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Abstract25

Epigenetic architecture is influenced by genetic and environmental factors, but little is26

known about their relative contributions or longitudinal dynamics. Here, we studied DNA27

methylation (DNAm) at over 750,000 CpG sites in mononuclear blood cells collected at birth28

and age 7 from 196 children of primarily self-reported Black and Hispanic ethnicities to study29

race-associated DNAm patterns. We developed a novel Bayesian method for high dimensional30

longitudinal data and showed that race-associated DNAm patterns at birth and age 7 are nearly31

identical. Additionally, we estimated that up to 51% of all self-reported race-associated CpGs32

had race-dependent DNAm levels that were mediated through local genotype and, quite sur-33

prisingly, found that genetic factors explained an overwhelming majority of the variation in34

DNAm levels at other, previously identified, environmentally-associated CpGs. These results35

not only indicate that race-associated DNAm patterns in blood are present at birth and are pri-36

marily genetically, and not environmentally, determined, but also that DNAm in blood cells37

overall is robust to many environmental exposures during the first 7 years of life.38
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Introduction39

DNA methylation (DNAm) in the human genome plays a critical in regulating many cellular pro-40

cesses [1, 2], and altered DNAm patterns have been associated with many diseases, including41

cancer [3], neurological disorders [4, 5] and asthma [6, 7], to name a few. DNAm itself reflects the42

contributions of genetic variation [8, 9], exposure histories [10–16], and biological factors such43

as age [17–26], and has therefore been suggested as a mediator of the effect of these factors on44

disease outcomes [27, 28].45

Recently, results from cross-sectional studies have shown that DNAm in blood cells differs46

across racial and ethnic groups at birth [29, 30] and later in life [31–34], suggesting that it might47

contribute to race/ethnicity-associated health disparities [30, 31]. Because racial and ethnic group48

definitions reflect both common genetic ancestries and shared exposure histories [35], it has been49

postulated that race/ethnicity-associated blood DNAm patterns are an amalgam of genetic and50

non-genetic components, and understanding the contribution of each can help inform the relative51

contribution of genetic and socio-cultural diversity to variation in DNAm levels [31]. For example,52

a previous study [31] partitioned variation in DNAm levels into genetic and non-genetic sources,53

and concluded that non-genetic, socio-cultural sources had a significant impact on blood DNAm54

levels. However, that study, and all previous studies that identified race/ethnicity-associated DNAm55

marks, relied on cross-sectional data and were therefore not able to asses the temporal stability of56

those marks. Understanding the stability of race/ethnicity-dependent DNAm present at young57

ages can help to determine the extent to which race/ethnicity-dependent properties of epigenetic-58

driven diseases can be attributed to the innate or acquired methylome [29], and identify CpGs59

whose DNAm is robust or sensitive to accumulated exposures. We therefore sought to fill this60

gap by first identifying the factors contributing to and the temporal stability of race/ethnicity-61

dependent blood DNAm levels, and consequently, determining the relative contributions of genetic62

and environmental factors to the variation in blood DNAm levels in general.63

To do so, we studied global DNAm patterns at over 750,000 CpG sites on the Illumina EPIC64
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array in cord blood mononuclear cells (CBMCs) collected at birth and in peripheral blood mononu-65

clear cells (PBMCs) collected at 7 years of age from 196 children participating in the Urban En-66

vironment and Childhood Asthma (URECA) birth cohort study [36, 37]. This cohort is part of the67

NIAID-funded Inner City Asthma Consortium and is comprised of children primarily of Black and68

Hispanic self-reported ethnicity, with a mother and/or father with a history of at least one allergic69

disease, and living in low socioeconomic urban areas (see O’Connor et al. [37] for details of en-70

rollment criteria). Mothers of children in the URECA study were enrolled during pregnancy and71

children were followed from birth through at least 7 years of age.72

The longitudinal design of the URECA study provided us with the resolution to partition73

genetic from non-genetic effects on race/ethnicity-associated DNAm patterns, and yielded new in-74

sight into the factors affecting DNAm patterns at CpG sites in mononuclear (immune) cells during75

early life in ethnically admixed children. Using a novel statistical method that provides a gen-76

eral framework for analyzing longitudinal genetic and epigenetic data, we show that while DNAm77

levels vary with chronological age, race/ethnicity-dependent DNAm patterns are overwhelmingly78

conserved over the first 7 years of life and that these patterns are strongly associated, and often me-79

diated, by local genotype. Relatedly, the variation in DNAm levels at previously reported robust80

exposure-associated CpGs was overwhelmingly dominated by genetic rather than environmental81

factors in these children. Considering the results of our study and those of a recently published82

comprehensive review on environmental epigenetics research [38], we suggest that race/ethnicity-83

dependent blood DNAm levels in particular, and blood DNAm levels in general, are primarily84

driven by genetic factors, and are not as responsive to environmental exposures as previously sug-85

gested [31], at least during the first 7 years of life.86

Results87

Our study included 196 children participants in the URECA cohort who had high quality DNA88

from both CBMCs and PBMCs collected at birth and age 7, respectively, available for our study89

[36] (see Methods). The URECA children were classified by parent- or guardian-reported race into90
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one of the following categories: Black, n = 147; Hispanic, n = 39; White, n = 1; Mixed race n = 7,91

and Other, n = 2. A description of the study population is shown in Table 1. Genetic ancestry,92

assessed using principle component analysis (PCA), revealed varying proportions of African and93

European ancestry along PC1 (Figure 1). Because there was little separation along PC2, and no94

genome-wide significant correlation between PC2 through PC10 and DNAm levels at either age,95

we defined PC1 as inferred genetic ancestry. The reported races of the children are also shown96

in Figure 1. We included only the 186 self-reported Black and Hispanic children in subsequent97

analyses of reported race.98

Reported race effects on DNA methylation patterns are conserved in magnitude and direction99

between birth and age 7100

We first attempted to determine the temporal stability of reported race-associated DNAm patterns101

by addressing three questions. What is the correlation between reported race and DNAm levels at102

individual CpG sites at birth and age 7? Is the direction and magnitude of the correlation between103

reported race and DNAm levels conserved between birth and age 7? Does the correlation between104

DNAm levels and reported race differ significantly between birth and age 7? While these questions105

are important in their own right, their answers can also help determine the nature of these reported106

race-associated patterns. For example, race-associated DNAm levels that differ at birth and age107

7 might reflect race-dependent exposure histories, while race-associated DNAm patterns that are108

conserved may be genetic in nature, since genetically-dependent DNAm patterns are conserved109

from birth to later childhood [39].110

Standard hypothesis testing can be used to answer the first question but is not appropriate111

for answering the second or third because failure to reject the null hypothesis that the effects are112

equal at birth and age 7 does not imply the null hypothesis is true. Additionally, because our113

studies were conducted in CBMCs at birth and PBMCs at age 7, DNAm levels at birth and age 7114

may differ slightly due to differences in cell composition [40]. To address these issues, we built115

a Bayesian model (see Model (1) in Methods) and let the data determine both the strength of the116
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correlation between reported race (based on self-report) and DNAm levels, and how similar the117

correlations are at birth and age 7. We then answered the above three questions by defining and118

estimating the conserved (con) and discordant (dis) sign rates for each CpG g = 1, . . . , 784, 484:119

cong = Posterior probability that CpG g’s ancestry effects at birth and age 7 were non-zero,120

had the same sign AND the sign was estimated correctly.121

disg = Posterior probability that the ancestry effect for CpG g was non-zero at one age and122

zero or in the opposite direction at the other age.123
124

For a given posterior probability threshold, these quantities partition the ancestry-associated CpGs125

into two groups: those whose ancestry effects were non-zero and conserved from birth to age 7 and126

those whose ancestry effects were different at birth and age 7. Detailed descriptions of our model127

and estimation procedure are provided in the “Joint modeling of DNA methylation at birth and age128

7” section in Methods. Supplemental Figure S1 provides insight into how the conserved sign rate129

compares with standard univariate P values.130

After fitting the relevant parameters in the model to the data, we were able to estimate the131

fraction of CpGs with non-zero reported race effects at both ages and assign them into one of four132

possible bins: the two effects were completely unrelated (ρ = 0), moderately similar (ρ = 1/3),133

very similar (ρ = 2/3), or identical (ρ = 1). Note that if a non-trivial fraction of CpG sites had134

ancestry effects that were in opposite directions at birth and age 7, they would be assigned to the135

first bin (ρ = 0). In fact, we estimated that only 0.2% of the CpGs with non-zero reported effects136

at both ages had unrelated or moderately similar reported race effects, whereas 30.7% fell in the137

very similar bin and 69.1% had identical reported race effects at birth and age 7 (Supplemental138

Figure S2). These data indicate that when reported race effects on DNAm levels are present (i.e.,139

non-zero) at both birth and age 7, they tend to be very similar or exactly the same at both ages with140

respect to both direction and magnitude.141

We then estimated the conserved and discordant sign rates for all 784,484 probes and clas-142
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sified a CpG as a reported race-associated CpG (RR-CpG) if its conserved or discordant sign rate143

was above 0.80 (i.e. cong ≥ 0.8 or disg ≥ 0.8). At this threshold, we identified 2,162 RR-CpGs,144

2,157 (99.8%) of which were conserved in sign (cong ≥ 0.8). Compared to self-reported His-145

panic children, self-reported black children tended to have higher DNAm levels at 1,288 (60%)146

of the conserved RR-CpGs (P = 8.6 × 10−38). This trend replicated when we substituted inferred147

genetic ancestry for reported race and is in accordance with previous observations [6, 33], indi-148

cating individuals with more African ancestry tend to have overall more DNAm. Interestingly,149

there was an under enrichment of RR-CpGs in CpG islands (P = 3.10 × 10−12), which mirrors the150

observation that CpGs whose DNAm is under genetic control typically lie outside of CpG islands151

[41]. The fact that only 5 of the 2,162 RR-CpGs had discordant reported race effects at birth and152

age 7 (disg ≥ 0.8) corroborates the observations made in the previous paragraph and answers the153

second question in the affirmative: if DNAm levels are correlated with reported race at birth, the154

magnitude and direction of the correlation is almost certainly conserved at age 7 (and vice-versa).155

Inferred genetic ancestry is more correlated with DNA methylation than is self-reported race156

The observed correlations between ancestry and DNAm levels may reflect differences in envi-157

ronmental exposures [31, 33], due to associations between race or ethnicity with socio-cultural,158

nutritional, and geographic exposures, among others [42]. In fact, a previous cross sectional study159

suggested that self-reported ethnicity explained a substantial proportion of the variance of blood160

DNAm levels measured in Latino children of diverse ethnicities [31]. They concluded that eth-161

nicity captured genetic, as well as the socio-cultural and environmental differences, that influence162

DNAm levels. If this were the case in the URECA children, the effect of inferred genetic ancestry163

on DNAm levels should be comparable to that of reported race. To assess this possibility in the164

URECA children, we repeated the analyses described above but substituted inferred genetic an-165

cestry for reported race. This analysis revealed 8,597 inferred genetic ancestry-associated CpGs166

(IGA-CpGs), of which 8,579 (99.8%) were conserved in sign (cong ≥ 0.8). This was significantly167

more than the 2,162 RR-CpGs identified in the reported race analysis above (Figures 2a-b).168
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To further explore this finding, we examined the overlap between RR-CpGs and IGA-CpGs169

(Figure 2c). Because reported race is an estimate of inferred genetic ancestry, there is a substantial170

overlap between IGA-CpGs and RR-CpGs. Contrary to the results from the previous study [31],171

which estimated that only 35% of their ethnicity-associated were also genetic ancestry-associated172

CpGs (Figure 5A in [31]), 66% of RR-CpGs in our study were also IGA-CpGs, and therefore173

represent only a subset of the IGA-CpGs. This indicates that while IGA-CpGs include most RR-174

CpGs, reported race does not capture most of the variation in DNAm levels attributable to genetic175

ancestry in these children.176

The differences between our results and those reported in the aforementioned study may be177

due to the fact that sample collection site explained 80% of the variance in Mexican versus Puerto178

Rican ethnicity in [31], but was not accounted for in their analyses. The fact that sample collection179

site was associated with the DNAm levels of 865 CpGs at birth or age 7 at a 5% FDR in our study180

suggests that sample collection site could have confounded the relationship between ethnicity and181

DNAm in the previous study (see page 3 in the Supplement for details).182

The association between DNA methylation and reported race is largely genetically driven183

To further address the question of whether reported race effects on DNAm levels at either birth or184

age 7 were primarily due to genetic variation or to environmental exposures, we used local genetic185

variation (within 5kb of a CpG site) and DNAm data at birth and age 7 in the 147 self-reported186

Black children in our study to map methylation quantititave trait loci (meQTLs). Of the 519,696187

CpGs within 5kb of a SNP, 65,068 and 70,898 had at least one meQTL in CBMCs at birth and in188

PBMCs at age 7, respectively, at an FDR of 5%. In addition, 51% of all RR-CpGs with at least one189

SNP in the ±5kb window had at least one meQTL at birth or age 7 at an FDR of 5%, which was a190

significant enrichment when compared to the 17% observed for non-RR-CpGs (Figure 3a-b).191

To provide additional evidence that local genotype mediates the effect of reported race on192

DNAm levels, we used logistic regression to regress the genotype of each SNP within ±5kb of a193

RR-CpGs. The goal was to determine the fraction of RR-CpGs at which the observed variation194
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was mediated through local genotype, i.e. RR-CpGs with both edges a and c in Figure 3a. Since195

genotype is highly correlated with race, most SNPs will possess edge c. Therefore, a reasonable196

upper bound for this quantity is 51%, the fraction of RR-CpGs with at least one meQTL in their197

±5kb window. To determine a lower bound, we used the results of the abovementioned logistic198

regression to conservatively estimate that at least 26% of all RR-CpGs with at least one SNP in199

their ±5kb windows had both edges a and c (see pages 3-5 in the Supplementary Material for200

calculation details). Interestingly, substituting inferred genetic ancestry for self-reported race in201

the above analysis yielded nearly identical upper and lower bounds, providing evidence for local202

genotype mediating the effects of reported race on DNAm levels at RR-CpGs.203

Genetic and biological factors explain most of the variation in blood DNA methylation levels204

Given the suggested genetic nature of race/ethnicity-dependent blood cell DNAm levels, we next205

sought to determine the relative contributions of genetic variation, age and environmental factors206

on CMBC and PBMC DNAm levels in general at birth and age 7 in the URECA cohort. First, we207

identified 2,836 gestational age-related CpGs at birth and 16,172 age-related CpGs (CpGs whose208

DNAm levels changed from birth to age 7) at 5% FDRs. These two sets of CpGs were strongly209

enriched for CpGs used to predict gestational age in Knight et al. [21] and to predict chronological210

age in Horvath [18], as well as for CpGs whose blood DNAm levels changed from birth to age 5 in211

Pérez et al. [43] (see Supplemental Figure S3). Moreover, the estimates of the age effects among212

age-related CpGs in our study showed the same direction of change as their corresponding esti-213

mated gestational age effects at birth in 97% of the 16,172 age-related CpGs. This included 14,186214

gestational age-associated effects that were not significant at a 5% FDR threshold but showed the215

same direction of change. This concordance in direction of effect is unlikely to occur by chance (P216

value < 10−119, pages 5-7 of the Supplementary Material for calculation details). Taken together217

with the enrichments for age-associated CpGs described above, we suggest that the majority of218

the changes in DNAm levels from birth to age 7 is due to aging-related mechanisms rather than219

age-dependent environmental exposures.220
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We next attempted to determine the relative contributions of genetic and environmental fac-221

tors on DNAm levels in blood. With the exception of maternal cotinine levels during pregnancy,222

which previously showed robust and reproducible associations with blood DNAm levels at birth223

[11–15] and in early childhood [10, 13, 16], none of the direct or indirect measures of exposures224

that were available in this cohort were associated with DNAm levels at either age after adjusting225

for multiple testing (see pages 1-2 in the Supplementary Material for a complete list). Therefore, in226

order to maximize our chances of identifying environmental variation in these data, we restricted227

our analyses to the 6,073 maternal smoking-related CpGs identified in Joubert et al. [15], who228

performed a meta analysis of maternal smoking during pregnancy on 6,685 infants from 13 co-229

horts. In our data, DNAm levels at birth and age 7 at 505 (9.2%) and 407 (7.4%) of the 5,500230

maternal smoking-related CpGs that passed QC in our study, respectively, were nominally cor-231

related (P value ≤ 0.05) with maternal cotinine levels (enrichment P values = 7.08 × 10−34 and232

6.49 × 10−8). While this enrichment was not unexpected, we were surprised to observe that the233

maternal smoking-related CpGs were enriched for meQTLs (Figure 4a). Additionally, there was234

a strong enrichment of the 8,579 conserved inferred genetic ancestry-associated CpGs among the235

5,500 maternal smoking-related CpGs that passed QC in our study (fold enrichment = 2.53; P236

value = 6.42 × 10−33), indicating the maternal smoking-related CpGs were enriched for geneti-237

cally regulated CpGs. Furthermore, genotype at the closest SNP for over 95% of the maternal238

smoking-related CpGs explained a greater proportion of the variance in DNAm levels at birth than239

did maternal cotinine levels (Figure 4b, see pages 7-9 in the Supplementary Material for analysis240

details). These results were identical for DNAm measured at age 7, and showed that genetic, and241

not environmental, factors are responsible for the majority of the variation in DNAm levels at even242

the most robust and replicated environmentally-associated CpGs in these children.243

Discussion244

The relationships between DNAm, chronological age, and race/ethnicity have the potential to shed245

light on disease etiology and may help determine the relative genetic and environmental contribu-246
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tions to the observed inter-individual variability of the epigenome [17–23, 29–34]. While it has247

previously been shown that race/ethnicity is related to DNAm in cross-sectional studies [29–34]248

and that statistically significant meQTLs are conserved as individuals age [39], it has yet to be249

shown that race/ethnicity-dependent DNAm marks are conserved as children age, and relatedly,250

that exposure histories explain a comparatively small fraction of the variation in DNAm levels.251

Even though there was substantial change in blood DNAm levels over time among children in252

this cohort, self-reported race effects on DNAm were overwhelmingly conserved in both direction253

and magnitude from birth to age 7. This result, as well as our novel Bayesian inference paradigm254

used to obtain it, is important in and of itself because it provides an example of, and a general255

method for identifying, DNAm patterns that are conserved over time, and differentiating between256

environmentally responsive and temporally stable DNAm marks, which has been highlighted as257

both a gap in current knowledge and a critical area of future epigenetic research [44]. The con-258

sistency of our estimates for inferred genetic ancestry and reported race effects on DNAm levels259

also demonstrates the fidelity of our processing pipeline that accounts for unobserved factors, in-260

cluding cell composition, because failure to account for latent covariates can lead to biased and261

irreproducible estimates [45, 46].262

While the observation that reported race effects are conserved from birth to age 7 gives cre-263

dence to the hypothesis that the effects are genetic in nature, it does not rule out the possibility264

of environmental components or gene-environment interactions that could result in race/ethnicity-265

associated DNAm patterns prior to birth that persist as the child ages. It was therefore interesting266

to find that there was a significant under enrichment of RR-CpGs in CpG islands, which agrees267

with the under enrichment previously observed for CpGs under genetic control [41]. To further268

explore this, we showed that the RR-CpGs were enriched among CpGs with meQTLs identified269

in our study, indicating that DNAm levels at many of the RR-CpGs are mediated by local geno-270

type and that much of the reported race-DNAm correlation could be attributed to genetic variation.271

Moreover, the RR-CpGs were only a small subset of inferred genetic ancestry associated CpGs272

(IGA-CpGs) in our study. This is contrary to the findings of Galanter et al. [31], who argued that273
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ethnicity-dependent DNAm patterns in admixed populations capture both genetic variation and274

differences in accumulated exposures. Our results provide evidence for genetics accounting for an275

overwhelming majority of the correlation between DNAm levels and reported race, which suggests276

the non-genetic contribution to variability in blood DNAm levels may be smaller than previously277

thought.278

There were several other notable features in these data connoting that genetic, and not envi-279

ronmental, factors were most responsible of the variation in blood DNAm levels in these children.280

The first was that although average DNAm levels of 16,172 CpGs changed significantly from281

birth to age 7, the direction of the change in 97% of those CpGs matched the direction of the282

corresponding correlation between DNAm levels and gestational age at birth. This manifest con-283

cordance in the “epigenetic clocks” present at birth and later in life, along with the observation that284

the 16,172 age-related CpGs were enriched for CpGs used to predict gestational and chronological285

age, suggests these age-related changes are coordinated by age-related mechanisms, and not due286

to age-dependent environmental exposures. Second, with the exception of maternal cotinine levels287

during pregnancy, none of the direct or indirect measures of exposure history were associated with288

DNAm levels at birth or age 7. This observation is congruent with the results of a recent compre-289

hensive review on environmental epigenetics research, which suggested that the effects of many290

environmental exposures on DNAm in blood are probably too small to estimate with even large291

sample sizes [38].292

The third, and possibly most surprising, observation in support of strong genetically- and293

weak environmentally-determined blood DNAm levels was that genetic, and not maternal coti-294

nine levels, were most responsible for the variation in DNAm levels at over 95% of the maternal295

smoking-associated CpGs identified in Joubert et al. [15]. This is consistent with, and significantly296

extends, the results in Gonseth et al. [47], which identified genome-wide significant meQTLs for297

three of the top ten most significant maternal smoking CpGs identified in the Joubert et al. study.298

One possibility explanation for our observation, as demonstrated in the Gonseth et al. study, is that299

genotype confounds the relationship between maternal smoking and DNAm. While we did not300
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have sufficient data to confirm this here, it remains an important area of future investigation.301

In summary, the results of our study suggest that DNAm levels in blood cells are fairly robust302

to environmental exposures, including those that are correlated with self-reported race. A better303

understanding of tissue-specific DNAm responses to environmental exposures could inform the304

design of future studies and provide insights into the mechanisms through which exposures and305

gene-environment interactions influence health and disease.306

Materials and methods307

Sample composition308

URECA is a birth cohort study initiated in 2005 in Baltimore, Boston, New York City and St. Louis309

under the NIAID-funded Inner City Asthma Consortium [36]. Pregnant women were recruited.310

Either they or the father of their unborn child had a history of asthma, allergic rhinitis, or eczema,311

and deliveries prior to 34 weeks gestation were excluded (see Gern et al. [36] for full entry criteria).312

Informed consent was obtained from the women at enrollment and from the parent or legal guardian313

of the infant after birth.314

Maternal questionnaires were administered prenatally and child health questionnaires admin-315

istered to a parent or caregiver every 3 months through age 7 years. Gestational age at birth and316

obstetric history were obtained from medical records. Additional details on study design are de-317

scribed in Gern et al. [36]. Frozen paired cord blood mononuclear cells (CBMCs) and peripheral318

blood mononuclear cells (PBMCs) at age 7, were available for 196 of the 560 URECA children319

after completing other studies. After QC, DNAm data were available for 194 children at birth,320

195 children at age 7, and 193 children at both time points; genotype data were available in 193321

children (194 at birth; 195 at age 7). The sample size for each analysis is given in Table 2.322

Maternal cotinine levels were measured in the cord blood plasma at birth, and we categorized323

mothers as smokers (≥ 10ng/mL; n = 31) or non-smokers (< 10ng/mL; n = 150), where cotinine324

levels were missing in 15 mothers. The 10ng/mL threshold was the same as that used in Joubert325
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et al. [15] to define a pregnant mother with a sustained smoking habit, where 147/150 (98%) of the326

non-smokers in our data had cotinine levels below 2ng/mL, the detection limit of the assay.327

DNA methylation328

DNA for methylation studies was extracted from thawed CBMCs and PBMCs using the Qiagen329

AllPrep kit (QIAGEN, Valencia, CA). Genome-wide DNA methylation was assessed using the330

Illumina Infinium MethylationEPIC BeadChip (Illumina, San Diego, CA) at the University of331

Chicago Functional Genomics Facility (UC-FGF). Birth and 7-year samples from the same child332

were assayed on the same chip and the data were processed using Minfi [48]; Infinium type I333

and type II probe bias were corrected using SWAN [49]. Raw probe values were corrected for334

color imbalance and background by control normalization. Three out of the 392 samples (two at335

birth and one at age 7) were removed as outliers following normalization. We removed 82,352336

probes that mapped either to the sex chromosomes or to more than one location in a bisulfite-337

converted genome, had detection P values greater than 0.01% in 25% or more of the samples, or338

overlapped with known SNPs with minor allele frequency of at least 5% in African, American339

or European populations. After processing, 784,484 probes were retained and M-values were340

used for all downstream analyses, which were computed as log2
(
methylated intensity +100

)
−341

log2
(
unmethylated intensity +100

)
. The offset of 100 was recommended in Du et al. [50].342

Genotyping343

DNA from the 196 URECA children was genotyped with the Illumina Infinium CoreExome+Custom344

array. Of the 532,992 autosomal SNPs on the array, 531,755 passed Quality control (QC) (exclud-345

ing SNPs with call rate < 95%, Hardy-Weinberg P values < 10−5, and heterozygosity outliers). We346

conducted all analyses in 293,696 autosomal SNPs with a minor allele frequency ≥ 5%. Genotypes347

for three children failed QC and were excluded from subsequent analysis that involved genotypes,348

including methylation quantitative locus (meQTL) mapping, inferred genetic ancestry, or used ge-349

netic ancestry PC1 as a covariate. These three children were included in all other analyses.350
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Estimating inferred genetic ancestry351

Ancestral principal component analysis (PCA) was performed using a set of 801 ancestry infor-352

mative markers (AIMs) from Tandon et al. [51] that were genotyped in both the URECA children353

and in HapMap [52] release 23.354

Univariate statistical methods355

To determine the effect of gestational age and maternal cotinine levels (smoker vs. non-smokers)356

on DNAm levels in CBMCs at birth or PBMCs at age 7, we used standard linear regression models357

with the child’s gender, sample collection site, inferred genetic ancestry and methylation plate358

number as covariates in our model. We controlled for gestational age in the maternal cotinine359

analysis. We also estimated cell composition and other unobserved confounding factors using a360

method described in McKennan et al. [53]. We then computed P values for each CpG site and used361

q-values [54] to control the false discovery rate at a nominal level. We took the same approach362

to determine CpGs whose DNAm changed from birth to age 7, except the response was measured363

as the difference in DNAm at birth and age 7. In this analysis, we included the child’s gender,364

gestational age at birth, inferred genetic ancestry and sample collection site as covariates. Because365

all paired samples were on the same plate, we did not include plate number as a covariate in this366

analysis. We also estimated unobserved factors that influence differences in DNAm at birth and367

age 7 using McKennan et al. [53] and included these latent factors in our linear model.368

Joint modelling of DNA methylation at birth and age 7369

We used data from the self-reported Hispanic and Black individuals with DNAm measured at both370

time points to analyze the effect of ancestry on DNAm levels at CpGs g = 1, . . . , p = 784, 484371

using the following model:372

yg =

y
(0)
g

y(7)
g

 =

Xβ(0)
g

Xβ(7)
g

 +Zγg +C`g + eg, (1a)373
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b
(0)
g

b(7)
g

 =
(
σ2

g + δ2
g

)−1/2

β
(0)
g

β(7)
g

 ∼ π(0,0)δ(0,0) +

K∑
k=1

π(k)
(1,0)

N1

(
0, τ2

k

)
δ0

 +

K∑
k=1

π(k)
(0,1)

 δ0

N1

(
0, τ2

k

)
374

+

S∑
s=1

K∑
k=1

π(k,s)
(1,1)N2

0, τ2
k

 1 ρs

ρs 1


 , (1b)375

eg ∼ N2n

(
0, σ2

gI2n + δ2
gB

)
,Bi j = 1

{
samples i and j are from the same child

}
, (1c)376

377

where δ0 and δ(0,0) are the point masses at 0 ∈ R and (0, 0) ∈ R2. The vector y(a)
g ∈ R

n contained the378

DNAm levels at CpG g at age a, X ∈ Rn contained each child’s inferred genetic ancestry or self-379

reported race and β(a)
g was the effect due to ancestry at age a. X was standardized to have variance380

1 whenX was inferred genetic ancestry. The nuisance covariates Z contained an intercept for the381

cord blood and PBMC samples, sample collection site, gender, gestational age at birth and plate382

number. Since gestational age was only correlated with cord blood DNAm, we assumed the effect383

of gestational age on DNAm at age 7 was zero for all CpG sites. We estimated the unobserved384

covariatesC with McKennan et al. [55], which accounts for the correlation between samples from385

the same child.386

The entries of the weight vector π =
(
π(0,0), π

(1)
(1,0), . . . , π

(K)
(1,0), π

(1)
(0,1), . . . , π

(K)
(0,1), π

(1,1)
(1,1), . . . , π

(S ,K)
(1,1)

)T
387

sum to 1, where we set K = 5 and S = 4. Similar to Flutre et al. [56] and Stephens [57], we388

specified a grid of correlation coefficients ρs ∈ {0, 1/3, 2/3, 1} and a dense grid of effect sizes τk ∈389

{0.05, 0.1, 0.15, 0.20, 0.25}whenX was inferred genetic ancestry and τk ∈ {0.1, 0.15, 0.225, 0.3, 0.375}390

when X was reported race. We set τ4 by first performing a univariate analysis and then esti-391

mating the variance of the effect sizes for CpGs with q-values ≤ 0.05, and τ1 was such that if392

b(a)
g ∼ N1

(
0, τ2

1

)
, the expected number of CpGs significant at the Bonferroni threshold 0.05/p in a393

univariate analysis would be smaller than 1 for a = 0, 7. The proportion of CpGs with non-zero394

reported race effects at both ages that fell in bin s = 1, . . . , 4 was defined as
K∑

k=2
π(k,s)

(1,1), where we395

ignored the proportion when k = 1, because τ1 was too small to differentiate from zero. The es-396

timated proportion of CpGs in the ρs = 2/3 or ρs = 1 bins was still over 98% when we included397

τ1.398
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To fit the model, we first regressed out Z and the estimated C from both yg andX ⊕X and399

used the residuals in the downstream analysis. We estimated σ2
g and δ2

g for each g = 1, . . . , p with400

restricted maximum likelihood (REML) and followed Stephens [57] and estimated π by empirical401

Bayes via expectation maximization. Supplemental Figures S2 and S4 plot the estimate for π in402

the reported race analysis. We then defined cong and disg for each CpG g = 1, . . . , p as403

cong = P̂
{
β(0)

g , β(7)
g > 0 | yg,π, σ

2
g, δ

2
g

}
∨ P̂

{
β(0)

g , β(7)
g < 0 | yg,π, σ

2
g, δ

2
g

}
404

disg = P̂
[{
β(0)

g > 0, β(7)
g ≤ 0

}
∪

{
β(0)

g < 0, β(7)
g ≥ 0

}
∪

{
β(0)

g ≥ 0, β(7)
g < 0

}
405

∪
{
β(0)

g ≤ 0, β(7)
g > 0

}
| yg, σ

2
g, δ

2
g,π

]
.406

407

Determining meQTLs408

We performed meQTL mapping in the 145 genotyped, self-reported Black children using the set409

of 269,622 SNPs with 100% genotype call rate in this subset. We restricted ourselves to this subset410

of samples to minimize heterogeneity in effect sizes. To identify CpG-SNP pairs, we considered411

SNPs within 5kb of each CpG, as this region has been previously shown to contain the majority of412

genetic variability in DNAm [8] and is small enough to mitigate the multiple testing burden, and413

computed a P value for the effect of the genotype at a single SNP on DNAm at the corresponding414

CpG with ordinary least squares. We then defined the meQTL for each CpG site as the SNP with415

the lowest P value. In addition to genotype, we included inferred genetic ancestry (i.e., ancestry416

PC1), gestational age at birth, gender, sample collection site and methylation plate number in the417

linear model, along with the first nine principal components of the residual DNAm data matrix after418

regressing out the intercept and the five additional covariates. We then tested the null hypothesis419

that a CpG did not have an meQTL in the 10kb region by using the minimum marginal P value in420

the region as the test statistic and computed its significance via bootstrap. We lastly used q-values421

to control the false discovery rate.422
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Ethical statement423

We used de-identified single nucleotide polymorphism, DNA methylation and phenotype data from424

samples taken from human subjects as part of the Urban Environment and Childhood Asthma425

study. The WIRB approved human samples to be used in the Urban Environment and Childhood426

Asthma study (WIRB project number: 20142570).427
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Figure legends580

Figure 1: Estimated ancestry principal components (PCs) 1 and 2. Nearly all the variation in581

ancestry separates along PC1 in the URECA sample. Filled triangles represent the 196 URECA582

children in this study, with their self-reported race shown in different colors. Open circles are583

reference control samples from HapMap; red = Utah residents from northern and western Europe584

(CEU); yellow = east Asian (Chinese and Japanese); dark blue = Africans from Nigeria (Yoruban).585

586

Figure 2: Overlapping ancestry CpGs at birth and at age 7. (a): self-reported race-associated587

CpGs (RR-CpGs) with cong ≥ 0.8 (violet) or disg ≥ 0.8 (red or blue). A discordant RR-CpG was588

classified as significant at birth but not at age 7 (blue) if the marginal posterior probability that the589

effect was non-zero at birth was greater than that at age 7. Discordant RR-CpGs that were signifi-590

cant at age 7 but not at birth (red) were defined analogously. (b): The same as (a), but for inferred591

genetic ancestry-associated CpGs (IGA-CpGs). (c): The overlap between RR-CpGs (cong ≥ 0.8592

or disg ≥ 0.8) and IGA-CpGs (cong ≥ 0.8 or disg ≥ 0.8).593

594

Figure 3: RR-CpGs are enriched for CpGs with meQTLs. (a) Illustration of the causal relationship595

between the DNAm (M) at a CpG site, the genotype (G) at the SNP within ±5kb of the CpG that596

had the smallest meQTL P value and self-reported race (RR). Each graph corresponds to a unique597

CpG. (b) Plots of the meQTL P value for edge a in CBMCs at birth, where CpGs were stratified598

by whether or not it was an RR-CpG (cong ≥ 0.8 or disg ≥ 0.8). The ten enlarged red circles are599

just for visual aid.600

601

Figure 4: meQTL P value enrichment, where circled blue points are for visual aid (left), and602

the relative proportion of variance in DNAm levels explained by genotype (right). The x-axis of603

the latter was defined as the ratio of the proportion of variance in DNAm levels explained by the604

genotype of each CpG’s closest SNP to the sum of the aforementioned genetic proportion and the605

proportion explained by maternal cotinine levels during pregnancy. A ratio > 0.5 indicates that606

local genotype explained more variance than maternal cotinine levels during pregnancy.607
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Tables608

Table 1: Covariates for the n = 196 URECA children in our study, stratified by self-
reported race.

Black Hispanic White Mixed Other
Sample Size 147 39 1 7 2
Males (%) 71 (48%) 25 (64%) 0 (0%) 4 (57%) 0 (0%)

Asthma diagnosis at age 7 (%) 38 (26%) 12 (31%) 0 (0%) 2 (29%) 0 (0%)
Gestational age at

birth, in weeks 39.0 38.9 36.0 39.1 39.0
(mean [range]) [34,42] [35,41] [37,40] [38,40]

Sample Collection Site
Baltimore (%) 64 (44%) 1 (3%) 1 (100%) 3 (43%) 2 (100%)

Boston (%) 17 (12%) 5 (13%) 0 (0%) 2 (29%) 0 (0%)
New York (%) 23 (16%) 32 (82%) 0 (0%) 1 (14%) 0 (0%)
St. Louis (%) 43 (29%) 1 (3%) 0 (0%) 1 (14%) 0 (0%)

609

Table 2: Sample size and composition for each analysis.

Black Hispanic White Mixed Other
Inferred genetic ancestry, paired samples 143 37 0 0 0

Self-reported race, paired samples 145 38 0 0 0
Age (birth to age 7), paired samples 143 37 1 7 2

Gestational age at birth 144 37 1 7 2
meQTLs at birth 144 0 0 0 0
meQTLs at age 7 144 0 0 0 0

Maternal cotinine levels at birth∗ 132 38 1 6 2
Maternal cotinine levels at age 7∗ 134 37 1 6 2

*15 of the mothers did not have cord blood plasma cotinine measurements.

610
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