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ABSTRACT 
We demonstrate the use of a Generative Adversarial Network (GAN), trained from a set of over                
400,000 light and heavy chain human antibody sequences, to learn the rules of human antibody               
formation. The resulting model surpasses common in silico techniques by capturing residue            
diversity throughout the variable region, and is capable of generating extremely large, diverse             
libraries of novel antibodies that mimic somatically hypermutated human repertoire response.           
This method permits us to rationally design de novo humanoid antibody libraries with explicit              
control over various properties of our discovery library. Through transfer learning, we are able to               
bias the GAN to generate molecules with key properties of interest such as improved stability               
and developability, lower predicted MHC Class II binding, and specific          
complementarity-determining region (CDR) characteristics. These approaches also provide a         
mechanism to better study the complex relationships between antibody sequence and           
molecular behavior, both in vitro and in vivo. We validate our method by successfully expressing               
a proof-of-concept library of nearly 100,000 GAN-generated antibodies via phage display. We            
present the sequences and homology-model structures of example generated antibodies          
expressed in stable CHO pools and evaluated across multiple biophysical properties. The            
creation of discovery libraries using our in silico approach allows for the control of              
pharmaceutical properties such that these therapeutic antibodies can provide a more rapid and             
cost-effective response to biological threats. 
 

INTRODUCTION 
Antibodies are an important class of biologics-based therapeutics with clear advantages of            
specificity and efficacy.1,2,3 The high cost and long development times, however, present key             
challenges in the accessibility of monoclonal antibody therapeutics.4,5 To quickly respond to            
known and new pathogens and disease, and to provide affordable, high quality treatment to              
patients around the globe, a molecule must be designed for activity; but it must also be made                 
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developable and safe for patients. Adding to their overall cost and process time, many              
antibodies suffer from poor yields or require individually customized processing protocols or            
formulations because their biophysical properties cause them to aggregate, unfold, precipitate,           
or undergo other physical modification during processing into a drug product.6-13 Even with the              
significant amounts of research being put into discovering pharmacologically-active antibodies          
and understanding their physical and biological behavior, they remain challenging to identify for             
given diseases or pathogens and to optimize for developability. 
 
Discovery of therapeutic antibodies frequently involves either display methodologies or B-cells           
isolated from humans or animals that have been exposed to an antigen or a disease target of                 
interest.14,15 Although B-cell isolation and deep sequencing workflows have improved over the            
years in regards to cost, labor, and speed, there are still inherent limitations when considering               
the process as an antibody discovery platform. A sufficient immunological response is required             
from the specific subjects being used, and due to the low number and diversity of subjects,                
there can be insufficient antibody sequence diversity that is expressed. There is also the              
challenge of overcoming B-cell-driven survival against specific epitopes in which therapeutically           
viable epitopes are not utilized by an immune response when they are out-competed by a               
dominant binding epitope, leading to an antibody panel focused on a limited epitope. The library               
approach can provide a search across a wider range of sequence space, but most examples of                
synthetic libraries result in a sequence profile which is quite different from those expressed by               
the human immune system. In both cases, there is little to no ability to control the chemical,                 
biophysical, or biological characteristics of the identified candidates. As a result, discovered            
antibodies frequently have the aforementioned features seriously complicating their         
developability and stability. 
 
A recent synthetic library approach implements random mutagenesis in which specific residues            
are allowed to vary in type following statistical rules for frequency of appearance by location in                
the antibody (commonly known as positional frequency analysis, PFA).16,17,18 PFA and other            
related methods19,20,21 do not take into account any interactions between residues except to the              
extent that such interactions limit the expressibility of the protein. While this widely explores the               
sequence space, it ignores how residue types interact to form stabilizing features such as              
hydrogen or ionic bonds. Random assignment is also done without consideration of the             
characteristics of the final antibody entity, leading to some that have unusual and potentially              
problematic protein surface features. 

 
Another drawback to most synthetic library approaches is that they focus solely on the              
complementary-determining regions (CDRs) of the antibodies. While the CDRs are the most            
critical portion of the antibody variable region in determining binding interactions, many            
Kabat-defined CDR positions are part of the core immunoglobulin (Ig) fold, and many of the               
framework residues can also play an important role in direct antigen binding, stability of the               
molecule, and CDR orientation.6 By limiting mutations to the CDRs, existing libraries neglect the              
possibility of improved bioactivity and developability afforded by some framework mutations. 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.12.024844doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.12.024844


Even with an identified therapeutic antibody, improving that antibody’s production and           
purification behavior through sequence modification can be challenging. While many papers           
have been published trying to develop a predictable connection between an antibody’s            
sequence and/or computed molecular structure and the molecule’s various physical          
characteristics, the connection is elusive as it involves complex nonlinear interactions between            
the constituent amino acid residues.11,22-37 Frequently, such work involves an exceptionally small            
number of molecules, frequently under 200 and often under 50, from a non-diverse set of               
sequences - a small number of parental sequences, several parents with a small number of               
highly-related sequence variants, or a single antibody with mutational scanning. Such           
approaches give information on an individual antibody or small group, but are highly unlikely to               
generalize the complexity of residue interactions to other antibodies. Such understanding           
requires exploration of the wider hyperdimensional space of antibody sequences.          
Computational approaches used to optimize molecular behavior also frequently ignore whether           
the revised molecule remains similar to human antibodies. That assessment is left to expensive              
in vitro studies. 
 
Deep learning offers one route to better capture the complex relationships between sequence             
and protein behavior and has been the focus of many recent publications.38-42 Within the context               
of discovery and libraries, the generative models such as Generative Adversarial Networks            
(GANs)43,44 and autoencoder networks (AEs)45 are of particular interest as they have been             
shown to be viable for generating unique sequences of proteins46,47 and nanobodies48 and             
antibody CDRs49. But these efforts focus on short sequences of proteins or portions of              
antibodies. Use of these approaches in the full antibody sequence space entails a unique set of                
challenges for machine learning models. 
 
Antibodies derive from different germline backgrounds, are much larger in size, and are             
composed of multiple chains, leading to a more complex sequence and structural space. More              
complexity in a machine learning setting generally requires more data to resolve. However,             
sequence data, with associated experimental data, is more limited for antibodies and is far more               
costly to come by than small molecules. 
 
Here, we present the Antibody-GAN, a new synthetic approach to designing a novel class of               
antibody therapeutics which we term “humanoid” antibodies. The Antibody-GAN uses modified           
Wasserstein-GANs50 for both single-chain (light or heavy chain) and paired-chain (light and            
heavy chain) antibody sequence generation. These GANs allow us to encode key properties of              
interest into our libraries for a feature-biased discovery platform. Our Antibody-GAN architecture            
(1) captures the complexity of the variable region of the standard human antibody sequence              
space, (2) provides a basis for generating novel antibodies that span a larger sequence diversity               
than is explored by standard in silico generative approaches, and (3) provides, through transfer              
learning (continued training of a model with a subset of data with specific desirable              
characteristics), an inherent method to bias the physical properties of the generated antibodies             
toward improved developability and chemical and biophysical properties. 
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We demonstrate the GAN library biasing on such properties as a reduction of negative surface               
area patches, identified as a potential source of aggregation, thermal instability, and possible             
half-life reductions,51 and away from MHC class II binding, which may reduce the             
immunogenicity of the generated antibodies.52-56 We show, additionally, library biasing to a            
higher isoelectric point (pI) to reduce aggregation and prevent precipitation in therapeutic            
formulations, and towards longer CDR3 lengths which can increase diversity and has been             
known to create more effective therapeutics for a class of targets.57 
 
To demonstrate the viability of the Antibody-GAN to generate humanoid antibody sequences,            
the GAN was used to generate a proof-of-concept validation library of 100k sequences from 4               
germline subgroups. These sequences were generated using two single-chain GANs (each           
trained on a set of 400,000 heavy or light chain sequences from human-repertoire antibodies).58              
The GAN sequences were expressed as antibody antigen binding fragments (Fabs) in phage.             
Two of the less-represented germline subgroups were optimized for germline agreement using            
transfer learning. From this initial library, we present the sequences, structure, and biophysical             
properties of two antibodies with divergent surface patch features which were expressed in             
stable Chinese hamster ovary (CHO) cells. 

RESULTS 
Generative Adversarial Networks for Antibody Design 
The general Antibody-GAN architecture is depicted in Figure 1A in which a set of real training                
variable-region (Fv) antibody sequences are fed to a discriminator of the GAN along with the               
output of the generator. The generator takes a vector of random seeds as input, and outputs a                 
random synthetic antibody sequence. During training, the discriminator is progressively trained           
to attempt to accurately distinguish between the real and the synthetic sequences and the              
generator is progressively trained to produce synthetic sequences that cannot be distinguished            
from the real human repertoire sequences in the training set. After initial training of the               
Antibody-GAN from a general training set, transfer learning can be used to bias the GAN               
towards generating molecules with specific properties of interest. The details of the underlying             
neural network architecture are given in the supplementary information (Figure S1). 
 
As a demonstration of the general architecture and training approach, an Antibody-GAN was             
trained using a set of 400,000 human-repertoire sequences, per chain, randomly selected from             
the Observed Antibody Space project (OAS).58 Prior to training, the sequences were all             
structurally aligned using the AHo numbering system which enables direct comparison of            
residues at the same structural position across the dataset.59 This greatly simplifies the             
relationships that the GAN must capture both for generation and discrimination. Additional            
training details are provided in the methods section. 
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Figure 1 GAN-generated human antibody sequences. A) Schematic representation of the           
Antibody-GAN architecture; B) Representative percent germline agreement for framework residues from the training             
(OAS) and unbiased GAN (GAN) for 10,000 generated sequences per set. All PFA sequences have 100% germline                 
agreement (green dashed-line); C) Representative diversity in heavy chain CDR3, as Levenshtein distance             
calculated within sets of 10,000 sequences from each of: the OAS training set, GAN-generated molecules, and                
PFA-generated molecules; D) Quality and diversity of heavy chain CDR3 as captured in the scores of a principal                  
component analysis (PCA). The GAN set shows more similar density and coverage in the PCA space to human                  
repertoire (OAS) than PFA; E) the KL-divergence of each principal component for GAN and PFA, compared to OAS,                  
shows lower divergence of GAN from OAS than PFA; F) The independent distributions of PC1 and PC2 of GAN and                    
PFA compared to OAS again show GAN reproducing human repertoire better than PFA. 
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In Figure 1B, sequences from the Antibody-GAN (GAN), the OAS training set, and a set of                
sequences with 100% germline framework and PFA-generated CDRs (PFA) were compared by            
selecting a random set of 10,000 sequences, all classified as germline HV3-30, from the training               
set and all three synthetic sets. These were evaluated on the distribution of percent germline               
agreement of the framework residues. Within the human repertoire, deviations from framework            
germline agreement arise from the sequences having undergone somatic hypermutation during           
B-cell maturation. Molecules from the Antibody-GAN model (GAN) deviate from germline much            
like the OAS. Note that the PFA set uses an exact germline framework; as such, the germline                 
agreement is always 100%. 
 
The diversity of the heavy variable (HV) CDR3 was used as an indicator of the diversity of                 
binding paratopes within a given set and was assessed using (1) pairwise Levenshtein             
distances calculated from only the HV CDR3 residues in all three sets (Figure 1C), and (2) the                 
scores from the first two components of a principal component analysis (PCA) model on the               
aligned HV CDR3 sequences from the OAS, GAN, and PFA data (Figure 1D) (See              
supplementary Figures S2 and S3 for kappa variable (KV) germline agreement, CDR3            
Levenshtein distance, and PCA plots). The distribution of pairwise Levenshtein distances           
between HV CDR3 sequences across the three sets of antibodies are shown in Figure 1C ,               
where a distance of 0 indicates identical sequences and larger values indicate more dissimilar              
sequences. The OAS set in general shows the greatest diversity in HV, however, the GAN and                
PFA sets have similar diversity to the main peak in OAS, with the GAN exhibiting slightly larger                 
diversity than PFA. 
 
The PCA scores biplots in Figure 1D show that the distribution of sequence variability in the                
OAS human repertoire set (left plot) is more similar to those seen in the GAN set (middle plot),                  
than the distribution in the PFA set (right plot), which diverges significantly from the other two                
sets, particularly in the high-density regions of the plots. The explained variance of PCA              
components 1 and 2 are 10% and 4%, respectively. While these are only small portions of the                 
overall variance in the HV CDR3, they do represent the largest covarying relationships between              
the HV CDR3 residues and indicate that the Antibody-GAN approach captures significant            
relationships in human repertoire HV CDR3 that the PFA approach does not. The             
KL-divergence is a measure of how different two distributions are from each other, with a value                
of 0 indicating identical distributions and values tending away from 0 indicating more divergent              
distributions. The KL-divergence of the distribution over PC1, the component that captures most             
of the variance in CDR3, for the OAS and GAN sets is 0.57 ( Figure 1E ). The KL-divergence of                  
PC1 for the OAS and PFA sets is 1.45. Figure 1F shows these distributions for PC1 and PC2 for                   
both the GAN and the PFA sets, relative to OAS. The PFA set shows notably more divergence                 
from the OAS and GAN sets and raises the question of how well the PFA approach reproduces                 
human paratopes, as well as the diversity of these paratopes. 
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Bias and Control of Antibody Discovery Libraries 
Our generative, deep-learning approach to humanoid antibody library generation not only           
results in antibody libraries that are more human-like than existing synthetic library approaches,             
but it also allows us to control the features of our libraries. Figure 2 shows the distributions of                  
several properties for different libraries as they compare to OAS, with each distribution             
containing a representative sample of 10,000 sequences. A subset of these libraries were             
generated using a deep-learning technique known as transfer learning, which biases networks            
from the general Antibody-GAN-learned properties towards specific features of interest, such as            
those shown in Figure 2 . The corresponding heatmap shows the difference, in percent of              
sequences in a given bin, between each library and OAS. 
 
Figure 2A demonstrates biasing on the length of the primary binding paratope, CDR H3, of an                
antibody sequence. We compare 4 libraries to OAS: the baseline Antibody-GAN (GAN) from             
Figure 1 , Antibody-GANs transfer learned to small (GAN -C) and to large (GAN +C) CDR H3                
lengths, and the PFA-generated library (PFA) from Figure 1 . The baseline Antibody-GAN library             
shows a total 27% difference from OAS in its CDR H3 distribution. Though still significantly               
different, it more closely reproduces the OAS distribution over CDR H3 than PFA (38%              
difference) or the other two intentionally biased libraries. The GAN -C library was generated by               
a model transfer-learned on a small subset of about 1,000 sequences from the GAN library               
which had CDR H3 lengths of less than 12 and resulted in a library with 68% shift to shorter                   
CDR H3 sequences. The GAN +C was similarly transfer-learned on approximately 1,000            
sequences from the GAN library which had CDR H3 lengths of >22, creating a very significant                
89% bias towards longer CDR H3 sequences (Figure S9). By creating antibodies with longer              
CDRs, and therefore more residues to vary, the GAN +C library also inherently biases towards               
diversity. Antibodies with long CDR H3s have also been shown to have better success as               
therapeutics for diseases such as human immunodeficiency virus (HIV),57 and may be useful as              
a discovery sub-library for targets that may require such long, exposed paratopes. 
 
Figure 2B shows biasing on immunogenicity of the heavy chain (see Figure S4 for light chain                
biasing) using a major histocompatibility class II (MHCII) binding score derived from in silico              
peptide fragment-MHCII binding affinity predictions. We use an in-house machine learning           
predictor for peptide-MHCII binding (Figure S5) similar in effect to the binding prediction tools              
provided by the Immune Epitope DataBase (IEDB).52,54,55,56,60 Peptide-MHCII binding is the first            
step in the T-cell-mediated immune response and the clearest handle available for practically             
mitigating immunogenicity risk.7,22 The GAN library, with only a 2% difference from OAS in              
predicted immunogenicity, is statistically indistinguishable (at p<0.0001) from the human          
repertoire training set, whereas PFA shows a statistically significant 11% shift towards higher             
immunogenicity. The GAN -I library, using a similar transfer learning approach to the one              
described above, shows a total 76% shift to lower predicted MHCII binding than human              
repertoire. Reduced MHCII binding is presumed to reduce the likelihood of immunogenic            
response as the binding is a necessary first step in that response. The resulting biased GAN -I                 
should generate molecules with lower chance of immunogenic response. This large bias to             
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sequences of lower immunogenicity is a significant bias towards higher quality antibody            
therapeutics, and could result in a library of safer treatments for patients. 
 
The extent to which this biasing corresponds to lower immunogenicity will largely depend on the               
quality of the model used to choose the transfer samples. As a control condition, the GAN +I                 
library shows 49% bias towards increased MHCII binding. While such a higher-immunogenicity            
biased model would not usually be of interest in developing a library, it could provide a means to                  
generate molecules to help validate the underlying MHCII binding model, yet again highlighting             
the utility of a GAN method as a tool to explore molecular and therapeutic space. 

Figure 2 Bias and control of Antibody-GAN library features using transfer learning. A)             
Representative heavy-chain CDR3 length, as compared to OAS, from different sets of 10,000 sequences each: the                
unbiased Antibody-GAN (GAN), Antibody-GANs transfer learned to small (GAN -C) and to large (GAN +C) CDR H3                 
lengths, and PFA-generated (PFA) molecules; B) Representative predicted heavy chain MHCII binding, as compared              
to OAS, for the unbiased Antibody-GAN (GAN), Antibody-GANs transfer learned to lower (GAN -I) and to higher                 
(GAN +I) predicted MHCII binding, and PFA-generated (PFA) molecules; C) Representative calculated isoelectric             
point (pI) on the Fv across both heavy and light chains, as compared to OAS, for the unbiased Antibody-GAN (GAN),                    
Antibody-GANs transfer learned to low (GAN -P) and to high (GAN +P) pI, and PFA-generated (PFA) molecules; D)                  
Representative maximum negative patch size across both heavy and light chains, as compared to OAS, for the                 
unbiased Antibody-GAN (GAN), Antibody-GANs transfer learned to small (GAN -N) and to large (GAN +N) max                
negative surface patch size, and PFA-generated (PFA) molecules. 
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For antibody therapeutics, the isoelectric point (pI, the pH at which the molecule is neutral) is a                 
key measure of developability since a pI near the formulation pH may lead to high viscosity and                 
aggregation or precipitation.61-64 A slightly acidic pH generally results in a higher overall charge              
leading to more recent formulations centered around pH 5.5.65 To remain stable in solution,              
therapeutic antibodies would ideally need to have a pI of greater than 8.5 for the overall                
molecule. The GAN library provides a distribution of pI for the Fv portion of the antibody that is                  
statistically indistinguishable from OAS (Figure 2C), and the PFA library creates a small 11%              
bias towards higher Fv pI. We show, with the GAN -P library, that we can bias the library with a                    
79% shift to lower Fv pI via transfer learning. The GAN +P library, however, shows a 43%                 
increase in sequences with a calculated Fv pI greater than 9, resulting in likely a significant bias                 
towards developability. 
 
Large surface patches in antibody therapeutics have been linked to developability issues such             
as aggregation, thermal instability, elevated viscosity, and increased clearance rate,23,33,37 but           
also to improvement of specificity,31 particularly when the patches are related to charge. As              
such, biasing a library towards larger or smaller patches might have beneficial effects. They also               
serve as an example of generic biasing models towards desired structural properties. Figure 2D              
shows biasing on the maximum negative surface patch area of a molecule, calculated using              
structure-based homology modeling. Large negative patches have been shown to increase           
antibody viscosity at high therapeutic concentrations.23,26 Once again, the GAN library is            
statistically equivalent to OAS in maximum negative patch size with only a 3% difference,              
demonstrating the model’s ability to capture human repertoire. The PFA library maintains a             
small but significant 7% shift to lower negative surface patch area. The GAN -N library shows                
that we can intentionally shift our library towards smaller negative surface patches and away              
from known developability issues with a 31% bias, as shown in GAN -N. The GAN +N library                 
shows that we can also shift in the other direction with a 36% bias towards larger negative                 
patches. Structure-based properties like surface patch can be more difficult to bias than             
sequence-based ones due to (1) the non-Gaussian distribution of the property and (2) the              
added layer of abstraction and complexity away from sequence. These issues can likely be              
resolved by increasing the number of sequences in the transfer learning training set by, for               
example, iteratively training and sampling. For more complex properties layers can be added to              
the model itself during transfer-learning. 
 
 
Combinatorial Library Design and Expression of Diverse Germlines 
The synthesis of a diverse, de novo antibody discovery library comprising specific sequences             
can be costly. Such specific sequence targeting cannot be done with standard codon             
degeneracy approaches. To greatly reduce this cost, we used a chain-oriented approach to our              
library design, combinatorially combining heavy and light chains that are created with specific             
amino-acid sequences designed by the Antibody-GAN rather than designing each Fv           
individually. The Antibody-GAN architecture (Figure S1) is designed to be modular. After            
training with paired-chain Fv sequences, the heavy chain generator and light chain generator             
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can be separately used to generate single-chain sequences, such that any independently            
generated heavy chain should pair with any independently generated light chain to create a full               
Fv which maintains the library’s intended features. All Antibody-GAN and transfer-learned           
Antibody-GAN libraries in Figure 2 were generated from models trained in this manner. 
 
It is also possible to split apart the Antibody-GAN model, initially, into single chain models.               
These must be trained on single chain sequences and may be useful when creating diverse               
libraries of varying germlines, when there is no property of interest associated with the full Fv for                 
which we want to bias. Because there are few public data sets providing developability,              
expression, stability, and other properties on paired-chain sequences, we choose to synthesize            
a naive, unbiased initial discovery library to express in phage. Our goal for this first library is to                  
reproduce human repertoire. In doing this, we will also create a data set which can greatly                
inform biasing of future libraries. As such, the subsequent GAN libraries and molecules were              
generated using the single chain version of the Antibody-GAN. 
 
Figure 3A shows the distribution of the 15 most represented heavy chain germlines in the OAS                
training set. Figure 3B shows the same for kappa light chain. For our initial library, we selected                 
heavy chain germlines IGHV3-30 and IGHV1-2 to pair combinatorially with light chain germlines             
IGKV3-20 and IGKV1-39. The number of training set examples for IGHV1-2 and IGKV1-39 is              
lower than for the other two germlines, such that there are not enough examples to train a                 
model of sufficient quality. The problem is compounded for other germlines with even fewer              
training examples. This can be remedied again by using transfer learning. 
 
Figures 3C and 3D show the representative distributions of percent germline agreement in             
framework to HV3-30 and KV3-20, respectively. Because these two germlines are           
well-represented in the OAS training set, the models generate sequences of sufficient            
framework quality. Figure 3E and 3F, however, show more divergence from OAS in framework              
quality for the less-represented HV1-2 and KV1-39 germlines, respectively, when generated by            
a base model without transfer learning. Only when the model is transfer-learned, allowed to              
continue training on only the germline subgroup of interest, is it then able to generate               
sequences with framework quality more closely matching OAS for HV1-2 and KV1-39. Figure 3              
shows the final synthetic GAN sub-libraries for each single-chain germline. 
 
While a full-scale production library might contain 10,000 or more individual single-chain            
sequences from each germline combined combinatorially to form billions of molecules, a            
proof-of-concept miniature library was created by selecting 158 sequences from each of these             
four germlines and combining them combinatorially to assemble a library of around 100,000             
total sequences. The tick marks in each distribution in Figure 3 show the germline agreement of                
the sequences selected for this example library. 
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Figure 3 Transfer learning on less-represented germlines for a diverse library. A) Distribution             
of the 15 most represented heavy chain germlines in the OAS training set, with arrows indicating germlines used for                   
the test library; B) Distribution of the 15 most represented kappa chain germlines in the OAS training set; C)                   
Representative percent germline agreement for HV3-30 framework residues from the OAS and the single chain               
HV3-30 GAN; D) Representative percent germline agreement for KV3-20 framework residues from the OAS and the                
single chain KV3-20 GAN; E) Representative percent germline agreement for HV1-2 framework residues from the               
OAS and the single chain HV1-2 GAN, before (pink) and after (orange) transfer-learning; F) Representative percent                
germline agreement for KV1-39 framework residues from the OAS and the single chain KV1-39 GAN, before (pink)                 
and after (orange) transfer learning. 
 
 
Figure 4 shows Fab fragment display levels for our 4 germline-paired sub-libraries, each             
containing ~25,000 GAN-generated sequences. Display levels were estimated by capturing          
serial dilutions of purified phage on ELISA plates coated with anti-human Fab and detecting with               
anti-M13 antibodies conjugated to HRP. Figure 4A shows the average display levels,            
normalized for total phage concentration, of IgG Fab from each of the sub-libraries in polyclonal               
phage. A slight bias for higher expression can be seen at higher concentrations for those               
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germline sub-libraries which contain the KV1-39 sub-library. Whether or not this difference is             
actually significant and related to higher tolerability of KV1-39 sequences, or represents            
differential binding of the anti-human Fab capture antibody used in the ELISA, is an area of                
future studies. 
 
To confirm the expressed Fab are indeed the designed, de novo sequences, we selected and               
sequenced ~30 colonies expressed in monoclonal phage from each of the 4 sub-libraries.             
Figure 4B presents a variable-region clading of the selected sequences from the two             
sub-libraries expressing KV3-20 light chain to the 158 GAN-designed KV3-20 sequences. This            
shows primarily 1) our selection of colonies was random and provides good coverage of the               
space of designed sequences and 2) only a small fraction of the expressed sequences              
contained any amino acid mutations relative to the GAN-designed sequences; most matched            
our synthetic designs exactly. Figure 4B also shows the optical density (OD450) for each of               
these phage-expressed sequences and whether the particular sequence was paired with a            
heavy chain from the HV3-30 library. Phage library sequences that are not marked as being               
paired with a heavy chain from the HV3-30 library were paired with a heavy chain sequence                
from the HV1-2 library. 
 
Figure 4C presents a similar clading of the selected sequences from the two sub-libraries              
expressing HV3-30 heavy chain. The same observations can be made with this set. The              
selected sequences span the design space well, and show even fewer amino acid mutations              
and more exact matches to the de novo GAN-designed sequences than the KV3-20 set. Again,               
expression is shown for the sampled colonies and it is noted whether those sequences were               
paired with the KV3-20 light chain. Phage library sequences that are not marked as being paired                
with a light chain from the KV3-20 library were paired with a light chain sequence from the                 
KV1-39 library. (See Figures S6 and S7 for similar clading on HV1-2 and KV1-39 sets). 
 
A further subset of antibodies were selected from the HV3-30/KV3-20 sub-library to be 
expressed in stable CHO pools for biophysical analysis. Figure 4D presents the 3D structure of 
two such GAN antibodies selected, in particular, for their interesting patch properties. The 
molecule mAb GAN-1285 was selected for its very large negative surface patch of ~600 Å2, 
shown in red. Molecules with such a large maximum negative patch are relatively uncommon in 
the base Antibody-GAN distribution (Figure 2D), but are interesting to investigate for 
developability purposes. The molecule mAb GAN-1328, by contrast, has a maximum negative 
surface patch of ~ 140 Å2. The positive and hydrophobic surface patches for both molecules are 
marked in blue and green, respectively. Figure 5 presents the aligned sequences of these two 
selected GAN-derived antibodies, showing framework mutations from germline. 
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Figure 4 Combinatorially-assembled GAN sequences expressed in phage and CHO. A)           
ELISA showing Fab expression of 4 GAN sub-libraries from polyclonal phage. B) Clading of variable region protein                 
sequences of select phage colonies expressing the KV3-20 library as determined by DNA sequencing. Orange               
highlighting indicates degree of expression level of selected Fabs as determined by ELISA. Sequences that were                
paired with HV3-30 heavy chains(●) are as marked, otherwise they were paired with HV1-2 heavy chains. Sequences                 
with single amino acid substitutions(✦) or multiple amino acid substitutions(✤) as compared to their intended GAN                
design are as marked. C) Clading of variable region protein sequences of select phage colonies expressing the                 
HV3-30 library as determined by DNA sequencing. Magenta highlighting indicates degree of expression level of               
selected Fabs as determined by ELISA. Sequences that were paired with KV3-20 light chains(●) are as marked,                 
otherwise they were paired with KV1-39 light chains. Sequences with single amino acid substitutions(✦) or multiple                
amino acid substitutions(✤) as compared to their intended GAN design are as marked. D) 3D homology structure                 
model of two GAN molecules expressed in CHO. Negative surface patches are shown in red, positive patches in                  
blue, and hydrophobic patches in green. 
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Biophysical Validation of CHO-Expressed GAN Antibodies 
For the purpose of validation of our GAN approach and to interrogate the interesting property of                
maximum negative surface patch, we present the biophysical data of mAb GAN-1285 and mAb              
GAN-1328 (Figures 4D, 5) after stable CHO expression and purification. Figure 6 shows the              
behavior of these two antibodies across four key assays in our platform: differential scanning              
fluorimetry (DSF), self-interaction nanoparticle spectroscopy (SINS), polyethylene glycol (PEG)         
solubility, and size-exclusion chromatography (SEC). These assays are commonly used to           
assess the stability and developability of therapeutic antibodies.66,67 

 

 

Figure 5 Sequence alignment of select GAN antibodies. A) Light chain sequence alignment to              
IGKV3-20 framework of two GAN molecules expressed in CHO, with faded consensus sequence; B) Heavy chain                
sequence alignment to IGHV3-30 framework of two GAN molecules expressed in CHO, with faded consensus               
sequence. Deviation from the germline framework, mimicking somatic hypermutation, can be seen as well as               
differences in CDR regions for both the light chain and heavy chain sequences in both molecules. 
 
 
DSF assesses the temperature at which certain regions of the antibody begin to unfold. More               
stable, and thus more developable antibodies tend to have one or more regions unfold at higher                
temperatures and have a higher first-unfolding transition temperature. Figure 6A shows the            
DSF results for mAb GAN-1285 and mAb GAN-1328, as well as a platform control antibody,               
MS-43. The identical constant regions of these three molecules all show an unfolding event at               
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around 72 ℃, presumed to be the IgG CH2 region. The molecule with a very large negative                 
surface patch, mAb GAN-1285, shows much lower thermal stability, with an initial unfolding             
event near 60 ℃. This is consistent with the notion that negative surface patches are known to                 
be related to thermal instability. 
 

 
Figure 6 Biophysical properties of select GAN antibodies. A) Differential scanning fluorimetry            
(DSF) results for 3 CHO-expressed antibodies, two GAN-generated molecules mAb GAN-1285 (large negative patch)              
and mAb GAN-1328 (small negative patch), and a platform control MS-43; B) Self-interaction nanoparticle              
spectroscopy (SINS) for the two GAN antibodies, a positive platform control, MS-63, and a negative               
phosphate-buffered saline (PBS) control, each with three replicates and mean results as bolded lines; C)               
Polyethylene glycol (PEG) solubility results, with replicates (mean results represented by bolded lines), for the two                
GAN antibodies and the positive platform control D) Size-exclusion chromatography (SEC) results of high molecular               
weight (HMW), main antibody, and low molecular weight (LMW) species for the two GAN antibodies and a platform                  
control. 

 
The SINS assay (Figure 6B) is commonly used to interrogate whether a molecule will self               
interact, leading to issues in the manufacturing process as well as possible viscosity and              
filterability issues. Interestingly, the two GAN molecules exhibited the same SINS profile as the              
PBS negative control, indicating a low propensity to self interact, particularly compared to the              
positive control molecule, MS-63, known to have high self-interaction behavior. 
 
The remaining assays, PEG solubility (Figure 6C) and SEC (Figure 6D), show that both              
antibodies are reasonably soluble, and display relatively low amounts of high molecular weight             
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(HMW) formation, although there are potentially significant differences between the two           
antibodies in both assays. 

DISCUSSION 
We describe here a new class of de novo human antibodies derived in silico, which we refer to                  
as “humanoid”, owing to their explicit requirement that generated sequences must mimic human             
antibody sequence patterns. While antibodies have excellent antigen specificity and have often            
been adapted as scaffolds for therapeutic applications, B-cells do not undergo selective            
pressure in vivo to produce antibodies which have ideal biotherapeutic characteristics. To            
reduce the cost of development and greatly increase the time-to-response for known or new              
diseases and pathogens, a discovery library must contain therapeutic antibodies with desirable            
features such as: expressibility in a host system, suitability for common protein manufacturing             
processes while achieving high product purity and yield, and exhibiting high stability during             
long-term storage conditions. In addition, these therapeutic libraries must also contain           
antibodies exhibiting in-use characteristics such as low viscosity for injectability at high            
concentration, long elimination half-lives to reduce dosing frequency, and high bioavailability for            
conservation of the injected dose. Here, we have described an Antibody-GAN approach to the              
in silico design of monoclonal antibodies which retain typical human repertoire characteristics            
such as diversity and immunogenicity, while raising the possibility of biasing the libraries in silico               
to achieve other desirable biotherapeutic features. 
 
We experimentally validate our in silico approach via phage Fab-display of an initial library of               
~100,000 GAN sequences and present the biophysical properties of two example GAN            
antibodies expressed in CHO. While the biophysical data of the CHO-expressed molecules are             
not sufficient to indicate any causal effect of the structural differences on the biophysical              
properties, they show that the molecules are folding appropriately and that they exhibit expected              
biophysical properties. These results show that the Antibody-GAN is capable of enabling study             
of large, truly diverse sets of thousands of full-length secreted antibodies, and hundreds of              
millions of antibody Fabs on phage for biophysical properties. These will provide a real basis to                
identify causal effect, or lack thereof, of structural properties and sequence on biophysical             
properties - and that data has the potential to feed in silico predictive models that are truly                 
generalized across antibodies. 
 
Ongoing research will be needed to determine precisely which antibody sequence, structure, or             
biophysical features will bias antibody libraries for developability, quality, and efficacy, as there             
are many nonlinear pathways for antibody optimization. Existing data sets which interrogate            
antibody therapeutic developability consist of, in a few cases, hundreds of molecules, but more              
commonly on the order of tens of antibodies. Deriving from sequence, or even structure, such               
complex properties as the viscosity or the chemical or thermal stability of an antibody will require                
far more than hundreds of example molecules. Until now, protein scientists have had to rely on                
previously-discovered antibodies and their nearby variants, which provide a very small random            
sampling of the true antibody space. The Antibody-GAN allows us to explore the human              
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antibody space in a rational way. Using transfer learning to bias GANs for given properties,               
either those calculated on structures from homology modeling, or measured on physically            
expressed antibodies, we can now begin to understand such questions as how engineering for              
developability affects key properties like affinity and bio-availability. This provides a mechanism            
for in silico and in vitro generation of a much wider range of sequences with intentional biases                 
forming deep, rich training sets for human antibody research. 
 
Recent advances in the protein assay space now provide ultra high-throughput methods in             
phage or yeast to express and interrogate, for example, the stability of molecules,68 and many               
more will come. We can now rationally design and create vast experimental antibody data sets               
for those and future methods, and begin to understand the properties of a developable and               
effective therapeutic drug. 
 
Our Antibody-GAN approach, as a training-set generation tool, will greatly expand our            
knowledge of antibody design and behavior. It will also change the way we create therapeutics,               
by better reproducing properties of in vivo-derived antibodies with characteristics that can be             
tuned to make them better suited as biologics, for production and treatment. Humanoid             
discovery libraries generated in this way, will provide higher quality treatment and a more rapid               
and cost-effective response to biological threats and disease targets. 
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METHODS 
 

Training Set Data Sources 
Data for the training sets was derived from the Observed Antibody Space (OAS) repository.58 
Raw nucleotide sequences were automatically translated, classified, and structurally aligned 
using in-house software (Abacus™). The AHo structure numbering system59 was used for 
structural alignments of the variable regions. 

 
To create the training sets, variable regions were first filtered to remove any sequences which 
were not classified as human variable regions, by our in-house software Abacus™, and then 
further cleaned to remove those sequences which contained stop codons, truncations, or 
insertions. Any sequence which had less than 85% agreement to its closest germline was also 
removed. 
 
For any paired-chain model, the distinct sequences whose closest germline belonged to the 
heavy and light germline frameworks of interest were then extracted. These two subsets were 
randomly sampled and combined during training to create paired sequences. 
 
For any single-chain model, the initial training set contained all represented germlines. If 
transfer learning was necessary, it was done on an extracted set of sequences whose closest 
germline belonged to the specific germline of interest. 
 
Antibody-GAN Development and Training 
The Antibody-GAN code was developed in Python. The Keras and Tensorflow deep-learning 
libraries were primarily used to build and train the Antibody-GAN. The Pandas and Numpy 
libraries were used to handle any data and training set construction. Other public libraries that 
were used in the development and analysis of the Antibody-GAN include: Sklearn, Scipy, and 
Seaborn. 
 
The architecture of the Antibody-GAN is based on the Wasserstein-GAN (WGAN) (with gradient 
penalty) architecture,50 and therefore consists of a generator and a discriminator, which in the 
WGAN architecture is commonly referred to as a critic. The single-chain network generator 
(Figure S1A ) takes as input a noise vector of size 296. This vector is fed into a dense layer, 
followed by 3 up-sampling and 2D convolutional transpose layers, and a final SoftMax layer to 
produce a 2D array of size 148x22. This 2D array corresponds to a one-hot-encoded 
representation of 148 residues and 22 possible amino acids (including deletions and Xs) of a 
light or heavy chain in an antibody sequence. Antibody sequences aligned by AHo numbering 
have 149 residues in either chain; to make the network structure simpler, we chose to remove 
one residue, which appears relatively constant in human repertoire, from each chain during 
encoding. When decoding, we add this constant residue back in. The discriminator, or critic, 
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takes as input the same 148x22 encoding of an antibody chain and passes it through two 2D 
convolution layers, followed by a flattening, dense layer and a single-node linear output. 
 
The paired Antibody-GAN architecture (Figure S2B) is similar to the single-chain version, 
except that there are two generators with the same architecture (one per chain). The outputs of 
each independent-chain generator are concatenated into a 296x22 one-hot-encoded 
representation of an antibody sequence with both heavy and light chains. It is possible to extend 
the architecture when training or transfer learning to complex properties that require nonlinear 
interaction between the two chains. The paired-GAN critic takes as input a 296x22 
one-hot-encoded representation of a paired-chain antibody sequence and maintains a similar 
architecture to the one described above. 
 
Figure S1C  shows the loss of the generator as well as the discriminator (critic) on fake 
(generated) and real (training set examples), during training of the single-chain HV3-30 GAN 
(using a batch size of 128). Figure S1D shows the quality assessed by germline framework 
agreement over training epochs for this model. Training ends when the generated sequences 
begin showing sufficient quality. 
 
Human monoclonal antibodies have been shown to have higher variability in the heavy chain 
than the light chain (Figure 1C and Figure S2B ). This may lead to asynchronous optimization of 
the light chain generator and the heavy chain generator during training in the paired 
Antibody-GAN, leading to generated heavy chains of higher quality than the light chain. This can 
be resolved by freezing the layers of the heavy chain generator, once it has reached a state of 
creating sequences of sufficient quality, and continuing training on the network until the light 
chain generator has reached a desired quality. 
 
PFA Set Creation and OAS Set Selection 
The IGHV3-30/IGKV3-20 PFA-based sets used in Figures 1 and 2 were created using the 
IGHV3-30 and IGKV3-20 training sets extracted from the OAS, which consisted of ~250,000 
and ~150,000 sequences respectively. The 100% germline framework for IGHV3-30 was used 
as a constant framework for all heavy chain PFA sequences, and the 100% IGKV3-20 germline 
framework was used for all light chains. Each residue in the CDRs (CDR1, CDR2, and CDR3) 
were then generated using positional frequency analysis; sampling randomly from a distribution 
representing the frequency of amino acids in the training set, for any given position. 10,000 
heavy-chain sequences and 10,000 light chain sequences were created in this manner and then 
randomly paired together to create a set of 10,000 sequences with full variable regions. 
 
The OAS sets from Figures 1  and 2 were created by randomly downsampling 10,000 
sequences from each of the IGHV3-30 and IGKV3-30 training sets and then pairing together to 
create a set of 10,000 sequences with full variable regions. 
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CDR3 PCA 
To perform the PCA analysis, described in Figure 1 , the aligned CDR3 of a given antibody was                 
one-hot encoded into a vector representation. A 2-component PCA model was built, using the              
sklearn library, on those one-hot encoded vectors from all sequences of the OAS set, the PFA                
set, and the base GAN set (totaling 30,000 samples). Heavy chain and light chain models were                
built and trained separately. 
 
Antibody-GAN Biasing Sources 
CDR H3 
Our in-house software, Abacus™, was used to assess the length of the CDR H3 from any                
training set, GAN-generated set, or PFA-generated set. 
 
Calculated Immunogenicity 
MHCII is a polymorphic transmembrane protein that binds and presents fragments of foreign,             
extracellular proteins to T-cell receptors (TCRs) to initiate an adaptive immune response. The             
MHCII binding score reported in Figure 2B is a composite metric intended to quantify the               
immunogenicity risk in a sequence based on whether its constituent peptides are predicted to              
bind strongly and promiscuously to MHCII proteins. The quality of this metric depends on the               
selection of an accurate peptide-MHCII binding predictor and a reasonable method for            
aggregating predictions across the peptide fragments in a sequence and across allelic variants             
of MHCII. 
 
We developed a machine learning algorithm for peptide-MHCII binding affinity prediction,           
trained on the peptide-MHCII binding affinity data set used to train NetMHCIIpan-3.2 and             
reported by Jensen et al.54 Several machine learning algorithms have been developed that             
outperform traditional matrix-based approaches to peptide-MHCII binding affinity prediction,         
including NetMHCII-pan and, more recently, MARIA.40,54 We use our in-house MHCII binding            
predictor for ease of integration with our other sequence analysis tools and based on favorable               
accuracy comparisons with published benchmarks (not shown in the present report). Figure            
S5A shows that predictions from our models are generally correlated with the “IEDB             
recommended” algorithm for peptide-MHCII binding prediction.60 
 
To calculate a sequence MHCII binding score, we first break the sequence into each of its                
constituent 15mer peptide fragments (sliding window of 15, stride of 1). For each 15mer, we use                
allele-specific models to predict the binding affinity to 8 common allelic variants of MHCII (those               
encoded by HLA alleles DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, DRB1*0801,         
DRB1*1101, DRB1*1301, and DRB1*1501). This set of alleles was also used in the pioneering              
MHCII binding risk-reduction work of de Groot and Martin.7 We convert the binding affinities into               
z-scores for each allele using the mean and standard deviation of affinities predicted for a large                
reference set of 15mers randomly selected from the human protein sequences stored in             
UniProt.69 
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We take the median z-score across alleles for each 15mer, and sum the positive median               
z-scores across the sequence to get the final MHCII binding score. The median is an               
appropriate aggregation because a peptide fragment that binds several MHCII variants poses            
an immunogenic risk to a larger population of patients than a fragment that binds to only one.                 
Dhanda et al., creators of the protein deimmunization engine on the IEDB website, also              
aggregate MHCII binding scores across alleles using the median.53 We ignore negative scores             
in our sum across the sequence because peptides that certainly don’t bind to MHCII (large               
negative scores) should not offset peptides that bind MHCII tightly (large positive score). Figure              
S5B shows the fraction of putative MHC binding peptides for all unique 15mers in each               
sequence set described in Figure 2B. The low-immunogenicity set (GAN -I) has fewer             
MHCII-binding peptides than other sets, suggesting the GAN learns which 15mers to avoid             
regardless of our sequence-score abstraction. 
 
Structure Modeling, Calculated Isoelectric Point (pI), and Negative Patch Surface Area 
Structure models were calculated as Fab structures using the antibody modeling tool within the              
Molecular Operating Environment (MOE, Chemical Computing Group, Montreal, Canada). Fab          
structures were used rather than Fvs in order to generate more accurate Fv surface patches in                
the presence of constant domains. The pIs were calculated using the Ensemble Isoelectric Point              
method in the Protein Properties tool within MOE called as an SVL method. The electronegative               
patch sizes were calculated using the Protein Patches method as an SVL call within MOE with                
the Hydrophobic Min Area (p_hminarea) changed from the default setting of 50 to 30 Å2 and the                 
Charge Cutoff (p_qcutoff) changed from the default setting of 40 to 20 Å2. 
 
GAN-Library Sequence Selection 
Human repertoire contains a small subset of sequences which have missing residues,            
non-standard cystines, non-standard N-linked glycosylation sites, or potential N-linked         
glycosylation sites. Sequences with these properties were not pulled from the training set and              
are therefore also represented by a small subset in the GAN libraries. For our phage library, we                 
filtered out any sequences generated by the GAN which had any of these properties, before               
selecting final sequences. 
 
Phage Expression of GAN-Library 
Bacterial strains 
Escherichia coli One Shot™ TOP10 cells (F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80 lacZΔM15 Δ           
lacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL (StrR) endA1 nupG) were purchased from             
Thermo Fisher Scientific and used for phagemid DNA cloning. E. cloni® 10G electrocompetent             
cells (F- mcrA Δ(mrr-hsdRMS-mcrBC) endA1 recA1 Φ80 dlacZΔM15 ΔlacX74 araD139         
Δ(ara,leu)7697 galU galK rpsL nupG λ- tonA (StrR)) were purchased from Lucigen Corporation            
and were also used for phagemid DNA cloning. E. coli SS320 electrocompetent cells (F'[proAB              
lacIqZ ΔM15 Tn10 (TetR)] araD139 Δ(ara-leu)7696 galE15 galK16 Δ(lac)X74 rpsL (StrR) hsdR2            
(rK– mK+) mcrA mcrB1) were purchased from Lucigen Corporation and used as the host for               
phage library production. 
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Cloning 
The phagemid pADL-20c (Antibody Design Labs) was used for construction of the GAN             
sub-libraries and was modified for expression of Fab antibody fragments as N-terminal pIII             
fusion proteins in E. coli. This vector utilizes the bacterial pectate lysate (pelB) signal sequences               
for periplasmic translocation of fusion proteins, along with an ampicillin resistance gene for             
growth and selection in transformed E. coli. A hexahistidine tag and a FLAG tag was added to                 
the C-terminus of the CH1 and kappa constant domains, respectively, and the amber stop              
codon upstream of gIII was removed to allow expression of the fusion protein in SS320 host                
cells. 
 
Synthetic gene fragments encoding variable heavy and light chains were first amplified            
individually using PCR primers containing 22 base pairs of sequence complementary to the             
phagemid backbone. Next, PCRs were pooled by germline and assembled sequentially into the             
phagemid using NEBuilder® HiFi DNA Assembly Master Mix (New England Biolabs).           
Transformations were performed using One Shot™ TOP10 or E. cloni 10G® cells, and the              
resulting phagemid DNA was purified using ZymoPURE™ II Plasmid Midiprep Kit (Zymo            
Research). 
 
Phage library production 
E. coli SS320 host cells were electroporated as described by the manufacturer using 250 ng of                
each sub-library DNA. An aliquot of each transformation was plated on 2xYT agar plates              
supplemented with 100 µg/mL carbenicillin and 2% glucose and incubated overnight at 30°C.             
The resulting colonies were used for estimating library size and for sequencing the variable              
heavy and light chains using colony PCR. The remainder of the transformation was used to               
inoculate 2xYT-CG (2xYT broth containing 50 µg/mL carbenicillin and 2% glucose) at an OD600              

nm of 0.07 and incubated with shaking at 250 rpm and 37°C until an OD600 nm ~ 0.5. The cultures                    
were then infected with M13KO7 helper phage (Antibody Design Labs) at a multiplicity of              
infection (MOI) of 25 and incubated at 37°C without shaking for 30 minutes, followed by shaking                
at 200 rpm for 30 minutes. Cultures were centrifuged followed by medium replacement in              
2xYT-CK (2xYT supplemented with 50 µg/mL carbenicillin and 25 µg/mL kanamycin). After            
overnight incubation at 30°C and 200 rpm, the phage particles were purified and concentrated              
by PEG/NaCl precipitation and resuspended in PBS containing 0.5% BSA and 0.05%            
Tween-20. Phage concentration was determined using a spectrophotometer, assuming 1 unit at            
OD268 nm is equivalent to 5x10 12 phage/mL. PEG-precipitated phage from each GAN sub-library             
was normalized to 1x10 13 phage/mL and serially diluted 10-fold in 2% non-fat dry milk in PBS, in                 
duplicate, for use in the polyclonal phage ELISA. 
 
Monoclonal phage production 
Single clones harboring a functional Fab fusion protein were inoculated into 500 µL 2xYT-CTG              
(2xYT broth supplemented with 50 µg/mL carbenicillin, 15 µg/mL tetracycline, and 2% glucose)             
and cultivated in 96 deep-well plates overnight at 37°C with rigorous shaking. 5 µL of the                
overnight cultures was then transferred to new deep-well plates containing 100 µL 2xYT-CTG             
and incubated at 37°C with rigorous shaking until an OD600 nm ~ 0.5. M13KO7 helper phage was                 
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added to each well at MOI25, and plates were incubated without agitation at 37°C for 1 hour                 
before medium replacement to 2xYT-CK and overnight incubation with rigorous shaking at            
30°C. Phage supernatants were harvested after centrifugation and diluted 1:1 in 2% non-fat dry              
milk in PBS for use in the monoclonal phage ELISA. 
 
Phage ELISA 
The amount of Fab displayed on phage was determined using ELISA. Briefly, 96-well             
MaxiSorp® assay plates (Nunc) were coated overnight at 4°C with anti-human Fab (Millipore             
Sigma) diluted 1:500 in PBS, then blocked in PBS containing 1% BSA for 1 hour at room                 
temperature (RT). Diluted phage preparations were added and allowed to incubate for 1 hour at               
RT before captured virions were detected using a 1:5000 dilution of anti-M13-HRP (Santa Cruz              
Biotechnology) for 1 hour at RT. All interval plate washes were performed 3 times in PBST (PBS                 
supplemented with 0.1% v/v Tween-20). ELISAs were developed by addition of TMB solution             
(Thermo Fisher Scientific) and quenched using 10% phosphoric acid. Absorbance was read at             
A450 nm. Phage supernatant from non-transformed E. coli SS320 host cells was included as a               
negative control. 
 
 
Selected CHO-Expressed Molecules 
CHOK1 Glutamine Synthetase (GS) knockout host cells (Horizon Discovery, Cambridge, United           
Kingdom) were maintained in CD OptiCHO (Thermo Fisher Scientific, Waltham, MA) containing            
4 mM glutamine. Cells were cultured as previously described.70 
 
The light chains (LC) and heavy chains (HC) containing appropriate signal peptides were cloned              
into an in-house proprietary bicistronic PiggyBac transposon expression vector70 in a sequential,            
2-step manner using Gibson assembly. Successful insertion of the intended coding sequences            
was confirmed by Sanger DNA sequencing. Plasmid DNA was purified using a conventional             
silica-based low endotoxin Zymo Research kit (Irvine, CA). 
 
Cells, DNA and RNA were added to BTX 25 – multi-well electroporation plates (Harvard              
Bioscience, Holliston, MA) using a Tecan Freedom EVO (Mannedorf, Switzerland) liquid           
handler. For each transfection, 2.4E6 cells were spun down and resuspended in 150uL of              
PFCHO medium (Sigma-Aldrich, St. Louis, MO). 7.5ug of DNA and 2.5ug of pJV95 transposase              
RNA were added to the cells, then electroporated at 3175 uF capacitance, 290 V voltage, 950 Ω                 
resistance in an ECM 630 electro manipulator coupled to a HT 100 high throughput adaptor               
(BTX, Holliston, MA). Both molecules were transfected in triplicate. Cells were transferred to             
2mLs of non-selective medium in a 24 deep well plate (DWP) shaking at 220rpm at standard                
growth conditions and cultured for 2 days prior to selection. After two days, cells were counted                
on a guava flow cytometer (Luminex, Austin, TX); plates were spun down and resuspended in               
2mLs of selective CD OptiCHO medium. Cells were counted and passaged every four to five               
days thereafter. 
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Thirteen days after selection started and viability was >90%, cells were seeded into proprietary              
production medium at 8 x 105 c/mL in 3mLs in 24 DWPs under standard growth conditions. On                 
days 3, 6 and 8, cells were fed with 5% of the starting volume with Cell Boost7a and 0.5% Cell                    
Boost7b (Hyclone GE Healthcare Life Sciences). Cell counts and glucose was measured as             
previously described,70 On day 8, 50% glucose was supplemented to a final concentration of              
approximately 10g/L. On day 10, cells were counted, spun down and filtered by centrifugation              
onto 24-deep well filter plates (Thomson, Oceanside, CA). Titer was sampled by Ultra             
High-Performance Liquid Chromatography (UHPLC) Protein A affinity. Replicate wells were          
pooled together for Protein A purification. 
 
 
Biophysical Validation of CHO-Expressed Molecules 
Sample preparation 
Samples were buffer exchanged against 10 diavolumes of 20mM sodium chloride, 150mM            
sodium chloride, pH 7.1 (PBS) using a centrifugal filter with a 30kDa molecular weight cut off                
(Amicon). After buffer exchange, samples were normalized to 1 mg/mL using a Lunatic protein              
concentration plate format instrument (Unchained Labs). 

 
Differential Scanning Fluorimetry 
Thermal transition temperature(s) and weighted shoulder scores were determined by DSF           
according to the method previously described (Kerwin, 2019). 

 

Self Interaction Nanoparticle Spectroscopy 

SINS measurements were performed according to the method previously described (Liu, 2013)            
Briefly, gold nanoparticles (Ted Pella) were conjugated overnight with an 80:20 ratio of             
anti-human and anti-goat antibodies (Jackson Immuno Research). Unreacted sites were          
blocked using an aqueous 0.1% (w/v) polysorbate 20 solution. Conjugated gold nanoparticles            
were then concentrated by centrifugation and removal of 95% of the supernatant. Analysis was              
carried out in PBS (20 mM phosphate, 150 mM NaCl, pH 7.1) at a protein concentration of 0.05                  
mg/mL reacted with 5 ul of concentrated conjugated gold nanoparticles. After a 2 hour              
incubation, absorbance spectrum from 400-600 nm was collected using a Spectrostar Nano            
plate reader at 2nm steps. The wavelength maximum of the spectrum peak is reported. 

 

Relative Solubility 

Solubility was assessed according to the method previously described (Kerwin, 2019). Analysis            
was done in PBS buffer (20 mM sodium phosphate and 150 mM sodium chloride pH 7.1) and a                  
final PEG 10,000 concentration ranging from 0% to 12%. Remaining soluble protein after PEG              
incubation is reported. 

 

Size Exclusion High Performance Liquid Chromatography 

Size exclusion high performance liquid chromatography (SEC) was performed on a Dionex            
UltiMate 3000 HPLC System using a Waters XBridge Protein BEH SEC 200Å, 3.5 μm column               
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and a diode array detector collecting at 280 nm. Separation was achieved under native              
conditions with a 100 mM sodium phosphate, 250 mM sodium chloride, 10% acetonitrile v/v              
mobile-phase buffer at pH 6.8. 

 

SUPPLEMENTARY 
 
 

 
Figure S1 Single-chain and paired-chain Antibody-GAN architectures and training. A)          
Detailed architecture of single-chain Antibody-GAN; B) Detailed architecture of full paired-chain Antibody-GAN; C)             
Single-chain HV3-30 Generator and Discriminator (Critic) model losses over training epochs; D) Quality of generated               
HV3-30 sequences over training epochs assessed by germline agreement to framework. 
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Figure S2 Kappa light chain (KV3-20) quality and diversity. A) Representative percent germline             
agreement for KV3-20 framework residues from the training (OAS) and the base, unbiased GAN (GAN) for 10,000                 
generated sequences per set B) Representative diversity in light-chain KV3-20 CDR3, as Levenshtein distance              
calculated within sets of 10,000 sequences from each of: the OAS training set, GAN-generated molecules, and CDR                 
PFA-generated molecules. 
 
 
 

 

 
Figure S3 Raw CDR3 PCA score comparisons for KV3-20. A) Quality and diversity of light (kappa)                
chain CDR3 as captured in the scores of a principal component analysis (PCA) with explained variance of 9% for                   
PC1 and 7% for PC2. The GAN set shows more similar coverage in the PCA space to human repertoire (OAS) than                     
PFA. Both PFA and GAN capture similar densities compared to OAS; B) The KL-divergence of each principal                 
component for GAN and PFA, compared to OAS, shows lower divergence of GAN from OAS in PC1 and a similar low                     
divergence for both in PC2. 
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Figure S4 Light chain (KV3-20) MHCII biasing. Representative predicted light chain (KV3-20) MHCII             
binding, as compared to OAS, for the unbiased Antibody-GAN (GAN), Antibody-GANs transfer learned to lower (GAN                
-I) and to higher (GAN +I) predicted MHCII binding, and PFA-generated (PFA) molecules; showing the GAN set to be                   
statistically indistinguishable from OAS (human repertoire), while PFA diverges slightly but significantly. The GAN -I               
was intentionally biased by approximately a 73% shift to lower predicted MHCII binding, while the GAN +I set                  
managed an intentional bias of ~37% to higher predicted MHCII binding. 
 

 
Figure S5 MHC-II binding score bias is robust to changes in metric or predictor. A) The                
fraction of unique 15mers classified as promiscuous MHC-II binders using median z-score thresholds between 0 and                
3, for the OAS (gray), GAN (orange), GAN -I (red), GAN +I (purple), and PFA (green) data sets compared in Figure                     
2b. Less than 1% of the unique 15mers in the GAN -I data set exceed a z-score of 1.64 (dashed line), corresponding                      
to the top 5th percentile, and used in other works as a threshold for identifying potential “immunogenicity hotspots”.                  
B) Percentile rank assigned by the “IEDB recommended 2.22” prediction method vs. z-score assigned by our                
in-house MHC-II binding algorithm, calculated as the median across the same 8 allelic variants of MHC-II described                 
in the main text for a random sample of 5000 peptides from our OAS reference set. Our method is generally                    
correlated with the IEDB recommended MHC-II binding algorithm, but we choose our own method for its ease                 
high-throughput use and favorable accuracy on benchmark data sets (comparison not shown). 
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Figure S6 Clading of selected monoclonal phage sequences on HV1-2. Clading of variable             
region protein sequences of select phage colonies expressing the HV1-2 library as determined by DNA sequencing.                
Blue highlighting indicates degree of expression level of selected Fabs as determined by ELISA. Sequences that                
were paired with KV3-20 light chains(●) are as marked, otherwise they were paired with KV1-39 light chains.                 
Sequences with multiple amino acid substitutions(✤) as compared to their intended GAN design are as marked. 
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Figure S7 Clading of selected monoclonal phage sequences on KV1-39. 
Clading of variable region protein sequences of select phage colonies expressing the KV1-39 library as determined                
by DNA sequencing. Green highlighting indicates degree of expression level of selected Fabs as determined by                
ELISA. Sequences that were paired with HV3-30 heavy chains(●) are as marked, otherwise they were paired with                 
HV1-2 heavy chains. Sequences with single amino acid substitutions(✦) as compared to their intended GAN design                
are as marked. 
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Figure S8 Monoclonal phage expression results with controls. Expression level of selected Fabs             
as determined by ELISA from each of the 4 GAN sub-libraries, showing selected Fabs having higher OD450 than                  
control phage 2230 not expressing Fab. Two pairs of colonies were found to have identical heavy and light chains                   
and showed very similar ELISA results. 
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Figure S9 Snapshot of molecules from base GAN and CDR3-biased GANs during training             
Snapshots of 9 generated molecules during training of (A) the base GAN, (B) the base GAN transfer-learned to long                   
CDR3s, and (C) the base GAN transfer-learned to short CDR3s. Loops colored in teal indicate a CDR3 of length >=                    
11 amino acids long and <= 20 amino acids long. Loops colored in red indicate CDR3s of length >20, and those                     
colored in yellow denote a CDR3 of length <11 amino acids. 
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