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Abstract 
 
Microbiome-host interactions play significant roles in health and in various diseases including auto-
immune disorders. Uncovering these inter-kingdom cross-talks propels our understanding of disease 
pathogenesis, and provides useful leads on potential therapeutic targets. Despite the biological significance 
of microbe-host interactions, there is a big gap in understanding the downstream effects of these 
interactions on host processes. Computational methods are expected to fill this gap by generating, 
integrating and prioritizing predictions - as experimental detection remains challenging due to feasibility 
issues. Here, we present MicrobioLink, a computational pipeline to integrate predicted interactions 
between microbial and host proteins together with host molecular networks. Using the concept of network 
diffusion, MicrobioLink can analyse how microbial proteins in a certain context are influencing cellular 
processes by modulating gene or protein expression. We demonstrated the applicability of the pipeline 
using a case study. We used gut metaproteomic data from Crohn’s disease patients and healthy controls to 
uncover the mechanisms by which the microbial proteins can modulate host genes which belong to 
biological processes implicated in disease pathogenesis. MicrobioLink, which is agnostic of the microbial 
protein sources (bacterial, viral etc), is freely available on GitHub 
(https://github.com/korcsmarosgroup/HMIpipeline).  
 
Keywords: Microbiota-host interactions, protein-protein interactions, systems biology, networks, network 
diffusion, computational pipeline 
 

1. Introduction 
 

Microbiota-host interactions happen in almost every known organism, shaping their metabolism and 
evolution [1,2]. In many ecosystems, the microbiome plays an important role as manifested by its dynamic 
interactions with different hosts [3]. The community of microorganisms are almost indispensable to human 
life since they modulate and influence immunity and nutrient acquisition. For example, the gastrointestinal 
microbiome plays a crucial role in nutrient assimilation and energy yield by actively participating in 
metabolic pathways [4]. Dysbiosis (compositional alterations) of gut microbial communities is associated 
with diseases such as type 2 diabetes, obesity and inflammatory bowel diseases like Crohn’s disease [5,6]. 
In addition to infections caused by pathogenic microbes, exclusion of beneficial species from the 
community are also known to have negative impacts on the host [7]. Most of the inferences between 
microbial composition changes and disease phenotypes have been based on associations and correlations, 
with little explanations of the mechanisms driving the phenotypes.  
 

Studying microbiome-host interactions and its influence on host biological mechanisms is important 
for monitoring health and disease and also for discovering/fine-tuning therapeutic interventions. Such 
interactions are mediated by the interplay between various molecular components expressed by the host 
and the microbiome. For example, bacterial molecules such as metabolites [8], proteins [9–13] and small 
RNAs [14], can interact with host molecules, and through host intracellular pathways and regulatory 
networks, modulate the expression of genes in various biological processes [15–17], thus maintaining 
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healthy states or transition to diseased states. Besides the metabolite mediated interactions, protein-protein 
interactions (PPIs) are one of the most relevant types of molecular interplay between microbes and host 
organisms  [13]. Experimental techniques to test inter-species PPIs are time consuming and have limitations 
imposed by cost [1,18–22]. Hence, there is a dearth of validated inter-species PPIs in publicly available 
databases, and these are mostly limited to pathogens. However, using predicted microbe-host PPIs, it is 
possible to build interaction networks to better understand the cross-talk between the microbial and host 
proteins, and how these interactions interfere with host metabolism and physiology [23]. Recent studies 
have also shown how protein-protein interactions between emerging pathogens such as COVID-19 and the 
host have enabled the discovery of potential drug candidates for clinical testing and validation [24].  

 
Various resources and pipelines which generate or store microbe-host interaction predictions are 

currently available. They include PHISTO [25], PATRIC [26], Proteopathogen2 [27], VirBase [28] and 
HPIDB [29]. Most of these resources store PPIs and/or genomic analysis of virulence, but are limited to 
pathogens [23]. Tools such as COBRA [30], RAVEN [31], NetCooperate [32] and Kbase [33] which consider 
commensal microbes are based on the use of metabolomics data alone [34]. Moreover, most of the existing 
resources and pipelines are confined to predicting the direct molecular interactions at the microbe-host 
interface, and do not infer the downstream effects on functional processes and host signalling pathways.  

 
To fill these gaps in understanding the effect of the microbiome on the host, we introduce MicrobioLink 

- a computational pipeline to analyse microbiome-host interactions at a cellular level using network and 
systems biology approaches. Using MicrobioLink, it is possible to identify potential pathways by which 
microbes can modulate the expression of key host molecules such as genes, proteins or microRNAs. In 
order to demonstrate the applicability of MicrobioLink, we performed a case study investigating how the 
gut microbiome potentially modulates autophagy genes in Crohn’s disease (CD). By providing custom-
made lists of microbial proteins, host receptor proteins, molecular interaction networks and the target node 
sets, users can harness the functionalities of MicrobioLink to understand the mechanisms which mediate 
the influence of microbial proteins derived from the individual microbes or the microbiome.   
 

2. Materials and Methods  
 

MicrobioLink enables users to integrate host responses into the interaction networks representing the 
microbe-host interface, and thereby, helps users to expand the list of experimentally verifiable hypotheses. 
It provides the user with the option to infer indirect effects of microbial proteins on the host by prioritizing 
pathways and signalling chains. This prioritization is based on various criteria such as chain length, i.e, the 
number of steps between the host receptors modulated by the microbial protein and the host target 
genes/proteins, host protein localization (depending on the mode of infection) and contextual gene 
expression.  
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 2.1. Compilation of input proteins and genes 
 

The first step of the workflow involves the compilation of bacterial and host proteins that can 
potentially interact under the studied biological conditions (Figure 1). The bacterial proteins can be 
obtained from annotated or experimentally derived bacterial proteomes, or from metaproteomic read-outs 
(set of proteins secreted by an entire microbial community). As for the host proteins, the list is compiled 
based on their localization: the chosen proteins must be located in a cellular compartment which is 
physically accessible to the bacterial proteins. Localization based filtering can be applied also to bacterial 
proteins depending on the context (based on whether the microbe is extracellular or intracellular within 
the host). In the case of extracellular microbes, the provided host proteins must be present at the 
extracellular matrix or plasma membrane since these locations are more prone to interacting with 
extracellular, secreted or membrane bound bacterial proteins. In the case of intracellular microbes, the 
provided host proteins must be located inside the host cell, as in the cytoplasm for example. These host 
proteins provided by the user can be derived either from experimental data or publicly available datasets 
(including but not limited to ProteomicsDB [35], ComPPI [36], Human Protein Atlas (HPA) [37] and 
MatrixDB [38]). In addition, the localization of host proteins can be inferred by bioinformatic tools such as 
PSORTdb[39], SignalP [40] and Secretome [41], which use sequence-based features to predict the 
localization of the given proteins. Users can also provide their own pre-processed lists of host proteins after 
localization prediction.  
 

Subsequently, users can compile a list of important proteins or genes for the studied conditions or 
related cellular processes for use as target nodes within the host. This target list can be compiled either 
from a priori knowledge (derived from phenotypic observations) or contextual data obtained from genome-
wide association studies (GWAS) which correlate genetic loci to observed phenotypes, literature search or 
-omic expression datasets such as gene expression (transcriptomics) or proteomics measured under the 
studied condition(s).  
 
 2.2. Bacterial-host interaction prediction 
 

The next step in the pipeline involves the interaction prediction between the microbial and host 
proteins. We use two qualitative approaches, namely domain-domain and domain-motif methods 
[13,42,43], that use secondary structure based features to predict the interactions between microbial and 
host proteins. The domain-domain method is based on the assumption that microbe-host protein pairs 
bearing interacting domain pairs, also interact. Similarly, the domain-motif method enables the 
identification of potential interactions between microbial and host proteins if the microbial protein contains 
domains previously known to interact with eukaryotic motifs on the host proteins. Gold standard 
information on interacting domain pairs and interacting domain-motif pairs are retrieved from the 
DOMINE [44] and ELM [45] databases. 
 

The above mentioned methods help determine which bacterial proteins, via their respective 
domains, interact with host receptor proteins. For quality control purposes, the interactions are then filtered 
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to sterically possible sequence features [46,47]. This is performed by excluding interactions involving motifs 
outside disordered regions (using IUPRED [48]) or within globular domains based on information from 
PFAM [49] and InterPro [50]. Previous studies have successfully used this structure-based approach to 
predict PPIs between microbial and host proteins, and validated the PPIs experimentally [9,10,13]. 
 
 2.3. Network compilation and path tracing using diffusion 
 

In this step, we use multi-layered network resources and network diffusion tools to trace the effect 
of the interactions between microbial and host proteins on other host processes further downstream. For 
this purpose, the TieDIE [51] tool, built into the pipeline, is used to infer the signaling paths that connect 
the host receptors with the host target genes. TieDIE uses the network diffusion approach to infer the 
signaling paths from directed multi-layered networks containing PPIs and transcriptional regulatory 
interactions (TRIs) from publicly available molecular interaction databases such as OmniPath [52] and 
DoRothEA [53] respectively. Users can also select from a vast number of other molecular interaction 
resources which are available in the public domain. Importantly, the network diffusion approach helps in 
avoiding prioritization biases stemming from network topological properties such as degree (i.e the 
number of interacting first neighbours of a particular gene or protein for example). This circumvents the 
positively biased inclusion of hub proteins into signalling paths irrespective of their actual relevance in the 
studied condition [51]. TieDIE also incorporates various parameters along with the input data. For example, 
the magnitude and direction of differential expression of the target genes/proteins or the number of 
microbial proteins predicted to bind to the host receptors can be specified into the input dataset. This 
information is then used to prioritize the signaling pathways connecting the receptors to the target 
genes/proteins. 
 

After network compilation, depending on the user’s discretion, a chain selection step can be 
performed to select the most relevant chains for the target modulation. This can be done by filtering the 
network to keep only signalling chains stimulated by bacterial proteins detected in any single condition, 
especially in cases in which the users are comparing different conditions. Another alternative for chain 
filtering is to retain only chains with transcriptional interactions between the target gene and its immediate 
upstream neighbour. This filtering can be applied in cases where the activity of the  target  gene is measured 
at the transcriptional level in order to reflect the underlying regulatory biological mechanism.  
 

Finally, the obtained model can be visualized as a multi-layered network, starting with the bacterial 
protein-host receptor interactions, and ultimately reaching the selected host target genes through PPIs and 
TRIs. A summary of the MicrobioLink pipeline is presented in Figure 1. 
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Figure 1: Graphical representation of the MicrobioLink workflow.  
 

3. Results 
 

3.1. Case study 
 

To demonstrate the applicability of the MicrobioLink pipeline, we performed a case study showing 
how different bacterial proteins modulate molecular processes important for the development or 
progression of Crohn’s disease (CD). CD is a chronic intestinal inflammatory disease (IBD) associated with 
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a multitude of factors including microbial dysbiosis and dysregulation of autophagy due to mutational 
effects [54–56] [57,58]. Using MicrobioLink, we identified pathways by which autophagy could be 
indirectly modulated by microbial proteins, thereby implying that host autophagy can be potentially 
modulated by microbial influence independent of mutations. This also highlighted the potential role of the 
microbial proteins in disease development and/or progression.  
 

To perform this study, we first obtained the microbial proteins present only in healthy individuals 
or in CD patients from a Swedish twin study [59]. In total, 336 microbial proteins from healthy individuals 
and 226 proteins from CD patients were obtained (Supplementary table 1) . Then, we compiled human 
proteins located in the extracellular matrix and cellular membrane using matrixDB, resulting in a total of 
8008 proteins (Supplementary table 2).  
 

After compiling the protein lists, we performed interaction predictions between microbial and 
human proteins, resulting in 8478 predicted interactions involving 140 microbial proteins and 2998 host 
receptor proteins (Supplementary tables 3-4). The predicted interactions were refined by passing them 
through a disordered region based quality control step to eliminate sterically improbable interactions. In 
parallel, as potential target genes affected by the microbial proteins, we focused on autophagy genes given 
that autophagy is known to be a dysregulated process in CD [54–56,60,61]. In total we selected 38 
autophagy genes, encoding the core components of the autophagy machinery [62]. To detect the most 
relevant target autophagy genes for CD, we used three different transcriptomic datasets (GSE9686 [63], 
GSE36807 [64] and GSE75214 [65]  from GEO [66]), that contained the gene expression profiles of CD 
patients and healthy individuals, to select the most differentially expressed core autophagy genes. From 
the above mentioned profiles, we selected autophagy genes which were modulated with coherent trends 
in at least two datasets. Based on this criteria, we obtained five target autophagy genes namely WIPI1, 
MAP1LC3A, MAP1LC3B, ATG7 and ATG4D (Supplementary table 5).   
 

Subsequently, contextual signaling networks that potentially mediate the signal transduction from 
the host receptors to the target autophagy genes were compiled using the network diffusion model inferred 
by TieDie (Figure 2A). Based on these results, we were able to infer that two of the five target autophagy 
genes could be potentially modulated by the microbial proteins. We also observed a group of host proteins 
that are  connected to microbial proteins occurring in both CD patients and healthy subjects. To retain 
specificity, we excluded the chains initiated from microbial proteins enriched in both conditions. As a 
result, we obtained a network with clearly separated signalling paths exclusive to the disease and healthy 
contexts as shown in Figure 2B. In a final filtering step, we retained only those chains where the last 
interaction is a TRI to capture the transcriptional regulatory effect of the expression of the target genes. Post 
this final filtering step, we were able to obtain a final model, as depicted in Figure 2C. 
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Figure 2: (A). Graphical representation of the signaling paths between curated receptor proteins (host 
proteins predicted to be modulated by microbial proteins) and target autophagy genes. The network 
compilation was performed by tracing the signaling chains from the human receptors (predicted to interact 
with the bacterial proteins) to the autophagy genes using the TieDIE tool which adopts a network diffusion 
[51]. For brevity, only the results corresponding to the domain-motif interaction analysis are discussed in 
the case study. (B). Network representing the signalling chains after exclusion of proteins connected with 
bacterial proteins detected in both CD and healthy conditions. Proteins present in both conditions that were 
retained were those directly regulating the target autophagy genes. (C). Network obtained by retaining 
only chains with transcriptional regulatory interactions between the intermediary protein (3rd layer) and 
the target autophagy genes (4th layer). The immediate upstream proteins from the autophagy target genes 
were confined to transcription factors modulating the target autophagy genes via a transcriptional 
regulatory interaction. 
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To analyse the functional significance of the final model, we did a Gene Ontology (GO) enrichment analysis 
of the human proteins to identify feature sets such as biological processes via which the target autophagy 
genes are potentially modulated by the microbial proteins. Over-represented feature sets (Figure 3, 
Supplementary table 7) included apoptosis, which is known to be upregulated in intestinal epithelial cells 
(IECs) in IBD patients leading to increased epithelial barrier permeability [67]. Apoptosis has a peculiar 
interplay with autophagy, in that it is usually up-regulated when autophagy is deactivated and vice versa 
[68]. In our final model, we also discovered several signaling chains among host networks specific to the 
healthy condition. These signalling chains included proteins such as SUMO1, PARP1 and E2F1. SUMO1, 
known to induce autophagy levels [69], also activates PARP1 and subsequently E2F1, proteins which are 
both known to stimulate autophagy and inhibit apoptosis [70,71]. This allowed us to propose the 
hypothesis that the metaproteome-derived bacterial protein CLST058361 which was expressed in healthy 
subjects and not in CD patients, could be a key protein involved in stimulating autophagy and decreasing 
apoptosis. Interestingly, CLST058361 belongs to a family of trypsin-like serine proteases whose expression 
level changes are associated with IBD [72] [73] [74].  

 
Figure 3. Final network model consisting of the proteins and the biological processes in which they are 
involved, inferred from the GO enrichment test. 
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Meanwhile, a signalling chain specific to the CD condition included MAPK3 and FOXO3, which 
are key proteins for apoptosis activation and apoptosis-autophagy interplay [68,75]. This pathway was  
modulated by the bacterial protein labeled as CLST14522 (and containing a FOG:_FHA_domain) and 
uniquely found in CD patients. Other biological processes over-represented in CD networks included those 
related to cellular differentiation and proliferation, response and generation of oxidative stress, 
mitochondria related processes, homeostasis and immune system regulation. More comprehensive studies 
are warranted to ascertain the role of these processes in how the bacterial proteins modulate autophagy in 
CD (Figure 3).  

 
In conclusion, using MicrobioLink, we obtained a mechanistic model showing how bacterial 

proteins can modulate the expression of autophagy genes in the context of CD. Previous research has 
shown that host autophagy, while being implicated in the pathogenesis of CD, was primarily dysregulated 
by defects caused by genetic mutations [54–56] [57,58]. MicrobioLink reveals the possibility that autophagy 
can be modulated by the microbial community through signal transduction propagated via host molecular 
networks. Although experimental validation is required to ascertain this putative mechanism, we 
demonstrate the applicability of MicrobioLink to integrate heterogeneous datasets and generate testable 
hypotheses about microbe-host interactions.    
 

4. Discussion  
 

In this paper, we presented MicrobioLink - a pipeline for the analysis of the functional effects of the 
microbiome on host cellular processes. MicrobioLink integrates microbiome-host protein-protein 
interaction predictions with network diffusion to infer signaling networks which capture the systemic 
effects of microbial proteins on host processes. 
 

Microbiome-host interactions have considerable impact on host signaling  and understanding these 
interactions are crucial to our advances in  studying disease pathogenesis and discovering drug targets. 
However,  researchers aiming to study the functional effects of microbiome-host interactions face 
technological and methodological boundaries. First, the high demand of time and cost of experimental 
studies makes it infeasible to test such a high number of potential microbiome-host interactions [19]. 
MicrobioLink is an effective alternative to study the molecular mechanisms by which microorganisms 
interact with the host cells and how these interactions affect the host cellular mechanisms. It can be applied 
either as a tool for prioritizing the most relevant non-canonical de novo pathways or for establishing 
hypotheses about how microorganisms can modulate particular cellular processes. Other limitations that 
MicrobioLink helps overcome include the possibility for the user to customize the pipeline depending on 
his/her organism or community of interest as long as the focus of the microbial-host molecular interface are 
protein-protein interactions. Due to the mechanism driven approach of MicrobioLink, it provides the users 
with experimentally testable hypotheses.  
 

Several existing computational methods and tools to study microbe-host interactions are currently 
available although they are limited to specific organisms (with a focus on pathogens) and specific types of 
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interactions. Therefore, to perform an analysis where the microorganism-host interaction is unknown and 
to study its influence on host processes, the researcher would have to combine different and incompatible 
tools. In Table 1, we benchmarked some of the key resources, and compared them with the functions of 
MicrobioLink. With MicrobioLink, it is possible to perform functional microbiome-host analysis without 
previous knowledge about its interactions for any microorganism and host species as long as the 
corresponding annotated proteomes/genomes are available. The user can provide a protein dataset as input 
from a single species (proteome) or from an entire microbial community (metaproteome). These 
microorganisms can be bacteria, archaea, viruses or fungi, which makes MicrobioLink applicable for any 
type of microorganism. Subsequently, the user can select a dataset that represents the resulting host 
phenotype. It is possible to choose any dataset adequate for the study, such as differentially expressed 
genes from transcriptomic measurements or protein expression from proteomics. The host data can also 
correspond to any host, and hence MicrobioLink can be applied for studying the influence of the 
microbiome on plants, mammals or even fungi. 

 
Table 1: Summary of selected tools and resources used in microbe-host interaction research. 

 

Resource/
tool 

Standalone 
version ? Description 

Can user -
provided 

datasets be 
handled ? 

Non- 
pathogenic 

species 
included / 
handling ? 

Protein -
protein 

interactions 
? 

Inferring 
downstream 

effects ? 
Microorganisms 

supported 

Host 
organisms 
supported 

PHISTO 
[25] online 

Web-tool for 
mining and 

retrieving host-
pathogen 

interactions no no yes no 

Viral, bacterial, 
fungal and 
protozoan 
pathogens Human 

PATRIC 
[26] online 

Genome 
focussed 
infectious 

disease research 
database yes no yes no 

Bacterial 
pathogens 

Actinoptergii, 
Arachnida, 

Chromadorea, 
Insecta, 

Mammalia 

Proteopat
hogen2 

[27] online 

Database and 
web application 

to store and 
display fungal 

pathogen 
proteomics data. no no no no 

Fungal 
pathogens 

Mammalian 
species 

VirBase 
[28] online 

Database of 
virus-host 
ncRNA-

associated 
interactions and 

interaction 
networks during 
viral infections. no yes no no Virus 

Vertebrates, 
plants and 
arthropods 
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NetCoper
ate 
[32] 

python 
module 

Web-based tool 
and software 
package for 
determining 
host-microbe 
and microbe-

microbe 
cooperative 

potential from 
metabolic 
networks. yes yes no yes 

Any 
microorganism 

Any host 
species 

Kbase 
[33] 

Online, 
python and 

java 

Software and 
data platform 

that 
enables data 

sharing, 
integration, and 

analysis 
of microbes, 

plants, and their 
communities by 

creating 
workflows 

consisting of a 
series 

of analysis tool 
runs and code 

blocks yes yes no yes 
Any 

microorganism Any host 

M²IA 
[80] 

web-based 
server 

Statistical   analy
sis   methods   fo
r   microbiome 

and metabolome 
data                      

      
 integr
ation, including 
correlation          

                  
 analys
is and functional 
network               

  analysis yes yes no yes 
Any 

microorganism 
Any host 
species 

COMETS 
[81] 

Matlab and 
a python 
toolbox 

Modelling 
framework that 

integrates 
dynamic flux 

balance analysis 
with diffusion to 

communities yes yes no yes 
Any 

microorganism 
Any host 
species 
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MicrobioL
ink (this 
paper) 

Python, 
Docker 

Integrated 
evaluation of 
microbe-host 

interaction 
networks yes yes yes yes 

Any 
microorganism 

Any host 
species 

 
 

For reproducibility and interoperability [76], we have implemented the pipeline within the framework 
of the Docker system. Docker functions as an integrated platform with all the needed dependencies and 
software packages pre-installed to execute the scripts within the pipeline. Users can thereby quickly test 
different components of the pipeline within the docker container without having to search and install the 
required dependencies. The datasets corresponding to the use-case have also been provided within the 
container so that the users can execute the pipeline readily and cross-check the results.  
 

The pipeline can be applied to different diseases modulated by the microbiome. In the case study, we 
generated a model explaining how the gut microbiome from CD patients is potentially modulating 
autophagy, a cellular process known to be altered and dysregulated in CD patients. Besides, the tool can 
be extended to diverse diseases that are shown to be influenced by the microbiome such as diabetes, 
depression and cardiovascular disorders [77]. Moreover, beneficial effects can also be studied with 
MicrobioLink. In humans, it can be applied to demonstrate how probiotic species maintain health and 
homeostasis. In livestock and poultry, it can be used to study how the microbiome can influence 
productivity [78]. In plants, MicrobioLink can be used to analyse how the commensal microbiome in the 
soil influences plant health and disease [79]. As a next step towards improving the pipeline, we are 
planning to establish use cases in different domains of biological research wherein the microbiome plays a 
crucial role in the phenotypes of different hosts such as plants as well as mammalian host species. 
 

5. Conclusion 
 

For many conditions and organisms, MicrobioLink presents novel additional functionalities which 
makes it possible not only to predict microbiome-host interactions but also to infer mechanisms driving 
functional effects further downstream. MicrobioLink provides an integrated approach by embedding the 
host proteins modulated by the user-provided microbial proteins within molecular interaction networks 
and relevant -omic datasets customized for the studied conditions and organisms. Using MicrobioLink, it 
is possible to evaluate how an entire microbial community or even a single microorganism, either a 
commensal or pathogen, can interfere with host processes via protein mediated signal transduction. 
 
Data and Software Availability 
 

Code for the MicrobioLink pipeline is available at 
https://github.com/korcsmarosgroup/HMIpipeline. The code is implemented in Python and dockerized in 
order to ensure easy testing, circumvent dependency issues and achieve reproducibility. The 
implementation is provided as two versions - firstly as a sequential step-by-step workflow and secondly as 
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a one-click version. Both versions have been supplemented with corresponding documentation including 
the dependencies and instructions for execution.  
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