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Abstract

The mechanism of the scoliotic curve development in healthy adolescents remains unknown in the field of orthopedic

surgery. Variations in the sagittal curvature of the spine are believed to be a leading cause of scoliosis in this patient

population. Here, we formulate the mechanics of S-shaped slender elastic rods as a model for pediatric spine under

physiological loading. Secondarily, applying inverse mechanics to clinical data of the scoliotic spines, with character-

istic 3D deformity, we determine the undeformed geometry of the spine before the induction of scoliosis. Our result

successfully reproduces the clinical data of the deformed spine under varying loads confirming that the pre-scoliotic

sagittal curvature of the spine impacts the 3D loading that leads to scoliosis.
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1. Introduction

The etiology of the adolescent idiopathic scoliosis (AIS) remains largely unknown [27, 8]. Several hypotheses1

have been developed to explain the patho-mechanism of AIS development [20, 16, 12, 5, 9]. Among these hypothe-2

ses, the upright alignment of the spine in humans, which impacts the mechanical loading of the spine, is believed to3

be an important factor in induction of scoliosis [6, 20]. The shape of the sagittal curvature of the spine, prior to initia-4

tion of spine deformity development, has been shown to be different between the scoliotic and non-scoliotic age, sex5

matched cohorts [26]. The shape of the sagittal curvature of the spine in pre-scoliotic patients was believed to make6

the spine rotationally unstable and lead to scoliosis [20, 7]. However, as the pre-scoliotic data on the sagittal profile of7

this patient population is scarce, an analysis that can determine the physiologically acceptable undeformed shapes of8

the sagittal spine that can lead to scoliotic-like deformation can be valuable for early clinical diagnosis of the curves.9

Identifying the characteristics of the spinal sagittal curvatures that are prone to scoliotic curve development under a10
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general set of loadings can be used as a risk stratification tool for early diagnosis of the disease.11

12

Our strategy to efficiently identify sagittal curvatures of the spine under loads is to model it as an elastic rod. The13

human spine has already been treated as an elastic object in finite element calculations that are routinely performed14

to compute its deformation under loads [20]. Since the spine is a slender structure whose length dimension is much15

longer than the cross-sectional dimensions we treat it as an elastic rod in this work. For simplicity, we assume that the16

rod has a circular cross-section and is inextensible. Both these assumptions are introduced for convenience and can17

be relaxed in a more general theory [1].18

19

Since the material of the spine can be modeled as linearly elastic for small strains [11], our rod model for the spine20

has two equal bending moduli Kb(s) and a twisting modulus Kt(s) which vary as a function of position s along the21

centerline of the cross-section. The moduli are allowed to vary as a function of position because the cross-sectional22

dimensions of the spine as well as the material properties of the spine are different depending on the position. For23

example, the thoracic region has a higher modulus compared to the lumbar region due to attachment of the rib cage.24

Furthermore, we wanted to allow for the possibility that a scoliotic spine may have these properties varying in a25

different manner compared to a healthy one. We also assume that the stress-free configuration of our rod model for26

the spine is S-shaped as observed in a human upright standing position. Thus, our rod has a spontaneous curvature27

κ0(s) (which is inversely proportional to the radius of curvature) which is a function of position along the centerline.28

This stress-free curvature is assumed to have zero twist component for a healthy spine. The advantage of modeling29

the spine as a curved elastic rod under loads is that its deformed shapes can be computed by solving a few ordinary30

differential equations rather than performing a full finite element calculation which requires many input variables.31

We show in this paper that our model, although simple, can reproduce many important features in the deformation of32

spines that have been observed clinically and studied in finite element calculations.33

34

This study aims to determine the deformation patterns of various S-shaped elastic rods as are observed in sagittal35

curvature of the scoliotic spines. It also aims to match the simulated deformation of such a rod model to the clinical36

data by altering the mechanical loading and mechanical properties of the rods. We hypothesized that an elastic rod37

under bending and torsional moments deforms in a similar manner as a pediatric spine with scoliosis. Also, the rod’s38

deformation and clinical data of the corresponding curved spines can produce similar deformations by altering the39

mechanical loading of the rods.40
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2. Methods41

2.1. Clinical data and data preparation42

The deformed sagittal curvatures of the scoliotic spine were determined from a previous classification study of43

103 scoliotic patients [22]. In brief, these 3D curves were generated by post-processing of the clinical radiographs44

[24]. A hierarchical clustering determined the subsets of the patients in this cohort with five significantly different45

3D spinal curves. The five cases are presented below in fig.(1). It was shown that these five subtypes can be divided46

into two groups based on the top-down view (X-Y) of the 3D curves: cases 1, 3 and 5 have lemniscate shaped (figure47

8-shaped) X-Y view and cases 2 and 4 have loop shaped X-Y view. We used these two patterns (loop and lemniscate)48

as the basis of our study to describe, using forward and backward mechanics, the parameters causing an undeformed49

spine to develop either of these deformation patterns. These views are also known as sagittal view (Y-Z view), frontal50

view (X-Z view), and axial view (X-Y view).51

2.2. Elastic Rod Model52

Let us consider the undeformed spine as an S-shaped elastic rod. The rod is assumed inextensible. The sagittal53

plane of the spine is co-incident with the y − z plane of the lab frame. The undeformed rod is assumed to have no54

out-of-plane curvature with respect to the sagittal plane. The origin of the lab coordinate system [ex ey ez] is placed55

at the bottom end of the spine s = 0 where s is an arc length coordinate along the center line of the spine. The position56

of a point s in the deformed configuration is r(s) = x(s)ex + y(s)ey + z(s)ez.57

58

Now we define the Frenet frame for the rod, given by the triad [t(s) ν̂(s) β̂(s)]. Here t̂(s) is the tangent vector59

and is given by the equation t̂(s) = dr
ds . It is a unit vector because the rod is assumed inextinsible. The tangent is60

given by t̂(s) = cos θ(s) cos φ(s)ex + cos θ(s) sin φ(s)ey + sin θ(s)ez. Here θ is the polar angle measured from the x − y61

plane and φ is the azimuthal angle used in conventional spherical polar co-ordinates. The conventions and variables62

are described in fig.(2). ν̂(s) and β̂(s) are the normal and binormal vectors, respectively. They are related through the63

Frenet-Serret equations [19].64

65

The curvature and torsion of the curve describing the center-line of the spine are κ(s) and τ(s), respectively, and are

given by:

κ(s) =

√
θ′2(s) + φ′2(s) cos2 θ(s) (1)

τ(s) =
1
κ2

[
(θ′′φ′ − θ′φ′′) cos θ + (φ′3 cos2 θ + 2θ′2φ′) sin θ

]
(2)

66

3
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2.2.1. Forward mechanics67

This section will deal with the mechanics of the rod. We will present an analytical model to compute the deformed

geometry for a given S-shaped rod. The balance of linear momentum [1, 2] gives

dnx

ds
= 0, (3)

dny

ds
= 0, (4)

dnz

ds
+ fz(s) = 0 (5)

where n(s) = [nx(s) ny(s) nz(s)] is the force in the rod and the distributed load f = fz(s)ez is directed only along

the ez direction due to gravity. It follows immediately from the above that

nx(s) = n0
x, ny(s) = n0

y , (6)

where n0
x and n0

y are constants that will be determined by the boundary conditions. Since there are no forces applied68

on the spine along ex and ey directions, then global equilibrium shows that n0
x = n0

y = 0.69

70

For the balance of angular momentum, the moment in the rod m(s) is represented in the Frenet frame and given

by m = mt t̂ + mνν̂ + mββ̂ at any point and l is a body moment per unit length. We will take l = 0 in this work. A

simple constitutive relation for the moment m is

m = Kb(s)(κ − κ0(s))β̂ + Kt(s)(κ3 − κ
0
3)t̂ (7)

where κ3 is the twist rate and Kb and Kt are the bending and twisting moduli of the spine. We assume that Kb and Kt71

are functions of s since there is variation in spine stiffness in a scoliotic spine and also because the material properties72

of the spine may vary as a function of position. κ0(s) and κ0
3(s) are the values of the curvatures in the stress free state,73

respectively. We assume κ0
3 = 0. This constitutive law is of the form m = Kb(κ1− κ

0
1)d1 + Kb(κ2− κ

0
2)d2 + Kt(κ3− κ

0
3)d374

where [d1(s) d2(s) d3(s)] is a material frame that convects with the arc-length coordinate s along the center-line75

of the cross-section1. Now, the derivative of the moment becomes76

1It assumes that the stress-free curvature of the spine is aligned along the bi-normal vector β(s). This is certainly true for planar deformations
of a healthy spine for which x(s) = 0 for all s. We show later that it also gives good results for full 3D deformations even though it is not the most
general constitutive law.

4
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dm
ds

=



[
dKb
ds (κ(s) − κ0(s)) + Kb(s)( dκ

ds −
dκ0

ds )
]
β̂

[
(Kt(s)(κ3(s) − κ0

3(s)) − Kb(s)τ(s)(κ(s) − κ0(s))
]
ν̂

[
dKt
ds (κ3(s) − κ0

3(s)) + Kt(s)( dκ3
ds −

dκ0
3

ds )
]

t̂


(8)

Hence the conservation of angular momentum boils down to [2, 1]

dKb

ds
{κ(s) − κ0(s)} + {Kb(s)(

dκ
ds
−

dκ0

ds
)} + nν = 0, (9)

Kt(s){κ3(s) − κ0
3(s)} − Kb(s)τ(s){κ(s) − κ0(s)) − nβ = 0, (10)

dKt

ds
(κ3(s) − κ0

3(s)) + Kt(s)(
dκ3

ds
−

dκ0
3

ds
) = 0. (11)

We define

Kt(s)(κ3(s) − κ0
3(s)) = m3(s). (12)

Then, eqn. (11) shows that
dm3

ds
= 0. (13)

Hence, the twisting moment in our rod model is constant along the arc-length. We can also write the conservation of

angular momentum in the lab frame as

dmx

ds
+ nz sin φ cos θ − ny sin θ = 0, (14)

dmy

ds
− nz cos φ cos θ + nx sin θ = 0, (15)

dmz

ds
+ ny cos φ cos θ − nx sin φ cos θ = 0. (16)

If nx = ny = 0, as we concluded from the balance of linear momentum, then the third equation above gives mz = T , a77

constant that is determined by a torque boundary condition applied at s = 0.78

79

Finally, the moment expression is given by:

m = Kb(s)(κ(s) − κ0(s))β̂ + m3 t̂. (17)

5
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We express this moment in the lab frame as:

mx = Kb(s)
κ(s) − κ0(s)

κ(s)
[
−φ′ cos φ sin θ cos θ + θ′ sin φ

]
+ m3 cos φ cos θ, (18)

my = Kb(s)
κ(s) − κ0(s)

κ(s)
[
−φ′ sin φ sin θ cos θ − θ′ cos φ

]
+ m3 sin φ cos θ, (19)

mz = Kb(s)
κ(s) − κ0(s)

κ(s)
φ′ cos2 θ + m3 sin θ (20)

To better understand the effects of moments, we will describe the effect of a constant moment along a single direction

on the spine (S-shaped rod). A moment along êx axis causes the spine to straighten the lumbar curvature and increase

the thoracic curvature (leading to kyphosis). A moment along êy axis would cause a person to tilt side-ways. A

moment along êz would cause the spine to twist to resemble a helix. Going back to the equations for mx,my,mz above,

Kb(s), κ0(s) and κ(s) can be eliminated to give:

mx cos φ + my sin φ = −mz tan θ +
m3

cos θ
, (21)

(mx sin φ − my cos φ)φ′ =
mz − m3 sin θ

cos2 θ
θ′. (22)

Eqn. (21) can then be solved to get

sin θ =
m3mz ± P

√
P2 + m2

z − m2
3

P2 + m2
z

, P = mx sin φ + my cos φ, (23)

where the solution branch can be determined from the initial value of θ(s). We can find an expression for φ′(s) using

eqn. (22) and eqn. (2.2) to get

φ′ =
mz − m3 sin θ
Kb(s) cos2 θ

±
κ0(s)
cos θ

1√
1 + cos2 θ

(mx sin φ−my cos φ)2

(mz−m3 sin θ)2

, (24)

where the ± sign is dependent on the sign of φ′(s).80

81
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Finally, the analytic model of the spine is given by the following system of differential-algebraic equations.

dnz

ds
= − fz(s), (25)

dmx

ds
= −nz sin φ cos θ, (26)

dmy

ds
= nz cos φ cos θ, (27)

dφ
ds

=
mz − m3 sin θ
Kb(s) cos2 θ

±
κ0(s)
cos θ

1
A
, (28)

θ = sin−1


m3mz ± P

√
P2 + m2

z − m2
3

P2 + m2
z

 , (29)

A =

√
1 + cos2 θ

(mx sin φ − my cos φ)2

(mz − m3 sin θ)2 , (30)

P = mx sin φ + my cos φ, (31)

dx
ds

= cos φ cos θ, (32)

dy
ds

= sin φ cos θ, (33)

dz
ds

= sin θ. , (34)

In the above the body force fz(s) can be found from a generalized load distribution along the upper body as given by82

Pasha et. al[21].83

2.2.2. Inverse mechanics84

In this section, we will present a method to extract the properties of the undeformed rod and the forces acting on

it, given the deformed geometry. The deformed geometry has been obtained from clinical data of patients suffering

from scoliosis and is given as a set of position vectors of points along the deformed spine[22]. We interpolate the data

to obtain a larger array of points which are spaced uniformly and closer together than the clinical data. The size of the

larger array is N (which can be set) and each point be given by pi = [xi yi z], where i goes from 1 to N. Then, the

length of the spine can be computed by

∆pi = pi+1 − pi, L =

N∑
i=1

√
||∆pi||2 (35)

7

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051987


85

Consider s as an array of N points which can be defined by si =
(i−1)L

N . Hence, we can compute θ and φ by

θi = tan−1

 ∆pzi√
∆p2

xi
+ ∆p2

yi

 (36)

φi = tan−1
(
∆pyi

∆pxi

)
(37)

We can then use θi and φi to compute their derivatives with respect to s i.e θ′i and φ′i ; we use these to compute the86

deformed curvature Ki. Then, we use fz(s) to determine the moments.87

2.2.3. Moment calculation from generalized body force88

Recall the governing system of differential-algebraic equations above, specifically eq. (25), (26) and (27). We can

compute the values of mx(s) and my(s) since we have values of θ and φ. However, we do not know the initial values

(at s = 0) of the moments. To find mx(0), my(0), mz and m3, we minimize the least squares error between eq. (29) and

the clinical data. This is given by

err(x1, x2, x3, x4) =

N∑
i=1

θi − sin−1


x4x3 ± Pi

√
P2

i + x2
3 − x2

4

P2
i − x2

4




2

(38)

Pi = (mxi + x1) cos(φi) + (myi + x2) sin(φi) (39)

[mx1 ,my1 ,mz,m3] = arg min
x1,x2,x3,x4

err(x1, x2, x3, x4) (40)

Hence, we offset the mx and my values by mx1 and my1 respectively. Now we use the moment values to determine the

Kb(s) and κ0(s). We use eq. (20) to define an error term based on the least squares method to determine Kb(s) and

κ0(s).

hi(x1, x2) =

x1φ
′
i cos2 θi −

x2φ
′
i cos2 θi

κi
+ m3 sin θi − mz

2

(41)

[Kbi ,Kbiκ
0
i ] = arg min

x1,x2

hi(x1, x2) (42)

subject to the condition Kbi > 0, κ0
i > 0 ∀ i ∈ [1,N].89

90

After verifying the values from the minimization, we compute the spinal geometry prior to twisting using a special

8
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case of the ODEs with φ(s) = π/2, implying that φ′ = 0. For this case, we assume that the spine is a planar rod being

deformed by fz(s) alone. This leads to out of plane moments going to 0. i.e my(s) = 0, mz = 0, m3 = 0 with only

mx(s) being the non-zero moment. We get the geometry by solving the following differential equations.

dnz

ds
= − fz(s), (43)

dmx

ds
= −nz(s) cos θ, (44)

dθ
ds

=
mx

Kb
+ κ0, (45)

dy
ds

= cos θ, (46)

dz
ds

= sin θ, (47)

with the initial conditions being

nz(0) = nz0 , (48)

mx(0) = 0, (49)

θ(0) = θ0, (50)

y(0) = 0, (51)

z(0) = 0, (52)

where nz0 is the weight of the upper body and θ0 is the base angle of the spine in the sagittal plane at s = 0.91

92

We presented these curves in fig.(7). We chose κ0(s) to ensure that the rod remains upright. We constrain the93

horizontal displacement of the top of the rod to remain under 15% of the vertical displacement. We set this bound to94

ensure that the head remains roughly over mid-line of the body in the sagittal plane95

96

Here, we define a few terms for ease of understanding. We define S as the point of inflection of the rod, i.e.,

where the curvature approaches 0. KP is average of the curvature values of the part of rod occupying s < S , i.e 1/KP

is the radius of curvature of the lumbar region of the spine. KN is the average of the curvature of the part of the rod

occupying s > S , i.e 1/KN is the radius of curvature of the thoracic region of the spine. We present these values in

9
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table1.

S = arg min
s

κ0(s) (53)

KP =

∫ S
0 κ

0(s) ds.

S
, (54)

KP =

∫ L
S κ

0(s) ds.

L − S
. (55)

97

We can see the effects of the moments better in the Frenet frame of the rods. We compute the Frenet frame

([t̂ ν̂ β̂]) for the curve prior to the twist (presented in fig.(7)) as.

t̂ = cos θ0 êy + sin θ0 êz (56)

ν̂ = sin θ0 êy − cos θ0 êz (57)

β̂ = êx (58)

where θ0 is defined in fig.(2). We then decompose the moments along this frame and plot mnu(s) on the pre-twist98

curve in fig.(8). Now mβ(s) is responsible for the shape of the spine in the sagittal view while mν(s) is responsible for99

the shape of the spine in the frontal view. We will present an explanation using case 5 as an example in the discussion100

section.101

3. Results102

We applied the inverse mechanics method to the five clinically derived cases to determine the stiffness, unde-103

formed curvature and moments. We validate the model by using the parameters to solve the system ODEs(eq.32, 33,104

34). We present a comparison between the clinical data and the model in the axial view in fig.(3) and the sagittal105

view in fig.(4) and the frontal view in fig.(5). These figures shows that the model is in good agreement with clinical106

data. Plots of mx(s) and my(s) are presented in fig.(6). The moment and stiffness values of the spine are presented in107

Table(1). We used these model parameters to predict the curvature using eq. (42). The shapes of the spine prior to the108

twisting effects for each of the cases in fig.(1) are presented in fig.(7).109

110

We present the curve prior to twist and the mν(s) component of the moment decomposed along the Frenet frame111

for the curves presented in fig.(8) to better understand the physical significance of the moments and the effect they112

have on the deformed shape in the axial view.113

10
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114

We compute the average curvatures for the 2 parts of the S-shaped rod and the point of inflection and present them in115

the table 1. The mz experienced in each case along with the variation in stiffness is also presented in the table 1 We116

also present a representative stiffness curve for this model in fig.(9) (Taken from case 5).117

4. Discussion118

The enigmatic spinal deformation in adolescents has been studied for centuries. Here we use an analytical model119

of a curved elastic rod to study the fundamentals of the 3D deformations as it relates to the curve development in120

scoliosis. We use the clinical subgroups of scoliotic patients with a thoracic curve and apply inverse mechanics to121

determine the undeformed shape of the spine. In this analysis, by untwisting the S shaped rod under gravity, we122

determine the shape of the spine before the induction of scoliosis. Our results show the characteristic of the S-shaped123

curvatures i.e. sagittal profile of the spine, was preserved after untwisting the curve, meaning that the spine with a124

loop shaped projection (Cases 2 and 4) have a larger lordosis than kyphosis with an inflection point above the center125

of curve, whereas spines with a lemniscate axial projection (Cases 1, 3 and 5) have a larger kyphosis than lordosis126

with an inflection point below the center of the curve. We compare the deformed S-shaped curves under gravity and127

torsion to the clinical data and find acceptable agreement between the simulations and clinically reported deformity128

patterns as seen in fig.(3) and fig.(4).129

130

The sagittal curvature of the spine is believed to have an important role in induction of scoliosis [15, 20]. However,131

the data on the sagittal curvature of the spine prior to curve development is scarce. In a previous study, Pasha et. al132

showed, using finite element modeling, that an S-shaped elastic rod under bending and torsion can deforms in loop133

or lemniscate shaped in the axial projections only as a function of the curve geometry as seen in fig.(1). When those134

curve geometries were compared to the clinical data, it was observed that sagittal curvature of the scoliotic patients135

also related to the axial projection of the curve, in the same manner as an elastic rod. However, as that study used the136

sagittal profile of the scoliotic curves, it could not be shown what characteristics of the sagittal plane determined the137

deformity patterns of the spine in scoliosis. Our analysis in this paper uses defined scoliotic curve types and applies138

inverse mechanics analysis to determine the pre-scoliotic shape of the spine. These shapes are then shown to produce139

the 3D scoliotic deformity, under physiologically acceptable conditions, that matches the clinical data. The current140

analysis shows that the moments that cause the off-plane curve deformation can be formulated as a function of the141

curves sagittal parameters as seen in fig.(8). This study explains how the initial sagittal curvature of the spine impacts142

the mechanical loading of the spine, which in turn leads to the scoliotic like deformation. Understanding the funda-143

mentals of the spinal loading and resultant deformities is the first step in developing clinical methods that prevent or144

reverse the deformity development.145

146
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While several hypothesis have been developed to explain the spinal deformity in AIS, the use of analytical models147

remains unexplored. The only other existing analytical model of the spine for scoliosis, explains this deformity only148

in one plane (frontal plane). These models solve the spine as a 2D straight rod thus ignoring the curvature of the spine149

in the sagittal plane. The deformity under gravity then was explained as 2D buckling of the rod. The deformation150

modes in the frontal plane were used to explain variations in the curve types in scoliotic patients[17, 3, 18]. But,151

AIS as we know it, is not 2D buckling. The curve deforms in 3D gradually. Our elastic rod model, as shown in this152

study, agrees with the characteristics of spinal deformity development in scoliosis as it incorporates the variation in153

the sagittal curvature. Such a deformation may be reversible if all deformations are elastic.154

155

In the current model, in addition to gravity we used an axial moment to obtain the scoliotic shapes. This moment156

in the system was originally meant to break the symmetry of the system that would be otherwise only under gravity157

loads and thus would not deform in 3D. However, this torsion can be physiologically justified by the trunk mass asym-158

metry [10, 15, 13]. There is no evidence that this moment (torsion) is larger in scoliotic patients than in non-scoliotic159

patients or whether this moment varies between different curve types as a result of differences in the kyphosis and the160

chest volume. This merits investigation to further personalize the model.161

162

We used several filtering criteria as the solution set to the inverse problem is not unique. We eliminated solutions163

that are physiologically not reasonable. We limited the maximum possible mz and Kb(s). We also ensured that the164

characteristic of the curve in the sagittal view was preserved. If one or more of these limiting conditions were not met,165

we repeated the optimization procedure with different initial values. This shows us that while the shape of the curve166

in the sagittal view is important in the induction of scoliosis, a unique curve cannot be produced given a deformed167

shape. We can determine a set of possible solutions with reasonable physiological parameters for a given deformed168

shape and can present a unique solution given more clinical data.169

170

The spikes in Kb(s) and κ0(s) are filtered out (to ensure that functions and their derivatives do not have discontinu-171

ities). the comparison between the clinical data and the solution from the model is presented in the results section. The172

solutions to eq. (40) and eq. (41) are not unique. The minimization function finds the local minima of the function173

in the neighborhood of the starting point. We select solutions by changing the start point. We selected the solutions174

based on physiological limitations, which we explain in the discussion section.175

176

We limit our Kb(s) values to 1000Pa based on a previous finite element simulations where they modeled the spine177

as a rod with a circular cross-section[20]. We present Kb(s) in the supporting information and present the maximum178

and minimum values for the 5 cases in Table 2. The Kb(s) (A representative curve is presented in fig.(9)) curve con-179

tains 3 distinct peaks. The peaks in Kb(s) correspond to the peaks in the load function fz(s). As we simplified the load180

along the spine as point load with spikes to present the weight of the head and arms the Kb showed max value in the181
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same points. In reality, it is expected as the loads are distributed more gradually the kb show a more smooth transition182

from region-to-region.183

184

We also presented the corresponding mx(s) and my(s) values in fig.(6). We can see that mx(s) are always positive185

for the lemniscate shapes while they change signs for the loop shapes. Looking at the my(s) values, we see that my(s)186

values always stay positive for the loop shape cases. This can be used as a criterion to determine whether loop or lem-187

niscate shapes will develop. We also present plot of mν(s) vectors plotted along the undeformed curve to understand188

the deformation in the X-Z plane. We do not consider the effects of mt(s) and mβ(s) as they are responsible for twist189

and Y-Z plane deformations respectively. We can see in case 5 in fig.(8) that mnu(s) points towards the right -front of190

spine- at the bottom and top regions and towards the left-backward- in the middle region and zero at the apices, but191

for cases 2 and 3 this relationship is reversed since the mz was in opposite direction. This direction also relates to the192

θ which is less than 90◦ at bottom and top and exceeding 90◦ in the middle and 90◦ at the apices. We assume that the193

base is fixed, hence due to the moment, the curve would deflect towards the +ve x-axis in the bottom and top regions.194

The curve would deflect towards the -ve x-axis in the middle region. This is exactly what we see in fig.(5) for case 5.195

Hence we can predict the frontal view after we look at mν(s) and since we know that the sagittal curve characteristic196

is roughly preserved, we can predict the shape of the curve in the X-Y projection.197

198

The current model has several limitations that were required for constructing the analytical solution. First, the199

rod was considered to be inextensible. The changes in the sagittal alignment of the spine during the course of sco-200

liotic development impacts the disc morphology as a function of mechanical loading and changes the curvature of201

the spine before any bony deformation occurs [23, 4, 25]. This mechanism may extend sections of the spine and202

contract the adjacent parts. Second, we considered the base angle as the tangent to the curve at the lowest vertebral203

level. While in reality the alignment of sacrum, which can be aligned independent from the shape of the spine at the204

lowest vertebral level, plays an important role in regulating the spinal alignment over the femoral heads and transfer-205

ring the force between the spine and lower extremities [21, 14]. Considering the position of the spine over the sacrum206

may have required additional coordinate system transfer particularly in cases with large disc angulation above sacrum.207

208

Despite the limitations mentioned above, our model delivers results which are in good agreement with clinical209

data. The model uses only five variables that can be easily captured in a clinical set up for patient assessment. This210

model is advantageous compared to the finite element models as it can save significant computational costs and time to211

achieve solutions of similar accuracy. We can calculate the forces and material properties using the x, y, z co-ordinates212

and the body force acting on the spine which are easily measurable.213

214

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051987


Acknowledgement215

SN and PKP acknowledge partial support through an NSF grant NSF CMMI 1662101.216

References217

References218

[1] Antman, S. (2006). Nonlinear Problems of Elasticity. Applied Mathematical Sciences. Springer New York.219

[2] Audoly, B. and Pomeau, Y. (2010). Elasticity and Geometry: From hair curls to the non-linear response of shells. OUP Oxford.220

[3] Belytschko, T., Andriacchi, T., Schultz, A., and Galante, J. (1973). Analog studies of forces in the human spine: Computational techniques.221

Journal of Biomechanics , 6(4):361 – 371.222
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Figure 1: The axial view of the 5 cases of scoliosis
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Figure 2: The centerline of the rod a before and after deformation. The [x y z] system of co-oridnates represent the lab frame. The [t̂ β̂ ν̂]
system represents the Frenet-Serret frame for the deformed and undeformed configurations
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Figure 3: Comparison between the clinical data and the computational model in the axial view. The red curves are the results of the computational
model. The blue curves are clinical data from [22].
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Figure 4: Comparison between the clinical data and the computational model in the sagittal view. The red curves are the results of the computational
model. The blue curves are clinical data from [22].
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Figure 5: Comparison between the clinical data and the computational model in the frontal view. The red curves are the results of the computational
model. The blue curves are clinical data from [22].
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Figure 6: Trends of mx(s) and my(s) for the 5 cases. The blue curves are mx(s) correspond to the left y-axis. The red curves are my(s) correspond
to the right y-axis.
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Figure 7: The geometry of the spine before twist in the sagittal view

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.051987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.20.051987


Figure 8: mnu(s) plotted on the pre-twist curve. Vectors point away from the curve.
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Figure 9: A representative Kb(s) curve. This is produced from Case 5.
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Case KP KN S θbase [o] Mz (Nm) Max(Kb)
(Pa)

Min(Kb)
(Pa)

Case 1 2.84 2.38 0.34 72.15 -11.32 490.75 93.92

Case 2 0.95 1.27 0.71 62.72 21.72 339.76 1.15

Case 3 3 0.9 0.3 66.58 16.52 771.38 3.08

Case 4 2.29 2.96 0.53 53.38 -25.24 732.03 1.6

Case 5 2.64 2.43 0.38 66.82 -24.49 433.84 65.82

Table 1: Table of average curvature values of the thoracic and lumbar regions
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