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ABSTRACT 
In humans, DNA methylation marks inherited from sperm and egg are largely erased 

immediately following conception, prior to construction of the embryonic methylome. 

Exploiting a natural experiment of cyclical seasonal variation including changes in diet and 

nutritional status in rural Gambia, we replicated 125 loci with a common season-of-

conception methylation signature in two independent child cohorts, providing evidence of 

environmental effects on DNA methylation in the early embryo that persist at least until 

mid-childhood. Bioinformatic analysis revealed that these loci were highly enriched for 

metastable epialleles, parent-of-origin specific methylation and regions hypomethylated in 

sperm, and for H3K9me3 and H3K27me3 histone marks in multiple tissues. They tended to 

co-locate with endogenous retroviral (ERV1, ERVK) elements. Identified loci were 

influenced but not determined by measured genetic variation, notably through gene-

environment interactions. To the extent that early methylation changes impact gene 

expression, environmental sensitivity during early embryo genomic remethylation could 

thus constitute a sense-record-adapt mechanism linking early environment to later 

phenotype.  
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DNA methylation (DNAm) plays an important role in a diverse range of epigenetic processes 

in mammals including cell differentiation, X-chromosome inactivation, genomic imprinting 

and the silencing of transposable elements1. DNAm can influence gene expression and can in 

turn be influenced by molecular processes including differential action of methyltransferases 

and transcription factor binding2–4. 

The human methylome in extensively remodelled in the very early embryo when parental 

gametic methylation marks are largely erased before acquisition of lineage and tissue-specific 

marks at implantation, gastrulation and beyond5. The days following conception may 

therefore offer a window of heightened sensitivity to external environmental influences, 

potentially stretching back to the period before conception coinciding with late maturation 

of oocytes and spermatozoa at loci that (partially) evade early embryonic reprogramming6. 

The effects of early exposures on the mammalian methylome have been widely studied in 

animals but multiple factors make this challenging in humans. Causal pathways are difficult 

to elucidate in observational studies, and even randomised experimental designs are prone 

to confounding due to reverse causation from exposure-related postnatal effects7.   

Here we address these limitations by exploiting a natural experiment in rural Gambia where 

conceptions occur against a background of repeating annual patterns of dry (‘harvest’) and 

rainy (‘hungry’) seasons with accompanying significant changes in energy balance, diet 

composition, nutrient status and rates of infection8,9. We interrogate early embryonic events 

by leveraging published data on loci with evidence for the establishment of variable 

methylation states in the early embryo that persist in post-gastrulation and postnatal tissues; 

namely loci demonstrating systemic interindividual variation (SIV)10,11 and/or epigenetic 

supersimilarity (ESS)11 (Fig. 1). These loci bear the hallmarks of metastable epialleles (MEs), 

loci with variable methylation states that were first identified in isogenic mice. MEs exhibit 

stable patterns of SIV indicating stochastic establishment of methylation marks prior to 

gastrulation when tissue differentiation begins12, and several MEs have been shown to be 

sensitive to periconceptional nutrition in mice13. These loci thus serve as useful tools for 

studying the effects of early environment on DNAm by enabling the use of accessible tissues 

(such as blood) that can serve as a proxy for systemic (cross-tissue) methylation, and by 

pinpointing the window of exposure to the periconceptional period14.  

In this study we assess the influence of seasonality on DNAm in two Gambian child 

cohorts15,16, enabling robust identification of loci showing consistent effects at the ages of 24 
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months and 8-9 years (Fig. 1). Through prospective study designs, we capture conceptions 

throughout the year and use statistical models that make no prior assumptions about specific 

seasonal windows driving DNAm changes in offspring. We probe potential connections 

between season of conception (SoC)-associated loci and putative MEs and investigate links 

with transposable elements and transcription factors associated with the establishment of 

methylation states in the early embryo. We also assess the influence of genetic variation and 

gene-environment interactions. Finally, by comparing our results with public DNAm data 

obtained from sperm, oocytes and multi-stage human embryos, we investigate links between 

SoC-associated loci, histone marks, gametic and parent-of-origin specific methylation, and the 

establishment of DNAm states in early embryonic development.  

The developmental origins of health and disease hypothesis posits the existence of 

mechanisms linking prenatal nutrition to lifelong metabolic disease6. It has also been 

suggested that epigenetic mechanisms driving phenotypic variation would be advantageous 

in the face of changing environments, and that for such mechanisms to have evolved, the 

propensity to vary should be under genetic control17. Our description of genetically directed 

environmentally sensitive hotspots providing a durable record of conditions during gametic 

maturation and in the very early embryo fulfils both these predictions. 

 

RESULTS 

Association of DNA methylation with Gambian season of conception 

Key characteristics of the Gambian cohorts and samples analysed in this study are provided 

in Table 1. DNAm differences associated with season of conception are potentially 

confounded by season of sample collection effects in the ENID (discovery) cohort since 

samples are collected at age 2yrs (Fig. 2A top). This is not the case in the EMPHASIS 

(replication) cohort where all samples are collected in the Gambian dry season (Fig. 2A 

bottom). To compare year-round DNAm signatures across cohorts we focussed on 391,814 

autosomal CpGs (‘array background’) intersecting the Illumina HM450 and EPIC arrays used 

to measure DNAm in the discovery and replication cohorts respectively. We modelled the 

effect of date of conception on DNAm using Fourier regression18 which makes no prior 

assumptions about specific seasonal windows driving DNAm changes in offspring (see 

Methods). 
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We began by identifying 1,861 loci (‘discovery CpGs’) showing significant seasonal variation 

in 2-year olds from the discovery cohort with a false discovery rate (FDR)<10%. We then 

analysed seasonal effects at these loci in 8-9-year olds from the replication cohort. Fourier 

regression models revealed a heterogeneous distribution of year-round methylation peaks 

and nadirs at discovery CpGs in each cohort (Fig. 2B, Supplementary Table 1). Next, we 

identified a subset of 125 ‘SoC-CpGs’, defined as CpGs from the discovery CpG set with 

evidence of significant seasonality (FDR<10%) in the replication cohort (Supplementary Table 

2).  

SoC-CpGs showed a highly consistent seasonal pattern across both cohorts in marked contrast 

to matched controls with similar methylation distributions (Fig. 2C; Spearman rho=0.56, 

p=8.6x10-12 and rho=0.02, p=0.65 respectively for conception date at methylation maximum; 

see Table 2 for details of matched controls).  

60% of SoC-CpGs exist as singletons, defined as having no SoC-CpG within 1,000bp, and 85% 

fall within clusters of 3 CpGs or fewer (Supplementary Table 3). SoC-CpGs are distributed 

throughout the genome (Supplementary Fig. 1) and include several CpG clusters extending 

over more than 500bp, notably at IGF1R which spans 1,323bp and covers 9 CpGs 

(Supplementary Table 4, Supplementary Fig. 2). Compared to array background, SoC-CpGs are 

highly enriched for intermediate (25-75%) methylation states, most notably at putative MEs 

and loci exhibiting SIV/ESS previously identified in multi-tissue screens in adult Caucasians, 

hereafter named ‘MEs’ for short (Figure 2D; Supplementary Table 5; see Table 2 for details of 

ME/SIV/ESS loci). SoC-CpGs are enriched at CpG islands compared to array background and 

matched controls (Fig. 2E).  

SoC-CpGs and non-replicating discovery CpGs show a distinct pattern of methylation maxima 

for conceptions falling within the July-September period in both cohorts (Fig. 3A). This pattern 

is particularly marked at SoC-CpGs (Fig. 3A and 3B top), and also at ME loci in the set of non-

replicating discovery CpGs (Fig. 3B top). The July-September period corresponds to the peak 

of the Gambian rainy season, a strong validation of our previous studies in babies and infants 

that focussed on conceptions at peak seasons only, with similar observations of higher 

methylation in conceptions at the peak of the Gambian rainy season compared to peak dry 

season11,19–21. Methylation minima fall within the February-April period, corresponding to the 

peak of the dry season (Supplementary Fig. 3).  
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Seasonal methylation amplitude, defined as the difference between modelled methylation 

peak and nadir, is also significantly greater at SoC-CpGs, and at replicating and non-replicating 

MEs, compared to controls (Figs. 3A and 3B bottom; Supplementary Table 6; Wilcoxon Rank-

Sum test p-value ranging from 7.1x10-8 to 1.5x10-59). Furthermore, there is evidence of a 

substantial and significant decrease in seasonal amplitude at non-replicating MEs in the older 

cohort (Fig. 3B bottom; median amplitude decrease=4.5%; Wilcoxon p=6.7x10-13), and a small 

but significant decrease at SoC-CpGs that are not known MEs (median decrease=1.0%; 

p=1.7x10-4; Supplementary Table 6). There is no corresponding significant amplitude decrease 

in replicating MEs or controls.  

Compared to array background, SoC-CpGs are highly enriched for MEs (18-fold enrichment, 

p=6.8x10-10). ME enrichment is even greater when accounting for CpG clustering 

(Supplementary Table 7). No enrichment is observed at matched controls. 

Finally, pairwise methylation states are highly correlated at a large majority of SoC-CpGs in 

both cohorts, so that the same individuals tend to have relatively high or low methylation at 

multiple SoC-CpGs. This is in marked contrast to discovery CpGs and controls (Fig. 3C), and 

pairwise correlations are not driven by increased correlation within SoC-CpG clusters 

(Supplementary Fig. 4). As expected, a small number of strong negative pairwise SoC-CpG 

correlations (Fig. 3C) include CpGs with methylation maxima in dry season conceptions (as 

shown in Fig. 2C). 

 

Early stage embryo, gametic and parent-of-origin specific methylation 

Given the strong enrichment for MEs within the set of SoC-CpGs, we next analysed links to 

methylation changes in early stage human embryos, as we have done previously for putative 

MEs identified in a whole-genome bisulfite-seq (WGBS) multi-tissue screen10. We aligned our 

data with public reduced representation bisulfite-seq (RRBS) data from human IVF embryos5 

and obtained informative methylation calls for 67,870 array background CpGs covered at ≥ 

10x read depth in both inner cell mass (ICM, pre-gastrulation) and embryonic liver (post-

gastrulation) tissues. We found a highly distinctive pattern of increased intermediate 

methylation (10-90%) at SoC-CpGs in post-gastrulation embryonic liver tissue. This strongly 

contrasted with matched controls and with a general trend of genome-wide hyper- and hypo-

methylation at loci mapping to array background (Fig. 4A). We observed a similar pattern at 
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MEs irrespective of their association with SoC, confirming our previous observation10, here in 

the subset of MEs present on Illumina arrays (Fig. 4A, ‘all MEs’). 

We previously observed consistent hypomethylation at MEs across all gametic and early 

embryonic developmental stages, most notably in sperm10. We tested the latter observation 

at SoC-CpGs by aligning our data with public sperm WGBS data22, restricting our analysis to 

292,240 CpGs mapping to array background that were covered at ≥ 10x. 94 SoC-CpGs were 

covered in the WGBS dataset and these showed a marked decrease in predicted sperm 

methylation, with 82% [95% CI: 74-90%] hypomethylated (methylation <10%) in sperm, 

compared to 43% [38%-47%] and 48% [48-48%] at loci mapping to matched control CpGs and 

array background respectively (Fig. 4B). Strong enrichment for sperm hypomethylation was 

also observed at ME CpGs (Fig. 4B, ‘all MEs’). Postnatal intermediate methylation states at 

SoC-CpGs were preserved in both Gambian cohorts irrespective of predicted sperm 

methylation states, in contrast to array background CpGs where methylation distributions 

strongly reflected predicted sperm hypomethylation status (Fig. 4C left). 

Our observation of increased sperm hypomethylation at SoC-associated loci, together with 

existing evidence that imprinted genes may be especially sensitive to prenatal 

exposures21,23,24, prompted us to investigate a potential link between SoC-sensitivity and 

parent-of-origin specific methylation (PofOm). A recent study used phased WGBS 

methylomes to identify regions of PofOm in 200 Icelanders25. We analysed 699 of these 

PofOm CpGs overlapping Illumina array background (Table 2) and observed very strong 

enrichment for PofOm CpGs at SoC-CpGs and at all MEs on the array (44- and 15-fold 

enrichment, p=2.2x10-12 and 1.8x10-36 respectively; Supplementary Table 8). PofOm 

enrichment at SoC-CpGs is driven by a large (8 CpG) PofOm region at IGF1R, and a single 

replicating ME-SoC-CpG proximal to the human imprinted 14q32 region (Supplementary 

Table 2). This is reflected in substantially reduced enrichment after adjustment for CpG 

clustering (Supplementary Table 8). Strong enrichment for PofOm at MEs is maintained after 

adjustment for clustering.  

Regions of PofOm detected in postnatal samples tend to be differentially methylated in 

gametes25, and may thus have evaded the widespread epigenetic reprogramming that occurs 

in the pre-implantation embryo26. We tested this directly by interrogating data from a whole-

genome screen for germline differentially methylated regions (gDMRs) that persist to the 

blastocyst stage and beyond27. In this analysis, gDMRs were defined as contiguous 25-CpG 
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regions that were hypomethylated (mean DNAm < 25%) in one gamete and hypermethylated 

(mean DNAm > 75%) in the other. We began by observing very strong enrichment for oocyte 

(maternally methylated), but not sperm gDMRs, at all PofOm loci identified by Zink et al25 

(Supplementary Table 8), confirming previous observations of an excess of PofOm loci that 

are methylated in oocytes only25. We found a particularly strong 122-fold enrichment for 

oocyte gDMRs (oo-gDMRs) persisting in placenta. We next analysed SoC-CpGs and MEs and 

again found evidence for strong enrichment of oocyte, but not sperm gDMRs, at these loci 

(6.5-fold oo-gDMR enrichment, p=3.5x10-9 at SoC-CpGs; 2.9-fold, p=1.2x10-24 at MEs; 

Supplementary Table 8). Once again enrichment at SoC-CpGs and MEs was particularly 

marked at oo-gDMRs persisting in placenta and was partially driven by CpG clustering 

(Supplementary Table 8). Of note, more than 4 times as many SoC-CpG clusters were 

identified as oo-gDMRs persisting in placenta (9 clusters), as were recorded as exhibiting 

PofOm identified by Zink et al (2 clusters; Supplementary Table 2). Note that a large majority 

of SoC-CpGs that are hypomethylated in sperm are not oo-gDMRs (i.e. they are not 

hypermethylated in oocytes) (Fig. 4C, bottom right), suggesting that factors associated with 

regional sperm hypomethylation rather than differential gametic methylation may be a key 

driver of sensitivity to periconceptional environment at these loci. 

 

Enrichment of DNase I hypersensitive sites and histone marks 

We assessed overlap of SoC-CpGs and controls with putative tissue-specific functional 

elements using eFORGE v2.028,29. As with previous analyses, we adjusted for CpG clustering 

using a proximity cutoff of 1kbp. We began by analysing enrichment for DNase I 

hypersensitive sites (DHS) identified in 39 different tissues and cells from the Roadmap 

Epigenomics Consortium28. We found no evidence of significant enrichment of DHS at SoC-

CpGs or matched or random control CpGs. We next looked for enrichment of 5 distinct 

histone (H3) marks identified in the same Roadmap tissues and cells. We found evidence of 

extremely strong enrichment at SoC-CpGs for H3K9me3 and H3K27me3 derived from multiple 

sources including fetal and postnatal primary tissues and cells (Fig. 4D). This was in marked 

contrast to H3 enrichment at matched control CpGs which showed extremely strong 

enrichment for H3K4me1 and H3K27me3 (Supplementary Fig. 5), consistent with the 

identification of enhancers associated with non-allelic intermediate methylation profiles30. 

No enrichment for H3 marks was observed at random controls. 
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Enrichment of transposable elements and transcription factors associated with genomic 

imprinting 

Variable methylation states at MEs are associated with transposable elements (TEs) in murine 

models31,32, and we have previously observed enrichment for specific proximal endogenous 

retroviruses (ERVs) at putative human MEs10,21. Here we found some evidence for enrichment 

of proximity to ERV1 and ERVK at SoC-CpGs, although enrichment was reduced after 

accounting for CpG clustering (Supplementary Table 7). 

Enrichment for PofOm and gDMRs at SoC-CpGs loci suggests a potential link to mechanisms 

implicated in the maintenance of PofOm and genomic imprinting in the early embryo. Our 

previous analysis of MEs identified from WGBS data found enrichment for proximal binding 

sites for 3 transcription factors (TFs: CTCF, ZFP57 and TRIM28) identified through ChIP-seq of 

embryonic stem and kidney cells that are linked to maintenance of PofOm at imprints10. Here 

we found no evidence for enrichment of proximal bindings sites for these TFs at SoC-CpGs on 

the Illumina array (Supplementary Table 7). 

 

Influence of genotype and gene-environment interactions 

Genetic variation, primarily in cis, is a major driver of inter-individual variation in DNAm33. A 

previous analysis quantified methylation variance explained by additive genetic effects, and 

common and non-shared environment in 1,464 twin pairs from the British E-Risk study34. We 

began by reproducing the result from Hannon et al34 that non-shared environment (which 

includes measurement error) explains the major part of methylation variance in array 

background (Fig. 5A). Methylation variance explained by additive genetic effects at SoC-CpGs 

was markedly higher in comparison (Fig. 5A). On the assumption that SoC-CpGs will be 

enriched for MEs exhibiting systemic (cross-tissue) interindividual variation (SIV), this 

supports the finding by Hannon et al of increased heritability at loci that are more correlated 

in blood and brain, suggestive of SIV34. 

We next explored the influence of genotype and environment on DNAm directly in the 

EMPHASIS (replication) cohort, for which we had genotype data on 288 individuals measured 

at >3M SNPs after imputation from the Illumina Global Screening Array (GSA; see Methods). 

For this analysis we assessed genome-wide SNP-DNAm associations to identify methylation 

quantitative trait loci (mQTL), and also looked for gene-environment (SoC) interactions (GxE) 
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on DNAm, following a similar strategy to that used in a recent study in the GUSTO cohort35 

(see Methods). Since there is limited power to detect genetic effects in a sample of this size, 

particularly when assessing interactions, we compared our findings at SoC-CpGs with 

matched and random control CpGs (see Table 2). 

We began by selecting the most significant (‘winning’) mQTL (G1) and GxE (G2) SNP for each 

SoC-CpG (Supplementary Table 9). The vast majority of G1 and G2 SNPs mapped to a single 

SoC-CpG, with the exception of two G1 SNPs each mapping to 2 CpGs in trans; and two G2 

SNPs, one mapping to 2 CpGs and the other to 8 CpGs in the IGF1R SoC-CpG cluster, both also 

in trans (Supplementary Table 10). Furthermore, no major G1 or G2 SNP clusters were 

discernible (Supplementary Fig. 6. and Supplementary Tables 11 and 12). Together these 

observations suggest that DNAm differences at SoC-CpGs are not driven by genetic variants 

at any specific locus covered by the imputed GSA data.  

To assess the potential for genetic confounding of SoC-associated DNAm signals, we tested 

each winning G1 and G2 SNP for association with SoC using 5 different genotypic models. No 

SNPs passed a Bonferroni-adjusted significance threshold accounting for the number of SNPs 

and models tested (Supplementary Table 13), thus providing no strong evidence of genetically 

driven confounding of SoC-associated DNAm. 

We next ran a series of Fourier regression models to determine the relative proportions of 

methylation variance explained by E (periconceptional environment only), G1 (mQTL only) 

and G2xE (including E and G2 main effects but excluding G1 main effects; see Methods). 

Results for SoC-CpGs were compared to matched and random control CpGs. Variance 

explained by E, G1 and G2xE models was assessed using adjusted R2 values to account for 

increasing model complexity. In each case adjusted R2 values were compared to a baseline 

model that included the same set of covariates (principal components, age and sex) used in 

Fourier regression models for the main seasonality analysis. At SoC-CpGs, mQTL (G1) models 

explained significantly more methylation variance than seasonality alone (E models). 

However, gene-environment (G2xE) models explained significantly more methylation 

variance than both G1 and E models (Fig. 5B, Supplementary Table 14). A formal assessment 

of ‘winning models’, using the Akaike Information Criterion (AIC) to account for differences in 

model complexity determined that G2xE models provided the best fit for 83% of SoC-CpGs, 

compared with 24% and 32% for random and high variance controls respectively (Fig. 5B 

inset).  
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As expected, year-round DNAm at a CpG where G1 is the winning model indicates a strong 

mQTL effect on mean methylation (Fig. 5C, bottom left). In contrast, at a CpG where GxE 

effects dominate, the strength of the seasonality effect is modified by genotype (Fig. 5C, top 

left; dashed lines); revealing a large seasonal effect that is less apparent when modelling data 

unstratified by genotype (same figure, solid red line). Scatter plots of underlying individual-

level DNAm data adjusted solely for baseline covariates support these observations (Fig. 5C 

right). 

A recent analysis of GxE effects in the GUSTO cohort revealed a similar dominance of GxE 

effects at a subset of variable CpGs when considering a range of in utero environmental 

effects including maternal BMI, smoking and maternal depression35. Speculating that these 

loci may be similarly sensitive to periconceptional environment, we tested SoC-CpGs and 

controls for enrichment of 889 GxE CpGs identified by Teh et al35 that overlapped array 

background. We observed a highly significant 18-fold enrichment of these GxE CpGs amongst 

SoC-CpGs (p=1.1x10-5; cluster-adjusted 26-fold, p=2.4x10-6; Supplementary Table 7). 

 

DISCUSSION 

We have exploited a natural, seasonal experiment in rural Gambia whereby human 

conceptions are ‘randomised’ to contrasting environmental (especially dietary) conditions to 

examine whether these differential exposures leave a discernible signature on the offspring 

methylome. We identified 125 ‘SoC-CpGs’ with strong evidence of sensitivity to season of 

conception in independent, different-aged cohorts. Importantly, these cohorts have 

contrasting confounding structures, notably with regard to the timing of sample collection; 

the latter eliminating potential confounding due to seasonal differences in leukocyte 

composition. These results, derived from analysis of Illumina array data with limited coverage, 

suggest there may be many more hotspots sensitive to the periconceptional environment 

across the human methylome. 

This analysis builds on previous epigenetic studies in this setting that have focussed on single 

cohorts and analysed methylation differences between individuals conceived at the peaks of 

the Gambian dry and rainy seasons only11,19–21,36. Greater methylation in offspring conceived 

at the peak of the Gambian rainy season is consistent with previous findings and this 

observation is now greatly strengthened by the application of Fourier regression to model 

year-round conceptions – an approach that makes no prior assumption of when methylation 
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peaks and nadirs may occur. The number of identified SoC-CpGs is also substantially increased 

in this study. Comparisons with array background and control CpGs matching SoC-CpG 

methylation distributions, together with a two-step discovery-replication design, increase 

confidence that these findings are not statistical artefacts. 

Multiple lines of evidence support the notion that methylation states at these loci are 

established in the early embryo. First, they are highly enriched for putative MEs and related 

loci identified in other studies with characteristic methylation signatures suggestive of 

establishment early in embryonic development10,11. Second, like MEs, season-associated loci 

exhibit highly unusual methylation dynamics in early stage embryos10. Third, they have 

distinctive gametic methylation patterns, notably hypomethylation in sperm (in common with 

putative MEs10), and differential gametic and parent-of-origin specific methylation in a 

subset. Increased sperm hypomethylation at SoC-CpGs may reflect their enrichment at CpG 

islands37 (Fig. 2E), sequence features that are largely refractory to protamine exchange, with 

the possibility for retaining epigenetic function associated with histone modifications into the 

early embryo38. Fourth, they are highly enriched for H3K27me3 and H3K9me3 marks which, 

along with the TRIM28/KAP1-repressor complex, play pivotal roles in restraining transposon 

expression whilst protecting imprinted PofOm in pre-implantation embryos undergoing 

reprogramming39. Furthermore, these heterochromatic marks also coordinate transient gene 

expression and early lineage commitment, in part through demarking active and poised 

enhancers that are frequently associated with intermediate methylated states30,40.  

A large majority of SoC-CpGs have not previously been identified as MEs, but given the 

supporting evidence described above, we speculate that many are likely to be so. Indeed, 

evidence of attenuation of SoC effects with age suggests that, to the extent that 

interindividual variation is driven by periconceptional environmental factors, screens for 

putative MEs (including ESS and SIV) in adult tissues used as a reference in this analysis may 

be missing metastable regions which are more pronounced earlier in the life course. SoC 

effect attenuation in the older cohort could also explain the lack of replication of SoC 

associations at the majority of CpGs from the discovery set, despite suggestive evidence of a 

common effect of periconceptional environment (Figs. 3A and 3B). Importantly, this would 

have implications for detecting the effect of periconceptional exposures on DNAm in samples 

collected beyond the neonatal and early childhood periods, an important consideration for 

epigenetic epidemiological studies since non-persisting methylation differences could still 

have a significant impact on early developmental trajectories with life-long consequences41,42. 
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Methylation states at SoC-associated loci are highly correlated within individuals despite 

being distributed throughout the genome, strongly suggesting that a common mechanism is 

at play. This contrasts with a recent study of murine MEs located within intracisternal A 

particle insertions (IAPs, of which the Agouti locus is a paradigm example43), where no intra-

individual correlation between stochastic methylation states was observed, although the 

mice were not exposed to different environments32. 

Potential insights into mechanisms linking periconceptional environment to DNAm changes 

in postnatal tissues come from our investigations of the methylation status and genomic 

context of SoC-CpGs.  

First, we observed a strong overlap of SoC-CpGs with regions that are known to be 

hypomethylated in sperm. A minority of these loci are hypermethylated in oocytes with 

PofOm persisting in postnatal tissues. This latter observation aligns with a growing body of 

evidence linking early environment, notably nutritional factors involved in one-carbon (C1) 

metabolism, with methylation at imprinted regions23,24. Indeed we have previously noted an 

association between season of conception and several C1 metabolites at a maternally 

imprinted region at the small non-coding RNA VTRNA2-121, consistent with evidence of 

‘polymorphic imprinting’ linked to prenatal environment at this locus25,44. Furthermore, we 

previously found strong enrichment for proximal binding sites of several transcription factors 

(TFs) associated with the maintenance of PofOm in the early embryo at MEs detected in a 

WGBS screen10. We were unable to replicate this at SoC-CpGs in this study which may reflect 

the relatively small proportion of PofOm loci in the set of SoC-CpGs, or factors related to the 

biased methylome coverage of Illumina arrays. More targeted experimental work is required 

to determine the extent of SoC effects at imprinted loci, especially given our observation that 

SoC-CpGs are enriched for heterochromatic histone modifications and proximity to ERV 

transposable elements that have recently been shown to drive the establishment of germline-

derived maternal PofOm45. 

Second, we observed modest enrichment for proximity to ERV1 and ERVK transposable 

elements at SoC-CpGs. This was also observed at MEs on the Illumina array, confirming our 

previous observations10,21. Enrichment of ERVs at SoC-CpGs is notable since most 

environment-sensitive mouse MEs are associated with IAPs (which are rodent-specific 

ERVs)32, and Krab zinc-finger protein (KZFP)-mediated repression of transposable elements 

(TEs) including ERVs has been proposed as a driver of the rapid evolution of gene regulation46. 
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The KZFP ZFP57 is particularly interesting in this respect since its binding to DNA is linked both 

to repression of TEs and to the maintenance of genomic imprints in the pre-implantation 

embryo23,47. We previously identified a putative SoC-associated DMR in the ZFP57 promoter 

in blood from Gambian infants21, and a proximal CpG 21kbp from this DMR is in the set of 

discovery CpGs in this study, indicating a putative SoC association in Gambian 2 year-olds. It 

is possible that non-replication of the SoC-association at ZFP57 in the older Gambian cohort 

reflects the more general attenuation of SoC effects described above. Interestingly there is 

some evidence that the ZFP57 DMR, which lies 3kb upstream of the transcription start site, is 

established in the early embryo11. Given the important function of ZFP57 in pre-implantation 

methylation dynamics, its potential role as an environmentally sensitive regulator of genome-

wide SoC effects on DNA remains an open question.  

Third, DNAm at SoC-CpGs is highly enriched for intermediate methylation states. 

Intermediate methylation has also been observed at MEs in Gambians and in non-

Africans19,20,48–50, and this coincides with a similar observation at MEs in post-gastrulation 

embryonic tissues10. This latter observation includes measurements from single conceptuses, 

with methyl-seq read-level analyses indicating that intermediate methylation is driven by 

adjacent CpGs which all tend to have the same methylation state on a given DNA molecule 10.  

Taken together, the above evidence suggests that a periconceptional environmental 

exposure may perturb methylation by nudging the ratio of methylated to unmethylated DNA 

molecules at hotspots in the early post-gastrulation embryo. These hotspots appear to be 

concentrated in regions that are hypomethylated in sperm, and, in the case of PofOm, 

additionally hypermethylated in oocytes. In the latter case, methylation states could be 

driven by an environmentally sensitive gain of methylation on the paternal allele that is 

propagated through development, incomplete reprogramming on the maternal allele leaving 

residual traces, or modest de novo methylation at some later point. A deeper understanding 

of mechanisms will require further investigation in cell and animal models.  

Several SoC-CpGs with evidence of PofOm map to an intronic region of the IGF1R gene. Zink 

et al25 were unable to demonstrate PofO allele-specific expression (PofO-ASE) in this region 

although others have found evidence of maternal imprinting of an intronic lncRNA at this 

gene in cancerous cells51,52. Loss of IGF1 receptors gives rise to a major decrease in expression 

at multiple imprinted genes in mice, suggesting a pathway by which IGF1R might regulate 

growth and metabolism during early development53. IGF1R signalling is implicated in fetal 
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growth, glucose metabolism and cancer54–56, and DNAm differences at IGF1R have been 

observed in birthweight-discordant adult twins57. Another SoC-associated locus with PofOm 

is approximately 300kbp from the 14q32 DLK1-MEG3 imprinted region, close to the imprinted 

C14MC microRNA cluster58, and within 80kb of a region with PofO-ASE25. Epigenetic and 

transcriptional changes at several C14MC microRNAs have been implicated in cancer59–61, and 

genetic and epigenetic mutations in the 14q32 region are linked to imprinting disorders 

including Temple syndrome62,63. 

Another notable SoC-CpG is within 1000bp of a metastable variably methylated region (VMR) 

at the intron2/exon3 boundary of the POMC gene. POMC is a key regulator of appetite 

through the production of melanocyte-stimulating hormones in the hypothalamus50. There is 

evidence that hypermethylation at the VMR reduces POMC expression by interfering with 

P300 TF binding at the intron2/exon3 boundary of the gene64, and is linked to the presence 

of a primate-specific Alu element (transposon)65. This region has previously been associated 

with SoC and certain C1 metabolites in Gambian infants50, and is associated with obesity in 

German children and adults50,64. It is interesting to note that hypermethylation of the POMC 

SoC-CpG and the VMR occurs in conceptions at the height of the Gambian rainy season, a 

period also known as the ‘hungry season’ when food stocks from the previous year’s harvest 

are depleted. A link between POMC VMR hypermethylation established in the early embryo 

that persists into postnatal life, reduced POMC expression and corresponding reduced satiety 

signalling, could therefore constitute a ‘predictive-adaptive-response’, whereby an 

individual’s early developmental trajectory is tuned to its anticipated postnatal 

environment66. 

DNAm is influenced by genotype and the latter is therefore a potential confounder when 

studying the effects of environmental exposures in human populations. A strength of our 

quasi-randomised Gambian seasonal model is that it minimises the potential for genetic 

confounding of modelled seasonal DNAm patterns, on the assumption that the timing of 

conceptions is not linked to genetic variants influencing DNAm. However, it is still possible 

that such variants might confound our observations, for example if they promote embryo 

survival under conditions of environmental stress. We tested this possibility using genetic 

data available for the EMPHASIS (replication) cohort, and found no evidence of SoC-

associated genetic variants driving inter-individual methylation differences at SoC-associated 

loci in cis or trans. 
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We did however uncover evidence of gene–periconceptional environment interactions at 

SoC-CpGs that explained a greater proportion of methylation variance than environmental or 

direct genetic factors alone. While our analysis had limited power, confidence in this finding 

is increased through our comparison of genetic effects at SoC-CpGs with matched and 

random controls. The relatively strong influence of GxE effects at SoC-CpGs was supported by 

very strong enrichment for CpGs showing gene–in utero environment interaction effects that 

similarly explained a greater proportion of methylation variance in a study of the Singaporean 

GUSTO cohort35. Widespread GxE interaction effects could manifest through the action of 

environmental factors on gene variant-associated transcription factors, although we found 

no evidence of clustered genetic variants driving these effects at multiple SoC-CpGs. In the 

context of this study, widespread GxE interaction effects on DNAm would lead to reduced 

power to detect SoC associations, suggesting that these associations will be easier to detect 

in adequately powered analyses stratified by genotype. 

We have previously argued that the definition of MEs should be extended to include genomic 

regions whose DNAm state is under partial but non-deterministic genetic influence in 

genetically heterogeneous human populations10, and we would argue that the above 

observations at SoC-CpGs that exhibit many of the characteristics of MEs support this. Further 

analysis in larger datasets with genome sequencing data combined with functional analysis 

using cell models will be required to fully understand the relative contributions of 

environment and genetics to DNAm variation at regions of the type highlighted in this study. 

There is increasing interest in the phenomenon of methylation variability as a marker of 

disease and of prenatal adversity67,68, and in genetic variation as a potential driver of 

methylation variance69. An intriguing possibility suggested by our gene-environment 

interaction analysis is that certain genetic variants could have been selected through their 

ability to enable graded, environmentally-responsive methylation patterns at MEs and SoC-

associated loci that are able to sense the periconceptional environment, record the 

information, and adapt the phenotype accordingly. This mechanism was previously proposed 

in a theoretical population genetic model of selectable phenotypic variation in changing 

environments17. As discussed with reference to periconceptional programming of the POMC 

gene above, such a mechanism would be adaptive where phenotypic development is directed 

to better fit the anticipated future environment, but may otherwise become maladaptive, 

leading to later disease, if the environment changes6. Further work to identify signatures of 

selection at genetic variants driving gene-environment interactions will be required before 
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we can determine the extent to which environmentally sensitive hotspots might act in this 

way. 

 
 

METHODS 

Gambian cohorts and sample processing 

Detailed descriptions of the Gambian cohorts analysed in the season of conception study are 

published elsewhere15,16. Briefly, for the younger cohort, blood samples from 233 children 

aged 2 years (median[IQR]: 731[729,733] days old) were collected from participants in the 

Early Nutrition and Immune Development (“ENID”) study15. DNA was extracted, bisulfite-

converted and hybridised to Illumina HumanMethylation450 (hereafter “HM450”) arrays 

following standard protocols (see Van Baak et al11 for further details). For the older cohort, 

DNA was extracted from blood samples from 289 Gambian children aged 8-9 (9.0 [8.6,9.2] 

years) participating in the Epigenetic Mechanisms linking Pre-conceptional nutrition and 

Health Assessed in India and Sub-Saharan Africa (“EMPHASIS”) study16, and was bisulfite-

converted and hybridised to Illumina Infinium Methylation EPIC (hereafter “EPIC”) arrays, 

again using standard protocols. 

For the ENID cohort, date of conception was calculated from fetal gestational age estimates 

obtained by ultrasound at the mother’s first ‘booking’ appointment. The same method was 

used for the EMPHASIS cohort, except for n=71 pregnancies that were > 24 weeks gestation 

at booking meaning that GA could not be accurately determined by ultrasound16,70. In this 

case date of conception was calculated as date of birth minus 280 days which is the average 

gestational length for this population. 

 

Methylation array pre-processing and normalisation 

Raw intensity IDAT files from the HM450 and EPIC arrays were processed using the meffil71 

package in R (v3.6.1) using standard meffil defaults. Briefly, this comprised probe and sample 

quality control steps (filtering on bisulfite conversion efficiency, low probe detection p-values 

and bead numbers, high number of failed samples per probe, high number of failed probes 

per sample); methylation-derived sex checks; removal of ambiguously mapping (i.e. cross-

hybridising) probes; removal of probes containing SNPs at the CpG site or at a single base 

extension; and removal of non-autosomal CpGs. Following filtering, methylation data was 
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normalised with dye-bias and background correction using the noob method72, followed by 

Functional Normalisation to reduce technical variation based on principal component analysis 

of control probes on the arrays73. After pre-processing and normalisation, methylation data 

comprised methylation Beta values for 421,026 CpGs on the HM450 array for 233 individuals 

from the ENID cohort, and 802,283 CpGs on the EPIC array for 289 individuals from the 

EMPHASIS cohort. Finally 391,814 CpGs intersecting both arrays were carried forward for 

statistical analysis. 

 

Statistical modelling 

Variation of DNAm with date of conception was modelled using Fourier regression18,74. This 

models the relationship between a response variable (here DNAm) and a cyclical predictor 

(date of conception). The effect of the latter is assumed to be cyclical due to annually varying 

seasonality patterns, so that the modelled effect for an individual conceived on the 31st 

December should be ‘close’ to that for an individual conceived on the 1st of January. This is 

achieved by deconvolving the conception date (predictor) into a series of pairs of sin and 

cosine terms, and obtaining estimates for the regression coefficients b and g in the following 

model: 

!"# = %&# +(%")
*

)+,
+([./#sin(45") + γ/#cos(45")]

;

/+,
+ <"#  

 

Where, for individual i and CpG j: 

Mij is the logit-transformed methylation Beta value75; 

a0j is an intercept term; 

aik is the kth of m adjustment covariates; 

qi is the date of conception in radians in the interval [0, 2p], with 1st January = 0 and 31st 

December = 2p, modelled as n pairs of Fourier terms, sin qi + cos qi + ... + sin nqi + cos nqi; 

br and gr are the estimated regression coefficients for the rth sin and cosine term 

respectively; 

and eij is the error term. 

With a single pair of Fourier terms (n=1), this gives a sinusoidal pattern of variation, with a 

single maximum and minimum whose phase (position in the cycle) and amplitude (distance 
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between maximum and minimum) is determined by b1 and g1, with the constraint that the 

maximum and minimum are 6 months apart. More complex patterns of seasonal variation 

are afforded by higher frequency pairs of Fourier terms (r>1). 

For this analysis we modelled the effect of date of conception using a single pair of Fourier 

terms and assessed goodness of fit by comparing full and covariate-only models using 

likelihood ratio tests. For both cohorts, covariates included child sex, and the first six principal 

components (PCs) obtained from unsupervised principal component analysis (PCA) of the 

normalised methylation M-values. The PCs were used to account for unmeasured and 

measured technical variation (due to bisulfite conversion sample plate, array slide etc) and 

cell composition effects (see Supplementary Tables 15 and 16). Additional checks confirmed 

no seasonal variation in estimated white cell composition in either cohort (see below). 450k 

Sentrix Column was included as an additional adjustment covariate for the ENID cohort since 

this was not robustly captured by any of the first 6 PCs (Supplementary Table 15). Child age 

was included as an additional adjustment covariate for the EMPHASIS cohort, since child ages 

ranged from 8 to 9 years, as was maternal nutritional intervention group (see Chandak et al16 

for further details).  

For CpG j, coefficient estimates bj , gj were determined by fitting a model with a single pair of 

Fourier terms (n=1) using lm() in R. Model goodness-of-fit was determined by likelihood ratio 

test (LRT) using lrtest() in R, comparing the full model including Fourier terms, with a baseline 

covariates-only model. A model p-value, pj was then derived from the corresponding LRT chi-

squared statistic. Thus for a given threshold,	a, pj<a supports rejection of the null hypothesis 

that for CpG j, the full model including the effect of seasonality modelled by one pair of 

Fourier terms, fits no better than the covariate-only model at the a level. 

 

Identification of ‘discovery CpGs’ and ‘SoC-CpGs’ 

For the discovery (ENID) cohort, CpG p-values, pj, were used to compute a false discovery rate 

for each CpG accounting for multiple testing (assuming 391,814 independent tests 

corresponding to the number of loci in array background) using p.adjust() in R. 1,861 CpGs 

with a FDR<10% formed the set of discovery CpGs. 

In the replication analysis, CpGs from the discovery CpG set were analysed in the replication 

(EMPHASIS) cohort using the same regression modelling approach. Assuming 1,861 
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independent tests, 125 CpGs had a FDR<10% and these formed the set of replicating ‘SoC-

CpGs’. 

 

Additional modelling of seasonal variation in blood cell composition  

Cell count estimates using the Houseman method76 were obtained using the 

estimateCellCounts() from minfi (v1.30.0) in R. Seasonal variation in blood cell composition 

was then modelled by Fourier regression with one pair of Fourier terms and sex 

(ENID+EMPHASIS) and age (EMPHASIS only) as adjustment covariates. Fitted models 

indicated no consistent or marked seasonal differences within and between cohorts 

(Supplementary Figure 7). 

 

CpG sets considered in analyses 

Summary information on curated sets of CpGs considered in the analyses is provided in Table 

2. Further information on these is provided below. 

i. 1,881 ME CpGs overlap one or more of the following curated sets of loci: putative 

MEs exhibiting SIV identified in a multi-tissue WGBS screen in Kessler et al10; and 

CpGs exhibiting ‘epigenetic supersimilarity’ and/or SIV described in Van Baak et 

al11. 

ii. 699 parent-of-origin-specific CpGs (PofOm CpGs) overlapping 229 regions with 

PofOm identified in Supplementary Table 1 from Zink et al25. 

iii. 889 GxE CpGs listed in Supplementary Table 6 from Teh et al35. These are highly 

variable loci where methylation variance is best explained by GxE models, with E 

covering a range of in utero exposures. 

 

Selection of control CpGs 

5 ‘matched control’ CpGs drawn from array background (excluding discovery CpGs and 

known MEs/ESS/SIV CpGs) were identified for each of the 125 SoC-CpG, making a total of 625 

CpGs. Matched controls were selected to have similar methylation Beta distributions to SoC-

CpGs using a two-sided Kolmogorov-Smirnov test for divergence of cumulative distribution 

functions (ks.test() in R) with a p-value threshold p>0.1. Examples are given in Supplementary 

Fig. 8, along with a comparison of sample mean distributions.  
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An additional 625 random control CpGs were randomly sampled from array background, 

again excluding discovery CpGs and known MEs/ESS/SIV CpGs. 

 

Early stage embryo and sperm methylation data 

RRBS methylation data from Guo et al5 was downloaded from GEO (accession number 

GSE49828). Only CpGs covered at ≥ 10x in pre-gastrulation inner cell mass and post-

gastrulation embryonic liver were considered in this analysis. Further details are provided in 

Kessler et al10. 

Sperm methylation data from Okae et al22 was downloaded from the Japanese Genotype-

phenotype Archive (accession number S00000000006). Only CpGs covered at ≥ 10x were 

considered in this analysis. 

 

Germline gDMRs 

Germline DMRs (gDMRs), defined as contiguous 25 CpG regions that were hypomethylated 

(DNAm mean +1SD < 25%) in one gamete and hypermethylated (DNAm mean-1SD > 75%) in 

the other, were previously identified by Sanchez-Delgado et al27. Persistence of PofOm to the 

blastocyst and placental stages was established by identifying overlapping intermediately 

methylated regions in the relevant embryonic tissues, with confirmation of PofOm expression 

at multiple DMRs27. See Sanchez-Delgado et al27 for further details. 

 

Transposable elements and transcription factors 

Transposable element (TE) regions determined by RepeatMasker were downloaded from the 

UCSC hg19 annotations repository, since the reference coordinates for the HM450 and EPIC 

chip probes, as well as the genomic data from previous analyses and other public datasets 

used in this study used this reference. Further details on TE regions and ZFP57, TRIM28 and 

CTCF transcription factor binding sites identified from ChIP-seq in human embryonic kidney 

and human embryonic stem cells used in this analysis are described in Kessler et al10. 
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Enrichment tests 

Enrichment for overlap of ‘test set’ CpGs (SoC-CpGs, matched controls etc) with ‘feature set’ 

CpGs (MEs, Teh et al GxE CpGs, CTCF, ZFP57, TRIM28 TF binding sites and ERVs) was 

determined by Fisher Exact Tests, with the enrichment odds ratio (OR) defined as 

 

OR =	 n	test	CpGs	overlapping	feature	CpG	/	n	test	CpGs	not	overlapping	feature	CpG
n	non-test	CpGs	overlapping	feature	CpG	/	n	non-test	CpGs	not	overlapping	feature	CpG 

 

MEs, PofOm, gDMR and GxE features were tested for direct overlap with test set CpGs. TF 

binding sites and ERVs were tested for overlap within 10,000bp for comparison with results 

from Kessler et al10. 

Cluster-adjusted enrichment tests were performed on ‘de-clustered’ test sets, obtained as 

follows: 

i. Create CpG clusters formed from adjacent CpGs where each CpG is within 1,000bp 

of the nearest neighbouring CpG; 

ii. Construct de-clustered test set by randomly sampling a single CpG from each 

cluster; non-clustered ‘singleton’ CpGs are always selected. 

In the case of SoC-CpGs, the set of 125 non-clustered CpGs were reduced to 91 CpGs after de-

clustering. 

Tests for enrichment of DNase I hypersensitive (DHS) sites and histone (H3) marks were 

performed by uploading CpG sets to the eForge2.0 website 

(https://eforge.altiusinstitute.org/). Tests used the following options: proximity filter - 1kb; 

platform - Illumina 450k (corresponding to array background); background repetitions – 

1,000. Datasets used for enrichment tests: DHS enrichment – ‘Consolidated Roadmap 

Epigenomics - DHS’; H3 enrichment - ‘Consolidated Roadmap Epigenomics – H3.  

 

Genetic association analyses 

Genotype data 

Gene-DNAm association analyses were performed on all 288 individuals from the EMPHASIS 

(replication) cohort for which we had QC’d genotype data. 125 SoC-CpGs, plus sets of 625 

matched and random control CpGs (defined above) were considered in this analysis. Subjects 

were genotyped using the Illumina Infinium Global Screening Array-24 v1.0 Beadchip  
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(Illumina, California, U.S.) following standard protocols77. Array-derived genotypes were pre-

phased using SHAPEITv278 and imputation was performed using IMPUTEv2.3.2 on 1000 

genome phase 3 data79. SNPs with a MAF £ 10% were excluded, along with those with an 

IMPUTE ‘info’ metric £ 0.9, a stringent threshold to ensure maximum confidence in 

imputation quality. Finally, to minimise the influence of low frequency homozygous variants 

in linear models, analysis was restricted to SNPs with 10 or more homozygous variants, 

resulting in a final dataset comprising 3,124,453 SNPs. 

 

Identification of ‘winning’ mQTL (G1) and gene-environment interaction (G2) SNPs 

Environment (E), genome-wide mQTL (G) and gene-environment (GxE) associations were 

assessed using the GEM package (v1.10.0) from R Bioconductor80, following a similar strategy 

to that described in Teh et al35.  

3 separate models were considered for each CpG, j: 

1. E-model: 

Mj ~ covs + sinq + cosq 

This is the same model used in the main Fourier regression analysis for the EMPHASIS 

cohort described above, with seasonality modelled as one pair of Fourier terms and 

covs corresponding to the same adjustment covariates used in the main analysis. 

 

2. G-model: 

Mj ~ covs + G 

Here, G is SNP genotype coded as allelic dosage (0,1,2) and covs are adjustment 

covariates as described above. 

3.  

4. GxE-model 

Mj ~ covs + sinq + G + G x sinq 

when sinq is the most significant Fourier term in E-model 

OR 

Mj ~ covs + cosq + G + G x cosq 

when cosq is the most significant Fourier term in E-model.  

Here, G and covs are as described above.  
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For each CpG the winning ‘G1’ and ‘G2’ SNPs were selected as the SNP with the smallest p-

value for G and GxE model coefficients respectively. Models with winning G1 and G2 SNPs are 

referred to as G1 and G2xE models below. 

 

E, G1 and G2xE model comparisons 

To account for model complexity (i.e. differing numbers of terms in regression models), 

comparisons of methylation variance explained by E, G1 and G2xE models (Figure 5b bar plots, 

Supplementary Table 14) are based on adjusted R-squared values. In each case, for each CpG  

DadjR2 = adjR2
model – adjR2

cov 

where adjR2
model is the adjusted R2 value for the E, G1 and G2xE models (as described above), 

and adjR2
cov is the adjusted R2 for the covariate-only model. 

Winning models (Figure 5b pie charts) are those with the lowest value of the Akaike 

Information Criterion81 (AIC). 

 

G1 and G2xE fitted model plots 

G1 and G2xE fitted model plots (Fig. 5C top and bottom left) for each CpG, j, are generated 

from fitted values estimated from the following models: 

G1 model fitted values: Mj ~ covs + sinq + cosq + G1j 

G2xE model fitted values: Mj ~ covs + sinq + cosq + G2j + G2j x sinq + G2j x cosq 

 

SoC association analysis 

Potential confounding of SoC-DNAm signals by SoC-associated genetic variants was assessed 

by analysing SoC associations with G1 and G2 SNPs using SNPassoc v.19-2 in R82. Hardy-

Weinberg equilibrium tests were performed to check for irregular allelic distributions, 

potentially reflecting genotyping or imputation errors. Codominant, dominant, recessive, 

overdominant and log-additive genetic models were tested, with SoC modelled as a 

dichotomous variable (dry SoC=Jan-Jul; rainy SoC=Aug-Dec) in each case.  

 

All bootstrapped confidence intervals presented in this paper use 1,000 bootstrap samples. 
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Ethics approval and consent to participate 

Ethics approval for the Gambian ENID and EMPHASIS trials was obtained from the joint 

Gambia Government/MRC Unit The Gambia’s Ethics Committee (ENID: SCC1126v2; 

EMPHASIS: SCC1441). The ENID study is registered as ISRCTN49285450. The EMPHASIS study 

is registered as ISRCTN14266771. Signed informed consent for both studies was obtained 

from parents, and verbal assent was additionally obtained from the older children who 

participated in the EMPHASIS study. 

 

Data and code availability 

ENID 450k methylation data analysed for this study is deposited in GEO (GSE99863). 

Gambian EMPHASIS EPIC methylation data is available on request and will be made publicly 

available once results from the main EMPHASIS study have been published. Sources and 

locations of other publicly available data used in this analysis are described in METHODS. 

Bespoke code used in the analysis is available at https://github.com/mattjsilver/SoCFourier. 
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Main Tables 
 

Table 1. Gambian seasonality-methylation analysis: cohort characteristics 

 

Cohort 
sample 
size Age  % male tissue methylation array 

ENID 

(discovery) 
233 2y 50.6 peripheral blood Illumina Infinium HM450 

EMPHASIS 

(replication) 
289 8-9y 54.3 peripheral blood Illumina Infinium MethylationEPIC 

 

 

Table 2. CpG sets considered in this analysis. See Methods for further details. 

CpG set  Number of 
CpGs  

Notes 

Array background 391,814 
Intersection of CpGs on Illumina HM450 (discovery) and 
EPIC (replication) cohort arrays, post QC 

Discovery CpGs 1,861 
SoC-associated loci identified in the discovery cohort 
(LRT FDR<10%) 

SoC-CpGs 125 
Discovery CpGs with significant seasonal variation in the 
replication cohort (LRT FDR<10%) 

Putative metastable 
epialleles (MEs) 

1,881 
ME/SIV/ESS CpGs identified in Van Baak et al11 and 
Kessler et al10 overlapping array background 

Parent-of-origin specific 
methylation (PofOm) 

699 
Parent-of-origin specific methylation loci identified in 
Zink et al25 overlapping array background 

GxE CpGs 889 
CpGs with evidence of G x (in utero) E interactions 
identified in Teh et al.35 overlapping array background 

Matched controls 625 
CpGs with similar methylation distributions to SoC-
CpGs* 

Random controls 625 Random sample of 625 CpGs from array background 

QC: quality control; LRT: likelihood ratio test; ESS: epigenetic supersimilarity11; G: gene / genetic variant; 
E: environment / SoC.  
*Each SoC-CpG has 5 matched controls, with matching methylation distributions determined by 
Kolmogorov-Smirnov tests (see Supplementary Fig. 8). 
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Figure 1. Study design. MEs: metastable epialleles; SIV: systemic interindividual variation; ESS:
epigenetic supersimilarity
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Figure 2. Association of periconceptional environment with DNA methylation in Gambian children.

A: Relationship between date of conception and date of sample collection for discovery (top) and replication
(bottom) cohorts. B: Modelled seasonal change in methylation for 1,861 discovery CpGs in the discovery (top) and
replication (bottom) cohorts. 60 ME CpGs are marked in red and the remaining 1,801 in blue. C: Conception date
of modelled methylation maximum in each cohort for 125 replicating SoC-CpGs (left) and matched controls (right).
D: Distribution of mean DNAm values (data from both cohorts combined) at i) SoC-CpGs that are putative MEs
(n=10); ii) other SoC-CpGs (n=115); and iii) array background. E: Distribution of SoC-CpGs, matched controls and
array background with respect to CpG islands (left) and gene locations (right). Error bars are bootstrapped 95%
CIs. N / S Shore / Shelf: North / South Shore / Shelf respectively (regions proximal to CpG Islands defined in
Illumina manifest).
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Figure 3. Association of periconceptional environment with DNA methylation 2. A: Date of
modelled DNAm maximum vs seasonal amplitude in each cohort for (replicating) SoC-CpGs (n=125,
dark blue) and non-replicating discovery CpGs (n=1,736, light blue). Seasonal amplitude is defined as
the distance between modelled methylation peak and nadir (see inset). B: Date of conception at
modelled methylation maxima (top) and seasonal amplitude (bottom) for i) SoC-CpGs that are known
MEs (red); ii) other replicating CpGs (blue); iii) non-replicating MEs in discovery set (pink) and iv)
matched and random controls (dark/light grey respectively). Green and yellow bands indicate the extent
of the rainy and dry seasons respectively. C: Distribution of pairwise Spearman correlations for CpG
sets in discovery (left) and replication (right) cohorts.
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D

loci are hypomethylated (top) or not hypomethylated (bottom) in sperm in the Okae et al. dataset. (Right) as left but
further stratified according to whether loci are identified as oocyte gDMRs by Sanchez-Delgado et al26 (top) or not
(bottom). CpGs mapping to the IGF1R replicating region are marked as green triangles. D: Enrichment of histone (H3)
marks assessed by eForge28. Bars represent –log10 enrichment FDR q-values for H3 marks derived from 39 tissues
and cells analysed by the Roadmap Epigenomics Consortium. Only H3 marks, tissues and cells with significant
enrichment (FDR q ≤ 0.05) are shown.

Figure 4. DNAm in sperm and the

early embryo and overlap with

histone marks. A: Proportion of
intermediately methylated (10-90%)
sites in pre-gastrulation inner cell mass
(ICM) and post-gastrulation embryonic
liver (emb liver) tissues, measured in
RRBS embryo methylation data from
Guo et al.4. Data comprises 67,870
CpGs covered at >=10x in both ICM and
emb liver that overlap array background,
including 36 SoC-CpGs, 470 ME and 63
matched control CpGs. Error bars
represent bootstrapped 95% confidence
intervals. B: Proportion of
hypomethylated sites (methylation
<10%) using sperm WGBS data from
Okae et al.21 Data comprises 294,240
CpGs covered at >10x and including 94
SoC-CpGs, 1,397 ME and 491 matched
control CpGs. Bootstrapped CIs as
above. C: (Left) Mean methylation at
SoC-CpGs and controls, measured
across all n=522 individuals in both
cohorts, stratified according to whether
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Figure 5. Influence of genotype, periconceptional environment and gene-environment

interactions on DNAm. A: Methylation variance attributable to additive genetic (A), common (C) and
non-shared (E) environment effects for replicated CpGs, matched controls and array background.
Estimates for CpGs on the Illumina 450k are from Hannon et al33. Error bars represent bootstrapped
95% confidence intervals for the mean. B: Proportion of methylation variance explained by E, G1 and
G2xE models for SoC-CpGs, matched and random control CpGs. ∆ adjR2 is the additional variance
explained by the specified model, over and above a covariate-only model (see Methods). Pie charts
show proportion of winning models, assessed using AIC. Note that E-only is never the winning model.
C: (Left) Examples of SoC-CpGs with GxE (top) and G (bottom) winning models. Illumina CpG and rs
identifiers for the most significant SNP are shown. Curves show Fourier regression model fitted values
for E-only model (solid red line) for all individuals, and for individuals stratified by genotype (dashed
lines). A/a major/minor alleles. (Right) Scatter plots of DNAm adjusted for baseline covariates only,
stratified by season of conception (left) and additionally stratified by minor allele count (right). For ease
of visualisation, seasons are dichotomised: dry season=Jan-Jun (orange); rainy season=Jul-Dec
(green). Black horizontal lines are stratified mean values.
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