADS, which was carried out in a previous study [42]. We 351

applied the flexi-pharma VS as described in the Methods. We find an enrichment of the 352

compound library, showing that the data (black line) are better than a random EP (red 353

line). The vertical violet line shows the percentage of molecules selected to pass to the 354

next stage. The selected list of compounds consists of 600 potential ligands (≈ 30% of 355

the initial compound library) with 24 actual ligands, resulting in a EF of 2.0 for this 356

stage. These results support the usefulness of flexi-pharma to enrich the Prestwick 357

compound library. 358

The EPs showed in the Figure 3 involved several parameters, such as the affinity 359

grid threshold value (i.e., percentage of grid points with lowest grid energies), the active 360

spaces and the number of features used to define the pharmacophores (see ref. 31). In 361

that work, it was shown that the results are almost independent of the affinity-grid 362

threshold. However, a large threshold implies a large number of features, which 363

increases the pharmacophore set and the computational time to carry out the VS. 364

Therefore, a good computational efficiency is obtained with small threshold values, 365

while maintaining the performance. For this study, the threshold value of 0.1% is used. 366

Because of the large size of the FMNAT active site, the pharmacophores were obtained 367

from 7 active spaces (centered at NE2-H31, NE2-H57, CA-E108, CG-L110, ND2-N125, 368

OG-S164 and CZ-R168 [50]). 369

ECR-docking FADS optimization and validation 370

The second stage of the VS protocol uses a docking-based strategy. Docking generates 371

an optimal molecule-bound conformation with a corresponding score. However, some 372

docking-program outcomes depend on the system of study [43,70]. Thus, a particular 373

docking software can show good results for a receptor, however, it can show bad results 374

for other receptors. For an untested receptor it is impossible to know, in advance, which 375

docking software generates the best outcome. To overcome this limitation, we 376

implement a modified version of the exponential consensus rank (ECR) strategy [43] 377

using several docking programs. 378

April 16, 2020 10/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2020. ; https://doi.org/10.1101/2020.04.22.055178doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055178
http://creativecommons.org/licenses/by/4.0/


Fig 4. ECR-docking VS stage over the Pretswick library ®. Enrichment plot
using the ECR (black line) from the best Autodock4.2 pose that is re-scored with four
scoring functions (Autodock4.2, Vina, Vinardo and CYscore). The shaded area encloses
the best and worst behaviors for the individual scoring functions. The enrichment plot
is normalized by the initial database values (39-ligands and 1993 compounds). The
violet line shows the threshold for the selection of molecules for the third VS stage.

The top 600 molecules of the Pretswick library ® filtered from the flexi-pharma 379

stage were docked, using several programs, to the FMNAT module using the 380

crystallographic structure (PDB 2X0K) of CaFADS. After several attempts (see the 381

Supplementary Information), we found that the best EP was obtained by using the best 382

pose from Autodock4.2 and re-scoring it with Autodock4.2 [44,46,47], Vina [48], 383

Vinardo [51] (a function scoring implemented in Smina [49])) and CYscore [73] scoring 384

functions. We note that molecules which best Autodock4.2 pose was not within the 385

FMNAT-FADS active site (less than 5 Å of H31 and N125) [50] were discarded, 386

reducing the list to 467 molecules (including 23 confirmed inhibitors). The ranks from 387

each scoring function were combined in using an ECR methodology to obtain a 388

consensus rank. The enrichment plot after this analysis is shown in the Figure 4 and SI 389

1 Fig. The top 100 molecules from this analysis contained 9 confirmed ligands, which 390

represents a global EF% (i.e., the EF% normalized to the initial compound library) of 391

4.6, showing a clear enrichment. 392

MD-ranking FADS optimization and validation 393

MD simulations of potential ligand-receptor complexes allows for a more accurate 394

sampling of their conformational space. The stability of these conformations should give 395

an estimate of the affinity of the potential ligand towards the receptor. As mentioned 396

previously, the starting conformation was chosen from the best docking pose from 397

Autodock4.2 obtained from the previous stage. For the Pretswick library ®, we found 398

that by dividing the MD stage into two substages according to the simulation time 399

(MD-ranking 1 and MD-ranking 2), there is a good trade-off between computational 400

costs and performance. In the MD-ranking 1, we ran 5 ns for all the compounds filtered 401

from the docking stage. We used the two measures over the MD conformations, scoring 402

function-based and Morse-based, to rank of the potential ligands to the CaFADS. The 403

two results were combined using an ECR to obtain the EPs shown in Figure 5 (black 404

line). Our results indicate that it is possible to obtain an enrichment of the library 405

compound using MD and combining the two stability measured with using an ECR 406

methodology. We note that, although the EP from the Morse-base rank shows better 407

outcome than the EP from the ECR scoring functions-based (ECR-SF) (blue and green 408

lines, respectively, in Figure 5), the use of both measures is relevant. The logic behind 409

combining the two stability measures, lies in that the Morse-based rank gives only 410

information about the conformational stability of the ligand but it does not contain 411

direct information about any physico-chemical interactions. Whereas the scoring 412

functions, e.g., Autodock4.2 or Vina, include physics-based interactions which are 413

relevant. Therefore, the scoring functions-based rank supplies an empirical contribution 414

to the enthalpy and global entropy in the binding process. Thus, the two strategies 415

should complement each other. 416

We selected the top 50 molecules to be screened in the MD-ranking 2 stage. For this 417

filtered set, we extended the MD time to 15 ns for each complex. These new 418

conformations are scored similarly as before (i.e., ECR combined scoring function-based 419

and Morse-based ranking) and we select the top 5 molecules. The EFs for all the stages 420

of the protocol are shown in Table 1. These results confirm that all stages of the VS 421
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Fig 5. MD-ranking 1 VS stage over the Pretswick library ®. Enrichment
plot obtained using an ECR methodology (black) from the combination of the ECR
scoring function-based rank (ECR-SF) (green) and Morse-based rank (blue). 5 ns of
MD for 100 complexes were carried out. We used 200 equidistant frames from the last 2
ns of MD simulation. The enrichment plot is normalized to the initial database
(39-ligands and 1993 compounds). The violet line shows the threshold for the molecule
selection for the MD-ranking 2 stage.

protocol increase the enrichment while saving computational resources. 422

Table 1. EFs obtained for each VS stages using the Prestwick library ®.

Stage Stage EF Global EF Ligands Molecules filtered

Flexi-pharma 2.0 2.0 24 600
ECR-Docking 2.3 4.6 9 100
MD-ranking 1 1.3 6.1 6 50
MD-ranking 2 1.7 10.2 1 5

Stage EF is the enrichment factor relative to the previous step, while the Global EF is the enrichment factor normalized to
the initial database (39-ligands and 1993 compounds).

VS protocol FADS application: Maybridge database 423

Once the efficiency of the VS protocol was optimized with the Prestwick library ®, the 424

protocol was implemented over the Maybridge compound library that contains 14000 425

molecules. A description of the VS protocol for this library is shown in SI 2 Fig. For the 426

flexi-pharma filtering we selected 3000 molecules. Then, the best 600 were selected 427

using the ECR-docking stage. Finally, from the two MD-ranking VS, we selected the 428

top 30 molecules. We note that the difference in the screening between the Maybridge 429

library with respect to the Prestwick library ® is the percentage of molecules selected 430

at each step. These numbers were changed to optimize the computational efficiency, 431

since for just the MD-ranking stages 6 µs of MD simulation time were used. 432

Experimental evaluation of the affinity and the inhibitory 433

activity of selected molecules 434

Considering a range of properties for the 30 best VS-ranked compounds that relate to 435

their potential drug-likeness, shown in Table SI 1 [74,75], as well as their commercial 436

availability, 17 compounds were chosen as virtual screening hits (VSH) to 437

experimentally evaluate their performance. From the experimental assays 5 compounds 438

were found as true ligands of CaFADS. Table 2 and Figure 6 show the dissociation 439

constants (Kd) values in the range of 1.7 - 41 µM. 440

Since binding of small molecules to a protein usually alters its thermal 441

conformational stability, shifting the midpoint temperatures (Tm) of thermal 442

denaturation curves [65], displacements in Tm induced by the different VSH appeared as 443

a feasible approach to experimentally identify those binding CaFADS [76]. 5 444

compounds, out of the 17 selected, produced a dose-response Tm shift, ∆ Tm, indicative 445

of interaction with CaFADS (Figure 6A). Compounds C6 and C9 increased Tm by more 446

than 3 degrees, indicating binding to the protein. In addition, C3, C5 and C18 shifted it 447

to lower values (up to 2 and 6 degrees, respectively), suggesting that they produced a 448

ligand-induced perturbation consistent with binding and destabilization of CaFADS. 449

Fitting of the corresponding dose-response data to Eq. 2 that relates them to the 450
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Table 2. In vitro performance of VS hits over the FMNAT and RFK+FMNAT CaFADS activities.

Compound Kd(µM)a FMNAT FMNAT RFK+FMNAT RFK+FMNAT
IC50(µM)b % Res. act. 250 µM IC50(µM)b % Res. act. 250 µM

C2 >95 88 ± 2
C3 18 ± 8 238 ± 7 48 ± 3 248 ± 3 48 ± 5
C5 1.7 ± 0.7 53 ± 1 6.0 ± 1.4 83 ± 2 14 ± 1.3
C6 41 ± 3 96 ± 6 48 ± 6 57 ± 3
C7 >95 82 ± 7
C9 6.4 ± 1.2 56 ± 6 76 ± 3
C18 3.0 ± 0.9 143 ± 4 35 ± 4 147 ± 4 35 ± 4
C26 72 ± 6 84 ± 4

The table includes dissociation constants (Kd) for the compounds altering thermal stability of CaFADS, concentration of
compound causing 50% enzyme inhibition (IC50) and residual activity at 250 µM of compound for the FMNAT and
RFK+FMNAT activities of CaFADS. Thermal stability and activity experiments were carried out in 20 mM PIPES, pH 7.0,
10 mM MgCl2. CaFADS activities were assayed at 25◦C. All samples contained 2% DMSO. (n=3, mean± SD). a Obtained
from differential scanning fluorescence data and b kinetic measurements. For details see the Methods.

binding affinity, allowed to estimate the corresponding Kd values (Figure 6B, second 451

column in Table 2). The data pointed to C5, C9 and C18 as the stronger binders. In 452

addition, postulated the C5 >C18 >C9 >C3 >C6 affinity ranking with Kd values in the 453

1.7-41 µM range. The previous results support that compounds C5, C6, C9, C18 and 454

C3 are actual ligands of CaFADS, highlighting the capacity of the VS protocol to find 455

protein ligands for receptor targets. 456

Fig 6. In vitro assessment of VSHs ability to bind and to inhibit CaFADS.
A) Thermal denaturation curve for CaFADS (2 µM) observed by differential scanning
fluorescence and Tm shifts observed in the presence of the compounds at 250 µM.
Thermal stability curves are plotted against the normalized fluorescence signal.
Experiments were carried out in 20 mM PIPES, pH 7.0, 10 mM MgCl2, 2% DMSO. B)
Dependence of ∆ Tm on the VSH concentration and data fit to Eq. 2. C) Dose-response
curves for the FMNAT activity of CaFADS in the presence of representative VSHs.
Experiments performed at 25◦C in 20 mM PIPES, pH 7.0, 10 mM MgCl2, 2% DMSO,
with 5 µM FMN and 50 µM ATP. Values derived from these representations are
included in Table 2, such as the IC50 and % of remaining activity at 250 µM of the
VSH. D) Comparison of the effects of the VSHs on the RFK and FMNAT activities of
CaFADS. All the experiments were carried out at 25◦C, in 20 mM PIPES pH 7.0,
MgCl2 (10 mM when assaying FMNAT activity and 0.8 mM when assaying RFK
activity) at saturating concentrations substrates and in the presence of 250 µM of the
VSH (2% DMSO, final concentration). Compound color code: Protein in the absence of
VSH is shown in light gray, C3 is violet, C5 is red, C6 is green, C9 is blue, C12 is black
(shown as control, neither binder nor inhibitor) and C18 is orange. Note that not all
molecules are shown in all panels. In panel D, compounds different from the above
mentioned are indicated in dark gray and calculated activity percentages are relative to
the corresponding ones in absence of compounds. (n=3, mean ± SD).

As our VS was directed towards the FMNAT active site of CaFADS, we then rated 457

the power of the 17 VSHs as inhibitors of CaFADS ability to transform FMN into FAD. 458

Hits were evaluated in terms of concentration of compounds causing 50% enzyme 459

inhibition (IC50), as well as of the percentage of remaining activity at the highest 460

compound concentration assayed (250 µM) (Figure 6C, third and fourth columns in 461

Table 2). 6 out of the 17 VSHs produced some inhibitory effect on the FMNAT activity. 462
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These were compounds C3, C5, C6, C9, C18 and C26. Among them, C5 and C6 yielded 463

IC50 values below 100 µM, C5 IC50 = 53±1 µM and C6 IC50 = 96±6 µM, with C5 464

inhibiting over 90% the FMNAT activity of CaFADS at the maximal compound 465

concentration assayed. CaFADS is a bifunctional enzyme that in addition to the 466

FMNAT N-terminal module holds an RFK C-terminal module that transforms 467

riboflavin (RF) into FMN, producing the substrate of the FMNAT activity. The 468

presence of this second module was not considered in our VS protocol, where only the 469

ATP/FMN binding pocket of the FMNAT module was used as the active site. 470

Nonetheless, since the RFK module also comprises active site binding of adenine and 471

flavin nucleotides, its RFK activity might also been affected by the VSHs. Therefore, 472

we also evaluated the ability of CaFADS to transform RF into FMN and subsequently 473

into FMN. Figure 6D, compares the effect of the VSHs on both individual activities of 474

CaFADS, RFK and FMNAT, showing that, under the assay conditions, the 17 hits 475

produced minor effects on the RFK activity. In agreement, when evaluating the overall 476

CaFADS activity the effect of the VSHs follows a similar trend to that when 477

individually evaluating the FMNAT activity. 478

To assess the effect of VSHs on the growth of different bacteria, we determined their 479

MIC (Table 3 and Table SI 2). Bacterial cells of C. ammoniagenes, C. glutamicum, C. 480

diphteriae, M. tuberculosis, M. smegmatis, Streptococcus pneumoniae, E. coli, Listeria 481

monocytogenes, P. aeruginosa, Salmonella thyphimurium, Staphylococcus aureus and 482

Bacillus spp. were grown in the presence of increasing concentrations of the selected 483

VSHs. Among the VSHs, C2, C5, C6, C18 and C27 produced a detectable inhibition in 484

the growth of C. ammoniagenes, being C5 (MIC = 32 µM) the compound producing 485

the largest antibacterial effect followed by C2 (MIC = 64 µM). Interestingly, C5 is also 486

the hit exhibiting the lowest IC50 for the FMNAT activity of CaFADS (Table 2). The 487

five VSHs exhibiting antibacterial activity against C. ammoniagenes also had activity 488

on the other Corynebacterium species analyzed, being particularly relevant the effects of 489

C1 and C5 on C. glutamicum as well as of C5 and C18 on C. diphteriae. Four of these 490

five compounds, C2, C5, C6 and C27, as well as C3, had also antibacterial effect in the 491

growth of Mycobaterium species, although they were in general less potent. In addition, 492

C18 and C27 produced moderate MIC values (64 µM) for L. monocytogenes growth, C6 493

for S. pneumoniae, and C27 for S. aureus. It is also worth to note the inhibition of 494

Baccillus spp. growth caused by C5 and C27 (MIC = 32 µM). 495

Table 3. In vivo performance of VS hits.

Compound MIC (µM) MIC (µM)
C. ammoniagenes M. tuberculosis

C2 128 256
C3 >256 256
C5 32 128
C6 128 128
C27 128 256

VSHs which minimal inhibitory concentration (MIC) against C. ammoniagenes and M. tuberculosis is lower than 256 µM .

In general, we observed that the VSHs showing inhibitory activity against CaFADS 496

also inhibit the growing of Corynebacterium species. Thus, we can hypothesize that the 497

growing inhibition effect should be caused by the CaFADS inhibition. In addition, those 498

VSHs also inhibit the growing of the Mycobacterium species, supporting CaFADS as a 499

representative model of the FADS of Mycobacterium tuberculosis. The fact that the 500

compounds identified through VS have demonstrated some antimicrobial activity is an 501

important result, even when this antimicrobial activity is moderate; historically, 502

potential enzyme inhibitors identified through in silico or in vitro protein-binding 503
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assays are mostly devoted of any antimicrobial activity, due to their inability to cross 504

the high permeability barrier posed by the bacterial envelope [77]. 505

Finally, we evaluated for the effect of VSHs on eukaryotic cell growth and viability. 506

Compounds C2, C5 and C6 were not cytotoxic in HeLa and A549 cell lines, with IC50 507

(concentration of compounds causing the 50% inhibition of the cellular viability) above 508

the maximal concentration evaluated (512 µM). In contrast, C18 and C27 showed 509

moderate cytotoxicity in both cell lines but only in the 256-512 µM range, with 510

complete viability being retained at lower concentrations. Thus, the compounds do not 511

show high cytotoxic effects against eukaryotic cells, highlighting their potential use 512

against prokaryotic pathogens. 513

Conclusion 514

We developed a VS protocol that is able to find ligands of an enzyme which does not 515

require previous knowledge of ligands or ligand-receptor structures. The protocol is 516

computationally efficient allowing for the screening of large compound libraries with 517

moderate computational resources. The protocol was implemented over CaFADS, an 518

enzyme that is considered a good model for FADSs of bacterial species that cause 519

tuberculosis and pneumonia [40,41]. 520

The VS protocol involves a funnel-like strategy with filtering stages that increase in 521

accuracy. In the first stage, we used the flexi-pharma method [31], a pharmacophore 522

filtering strategy with ligand-free receptor conformations from MD. In the second stage, 523

we used a consensus docking strategy to combine the results from different docking 524

programs using the exponential consensus ranking (ECR) method [43]. In the third 525

stage of MD-ranking, we developed a new score for the ligand’s flexibility using a Morse 526

potential. This score is combined with other scoring functions using the ECR method 527

over the MD ensemble. 528

The protocol was optimized and validated over an experimentally-tested compound 529

library with known ligands of the CaFADS. We then implemented the VS strategy over 530

a unexplored compound library, resulting in a list of 17 compounds that were tested 531

experimentally. Notably, we discovered five compounds able to bind to the CaFADS. 532

One of these compounds shows significant inhibition of the FMNAT activity of 533

CaFADS. In comparison to previous work [41], the computational protocol gives an 534

enrichment of around 8 for the experimental stage. In addition, some of the new 535

compounds show growth inhibitory activity against Corynebacterium, Mycobacterium or 536

Streptococcus species, supporting the use of the integrative VS protocol for the initial 537

stages of drug discovery. 538

Supporting information 539

SI 1 Fig. Enrichment plot for the different ECR-docking strategies. The 540

violet line shows the EP from ECR combination of Autodock4.2, Vina and Smina 541

docking results using the best pose from each program (as was done in ref. 43). We also 542

studied the outcome when using the best pose for each molecule from the different 543

programs: from Autodock4.2 (black), Vina (green) and Smina (blue), then re-scored it 544

with Autodock4.2, Vina, Vinardo and CYscore, and these new scores were combined 545

using an ECR methodology. We find that using the Autodock4.2 pose and re-scoring it 546

with the other programs produces the best outcome. 547

SI 2 Fig. Funnel-like protocol implemented for the Maybridge compound 548

library. The number of filtered molecules is shown on the left. The computational 549
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protocol has several stages: first, a pharmacophore-based VS (flexi-pharma), then 550

ECR-Docking, afterwards two MD stages (that depended on the simulation time) were 551

used for ranking the compounds with a Morse-based score and an ECR combination of 552

scoring functions. In the physico-chemical stage, we assessed a range of properties for 553

the 30 best VS-ranked compounds that relate to their potential drug-likeness (Table SI 554

1), as well as their commercial availability, selecting 17 compounds for the experimental 555

assays. 5 compounds were found to be ligands of CaFADS. 556

SI 3 Fig. Structure of the active VSHs towards CaFADS or the organisms 557

tested. C3, C5, C6, C9 and C18 are able to bind to CaFADS. C3, C5, C6 and C18 558

cause 50% of FMNAT activity inhibition (IC50) at concentration lower than 250 µM . 559

C3, C5 and C18 cause 50% RFK-FMNAT activity inhibition (IC50 at concentration 560

lower than 250 µM. C3, C5, C6, C9, C18 and C26 have FMNAT residual activity < 95% 561

at 250 µM of compound. C2, C3, C5, C6, C7, C9, C18 and C26 have RFK+FMNAT 562

residual activity < 95% at 250 µM of compound. C2, C5, C6 and C27 have MIC values 563

lower than 256 µM against C. ammoniagenes, and or C2, C3, C5, C6 and C27 564

Mycobacterium species. 565

SI 1 Text Description of the different ECR-docking FADS optimization 566

strategies. 567

SI 1 Table. Summary of properties for the CaFADS best ranked VS 568

compounds. The table shows the VS rank, the Zinc and Maybridge Codes, the names 569

and summary of physico-chemical criteria (values at pH 7.0) to evaluate their potential 570

drug-likeness. Preferred criteria values are indicated on the top in green. Favorable 571

criteria for each compound are highlighted in a green background, those in the limit are 572

in a yellow background and those violating the criteria are in a red background. 573

Compounds selected for experimental evaluation as virtual screening hits (VSH) are 574

highlighted in red font in the first four columns. 575

SI 2 Table. Minimal Inhibitory Concentration (MIC) of VSHs against 576

different microorganisms. Compounds were, in most cases, assayed in the 0-256 µM 577

concentration range. In some cases, they were assayed only in the 0-64 µM 578

concentration range, and if no effect was observed in these cases > 64 is shown. Best 579

performing compounds are colored from red, orange, yellow to green. 580

SI 3 Table. Bacterial strains tested for VSH antibacterial activity 581
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