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Abstract 20 

Introduction: A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was 21 

recently identified as the pathogen responsible for the COVID-19 outbreak. SARS-CoV-2 22 

triggers severe pneumonia, which leads to acute respiratory distress syndrome and death in 23 

severe cases. As reported, SARS-CoV-2 is 80% genetically identical to the 2003 SARS-CoV 24 

virus. Angiotensin-converting enzyme 2 (ACE2) has been identified as the main receptor for 25 

entry of both SARS-CoV and SARS-CoV-2 into human cells. ACE2 is normally expressed in 26 

cardiovascular and lung type II alveolar epithelial cells, where it positively modulates the RAS 27 

system that regulates blood flow, pressure, and fluid homeostasis. Thus, virus-induced 28 

reduction of ACE2 gene expression is considered to make a significant contribution to severe 29 

acute respiratory failure. Chromatin remodeling plays a significant role in the regulation of 30 

ACE2 gene expression and the activity of regulatory elements within the genome.  31 

Methods: Here, we integrated data on physical chromatin interactions within the genome 32 

organization (captured by Hi-C) with tissue-specific gene expression data to identify spatial 33 

expression quantitative trait loci (eQTLs) and thus regulatory elements located within the 34 

ACE2 gene.  35 

Results: We identified regulatory elements within ACE2 that control the expression of PIR, 36 

CA5B, and VPS13C in the lung. The gene products of these genes are involved in inflammatory 37 

responses, de novo pyrimidine and polyamine synthesis, and the endoplasmic reticulum, 38 

respectively.  39 

Conclusion: Our study, although limited by the fact that the identification of the regulatory 40 

interactions is putative until proven by targeted experiments, supports the hypothesis that viral 41 

silencing of ACE2 alters the activity of gene regulatory regions and promotes an intra-cellular 42 

environment suitable for viral replication. 43 

  44 
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Introduction 46 

Within months of the first reports [1], the COVID-19 outbreak has become a pandemic 47 

infecting and killing thousands of people worldwide [2]. COVID-19 is an infectious disease 48 

associated with acute respiratory distress syndrome (ARDS) that is caused by SARS-CoV-2, a 49 

Betacoronavirus that is 80% identical to the SARS-CoV virus [3]. Betacoronaviruses, 50 

including SARS-CoV, Murine Hepatic Virus (MHV), and SARS-CoV-2, utilize the ACE2 51 

protein for cell entry [4,5]. The Spike protein on SARS-CoV-2 has a 10 to 20 fold higher 52 

affinity for the ACE2 protein than its SARS-CoV homologue [3,6].  53 

The ACE2 protein is highly expressed in cardiovascular and lung type II alveolar epithelial 54 

cells [3,7,8], where ACE2 is a primary modulator of the renin–angiotensin (RAS) system that 55 

regulates blood flow, pressure and fluid homeostasis [9]. The ACE2 protein and the products 56 

of the reactions it catalyzes have also been implicated in immune responses and anti-57 

inflammatory pathways [10–12].  58 

SARS-CoV infection reduces ACE2 gene expression and this is thought to contribute to severe 59 

acute respiratory failure [4] by triggering an imbalance in the RAS system that causes a loss of 60 

fluid homeostasis, induces inflammatory responses [10,13,14], and results in severe acute 61 

injury in heart and lung [3,15,16]. As mentioned above, both SARS-CoV and SARS-CoV-2 62 

utilize the ACE2 protein for cell entry. Poor prognoses in elderly SARS-CoV-2 patients (≥65 63 

years old) are frequently associated with a pre-existing reduction in ACE2 expression and 64 

imbalance in ACE2-related host derived pathways [17,18]. ACE2 is an X-linked gene whose 65 

expression is regulated by chromatin structure. Brg1, a chromatin remodeler, and the FoxM1 66 

transcription factor recognize the ACE2 promoter and reduce expression through a mechanism 67 

involving structural chromatin changes [19].  This control is complex, as illustrated by the 68 
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finding that ACE2 gene escapes X chromosome-inactivation and shows a heterogeneous sex 69 

bias that is tissue dependent [20].  70 

Chromatin structure in the nucleus involves non-random folding of DNA on different scales 71 

[21]. This folding and the resulting contacts that form are dynamic, and can be disrupted (e.g. 72 

by genetic variation) leading to altered enhancer-promoter interactions that result in changes 73 

in gene expression [22]. Changing chromatin structure rewires interactions between regulatory 74 

elements and the genes they control. Theoretically and practically, each component of this 75 

change contributes to the observed pathogenesis [23,24], and can lead to developmental 76 

disorders[25] and cancer [26–28].  77 

Virus-induced chromatin changes at the ACE2 locus could induce expression changes in 78 

additional genes regulated by elements located within this locus and thus may alter/modulate 79 

host factors important for SARS-CoV-2 replication. How can you identify the elements within 80 

a gene regulatory network like this? One approach to identify the networks that form between 81 

regulatory elements and the genes they control is to use information on the physical interactions 82 

that are captured occurring between the elements. Physical interactions between two sites can 83 

be captured and identified using Hi-C [29,30]. We have used this insight to develop a 84 

discovery-based pipeline (CoDeS3D; S1 Fig) [23]. Our approach uses genetic variation (e.g. 85 

single nucleotide polymorphisms) to identify changes in gene expression and thus determine if 86 

a region that physically contacts a gene contains a regulatory element. This enables the rapid 87 

identification of the regulatory networks that form in cells and tissues (e.g. [23,31]). 88 

We hypothesized that ACE2 and its flanking region contained regulatory elements that 89 

coordinate the expression of other genes, and that virus induced chromatin changes at ACE2 90 

inadvertently modulate host factors that promote viral replication. Here we undertook an in-91 
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depth characterization of the regulatory control regions within ACE2 and their activity in lung 92 

tissue.  Regulatory elements located within ACE2 affect the expression levels of the PIR and 93 

CA5B genes. PIR and CA5B are involved in NF-kB regulation and pyrimidine synthesis, 94 

respectively. VPS13C, encoding a factor required for late stage endosome maturation, is also 95 

controlled by a putative enhancer located in intron 11 of BMX, adjacent to ACE2. We propose 96 

that ACE2 repression by SARS-CoV-2 trips a chromatin-based switch that coordinates the 97 

activity of these regulatory elements and thus the genes they control. Collectively, these 98 

changes inadvertently lead to the development of a pro-viral replication environment.  99 

 100 

  101 

  102 
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Methods 103 

Identification of SNPs in the ACE locus 104 

We selected all common single nucleotide polymorphisms (SNPs) from dbSNP (build153) 105 

with a minor allele frequency (MAF) > 1% that were located within chrX:15,519,996-106 

15,643,106, which included the ACE2 gene and its flanking region (hereafter ACE2 locus). 107 

SNP positions are as reported for the human genome build hg38 release 75 (GRCh38). 108 

Identification of tissue-specific SNP-gene spatial relationships in the ACE locus  109 

We used the CoDeS3D algorithm [23] to identify putative spatial regulatory interactions for all 110 

SNPs at the ACE2 locus (S1 Fig). CoDeS3D integrates data on physical chromatin interactions 111 

within the genome organization (captured by Hi-C) with tissue-specific gene expression data 112 

to identify spatial expression quantitative trait loci (eQTLs). To get lung-specific spatial 113 

connections, we identified SNP-gene pairs across lung-specific Hi-C libraries using published 114 

data for IMR90, A549, and NCI-H460 cell lines and lung tissue (GEO accession numbers 115 

GSE35156, GSE43070, GSE63525, GSE105600, GSE105725, GSE92819, GSE87112, S1 116 

Table). We then queried GTEx for eQTL associations with lung tissue (dbGaP Accession 117 

phs000424.v8.p2, https://gtexportal.org/home/). The age of the GTEx lung sample donors 118 

peaks between 50-60 years (S2 Fig).  SNPs were assigned to the appropriate Hi-C restriction 119 

fragments by digital digestion of the hg38 reference genome (matching the restriction enzyme 120 

from the Hi-C libraries: MboI or HindIII). All SNP-fragments were queried against the Hi-C 121 

databases to identify the distal DNA fragments with which they physically interact. For each 122 

distal fragment, which overlapped a gene coding region, a SNP-gene spatial connection was 123 

confirmed. There was no binning or padding around restriction fragments to obtain gene 124 

overlap. Spatial tissue-specific SNP-gene pairs with significant eQTLs (both cis-acting [<1Mb 125 
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between the SNP and gene] and trans-acting eQTLs [>1Mb between the SNP and gene or on 126 

different chromosomes]; FDR adjusted p < 0.05) within the lung were subsequently identified 127 

by querying GTEx v8 lung tissue (UBERON:0008952).  128 

URLs 129 

GEO database: https://www.ncbi.nlm.nih.gov/geo/ 130 

CoDeS3D pipeline: https://github.com/Genome3d/codes3d-v2 131 

GTEx Portal: https://gtexportal.org/home/ 132 

GUSTO study: http://www.gusto.sg/ 133 

Data and code availability 134 

All python and R scripts used for data analysis and visualization are available at  135 

https://github.com/Genome3d/ACE2-regulatory-network. R version 3.5.2 and RStudio version 136 

1.2.5033 were used for all R scripts. All python scripts used Python 3.7.6. 137 

 138 

 139 

 140 

 141 

 142 

 143 

 144 
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Results 145 

The ACE2 locus harbors regulatory variants that control SARS-CoV-2 relevant cellular 146 

functions: 147 

We tested 367 common SNPs located across the ACE2 locus (chrX: 15,519,996-15,643,106) 148 

for their potential to act as spatial eQTLs. None of the common SNPs we tested affected ACE2 149 

expression levels in lung tissue (S2 Table).  150 

The wider ACE2 locus (chrX: 15,519,996-15,643,106; GRCh38/hg38) sits within a 151 

topologically associating domain (TAD) that is conserved across some tissues, e.g. IMR90 (Fig 152 

1A). Therefore, it was not surprising that we identified control elements within this ACE2 locus 153 

(Fig 1A). The distribution of targets for the putative control elements we identified is consistent 154 

with previous studies that show that while the majority of significant eQTLs fall within 100 kb 155 

of the transcription start site of a gene, only 60% of all eQTLs are upstream of the gene they 156 

regulate[32]. Notable amongst the elements we identified are long distance trans-regulatory 157 

interactions involving: 1) rs1399200:VPS13C (chr15:61,852,389-62,060,473; encodes 158 

vacuolar protein sorting-associated protein 13C); and 2) rs6632680:PHKA2 (chrX:18,892,300-159 

18,984,598; encodes phosphorylase kinase regulatory subunit alpha 2) (S2 Table).  160 

We identified eighty genetic variants within the ACE2 locus as cis-acting spatial eQTLs that 161 

physically modulate the expression of genes PIR (encodes Pirin), CA5BP1 (a pseudogene of 162 

CA5B), and CA5B (encodes mitochondrial carbonic anhydrase) in lung tissues (S2 Table). 163 

Fifty-eight SNPs located across the region are associated with increased expression of PIR 164 

(log2[aFC, allelic fold change] 0.462 ± 0.07) consistent with the elements they mark repressing 165 

PIR transcription. Eighteen SNPs located across the region are associated with decreased 166 

expression of CA5B (log2[aFC] -0.257 ± 0.005) consistent with the elements they mark 167 
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enhancing CA5B transcription. These variants occurred in two clusters: 1) within the ACE2 168 

gene; and 2) within the CLTRN (TMEM27) gene – a known homologue of ACE2. Expression 169 

of CA5BP1, a pseudogene of CA5B, was also repressed (log2[aFC] -0.21 ± 0.01) by 6 SNPs 170 

within the ACE2 locus. Within ACE2 itself there were only control regions for the PIR and 171 

CA5B genes (Fig 1B).  172 

The common variants that we tested show an unusual ancestry associated pattern of minor 173 

allele frequencies (Fig 1B). Specifically, the East Asian population (1K Genomes project) 174 

displays little variation across the bulk of the variants we analyzed. This observation is 175 

supported by measures of genetic diversity (FST) between the Indian, Chinese and Malay 176 

populations within the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort 177 

(S3 Table). However, this pattern breaks down at several positions across the ACE2 gene 178 

(including rs4646142, rs2285666, and rs2106809, which show significant selection towards 179 

the reference allele) in all of the tested populations, indicating potential selective pressure at 180 

these loci (Fig 1B). Notably, two of these variants alter potential transcription factor binding 181 

sites (i.e. rs2285666 alters HNF1, and Ncx motifs, rs2106809 alters a CEBPB motif; S4 Table). 182 

All three variants (rs4646142, rs2285666, and rs2106809) have previously been associated 183 

with allele, sex and ethnicity specific impacts on hypertension, blood pressure, hypertrophic 184 

cardiomyopathy, type 2 diabetes, myocardial infarction (reviewed in[33]). Moreover, the 185 

CEBPB motif is recognized by the CCAAT enhancer binding protein-β which has been 186 

implicated in inflammatory responses in lung carcinoma cells [34]. 187 

 188 

Discussion 189 
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We identified transcription regulatory elements for CA5B and PIR that are active in lung tissue 190 

and are located within the ACE2 gene. We also identified a transcription regulatory element 191 

(located in the BMX gene, adjacent to ACE2) for the PIR and VPS13C genes. It is sterically 192 

impossible for a single DNA sequence to simultaneously be transcribed and regulate another 193 

gene through a physical connection. Therefore, we propose that SARS-CoV-2-induced 194 

chromatin-dependent repression of ACE2 expression in lung enables the regulatory sites, 195 

repressing PIR and activating CA5B, to exhibit increased functionality in infected cells (Fig 2). 196 

We hypothesize that this regulatory change extends to coordinate changes in the expression of 197 

VPS13C and PHKA2 in ways that promote viral proliferation. This host regulatory network has 198 

not evolved to benefit the virus but rather, these regulatory changes inadvertently produce an 199 

environment advantageous for the virus.  200 

The CA5B gene encodes a mitochondrial carbonic anhydrase that catalyzes the reversible 201 

hydration of CO2 in the lung. This reaction is important in mitochondria as it supplies HCO3
- 202 

ions required by pyruvate carboxylase for gluconeogenesis, and by carbamoyl phosphate 203 

synthase 1 (CSP1) for pyrimidine biosynthesis (Fig 2B) [38–40]. Pyrimidines are important 204 

host factors critical for viral genomic replication, mRNA synthesis for protein translation, and 205 

phospholipid synthesis [41]. Inhibiting de novo pyrimidine biosynthesis impacts on SARS-206 

CoV-2 replication [18]. CSP1 additionally produces a precursor for the biosynthesis of 207 

polyamines, small aliphatic molecules that play important roles in virus replication. Inhibition 208 

of polyamine biosynthesis significantly impaired replication of the Middle East Respiratory 209 

Syndrome [MERS] coronavirus [42]. Targeted inhibition of CA5B encoded carbonic 210 

anhydrase might therefore decrease levels of critical host factors pyrimidines and polyamines 211 

- critical host factors needed for SARS-CoV-2 replication.  Intriguingly, similarities in the 212 

pathologies of SARS-CoV-2 infection and high altitude pulmonary edema (HAPE) have led to 213 
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the suggestion that carbonic anhydrase inhibitors could be used to treat or prevent Covid-19 214 

infection [43].  215 

Interleukin expression is responsible for irreversible, pathological changes associated with 216 

SARS-CoV infection in the lung (e.g. [44]). Human coronavirus  has been shown to fine-tune 217 

NF-κB signaling [45]. PIR encodes a non-heme iron binding protein that is a redox switch that 218 

modulates the binding of p65 (RelA) to NF-κB responsive promoters [46]. NF-κB regulates 219 

multiple immune function aspects, including the production of pro-inflammatory 220 

cytokines[47]. Therefore, it is notable that repressor regulatory sequences for PIR sit within 221 

the ACE2 gene (Fig 2A). We postulate that the chromatin modifications that silence ACE2 222 

expression upon early stage infection activate the PIR repressor (Fig 2B). This reduces 223 

responsiveness of NF-κB, and thereby delays the expected and needed anti-viral response. 224 

Reduction in PIR expression would also reduce the impact of any changes to intra-cellular 225 

redox state caused by that SARS-CoV-2 infection, however little is known and future 226 

experiments are required to clarify this. 227 

The enveloped Betacoronaviruses (MHV, SARS-CoV, SARS-CoV-2) gain entry to the cell 228 

through the endo/lysosomal pathway and require late endosomal maturation for fusion [48]. 229 

Therefore, it is interesting to speculate on the impact of coordinated changes to VPS13C 230 

expression. The VPS13 family are endoplasmic reticulum associated lipid transporters. 231 

VPS13C is proposed to act as a lipid transporter at organelle contact sites between (i) the 232 

endoplasmic reticulum (ER) and endolysosomes, and (ii) the ER and lipid droplets, where it 233 

transfers lipids, potentially bulk lipid transfer, between organelles to maintain lipid 234 

homeostasis and organelle functionality [49]. Increased VPS13C expression is predicted to 235 

increase the extent of contact and lipid transfer between these organelles. This in turn could 236 
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enhance the virus’s replication capacity and pathogenesis, as the ER plays both a physical and 237 

functional central role in the virus’s capacity to replicate and form new viral progeny. 238 

Moreover, SARS-CoV extensively reorganizes the host cell’s membranes infrastructure to 239 

produce a reticulo-vesicular network of modified ER to coordinate its replication cycle [50]. 240 

Alterations to ER-lipid droplet contacts mediated by VPS13C could support the virus’s 241 

required expansion and re-organization of ER membranes by altering lipid flow through the 242 

ER [51]. Notably, cells infected with Hepatitis C virus (HCV), a positive-strand RNA virus 243 

like SARS-CoV-2, contain ER-derived membranous structures that contain significantly high 244 

levels of cholesterol, despite the ER of uninfected cells possessing relatively low cholesterol 245 

levels [52]. Increased VPS13C-mediated ER-endolysosomal contact sites could increase the 246 

capacity of endocytosed dietary cholesterol to be delivered to the ER and enhance the virus’s 247 

ability to replicate. Pharmacological impairment of endolysosomal cholesterol efflux reduced 248 

HCV replication, [52] suggesting another possible therapeutic approach for investigation to 249 

slow SARS-CoV-2 replication. ER stress, impacted by changes to VPS13C expression, may 250 

also contribute to late infection stage NF-κB activation (reviewed in [53]). 251 

The significance of the putative enhancer for PHKA2, which encodes the phosphorylase kinase 252 

regulatory subunit alpha 2, is unclear. Mutations in this gene have been linked to glycogen 253 

storage disorders and glucose metabolism. Thus, linkages can be drawn to the increased 254 

expression of CA5B, which impacts on gluconeogenesis. Notably, PHKA2 was downregulated 255 

in plasma from individuals with hepatocellular-carcinoma caused by HCV infections [54]. 256 

Theoretically, chromatin remodeling in response to SARS-COV-2 infection could down-257 

regulate PHKA2 expression. However, there is a paucity of information linking this gene to 258 

viral infections or the lung and this conclusion requires additional experimental support.  259 
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SARS-CoV is known to repress ACE2 expression [4]. ACE2 regulation involves chromatin 260 

remodeling and structural chromatin changes [19]. Several of the regions that we identified 261 

overlapped or were adjacent to CTCF biding sites (e.g. rs1399200, which regulates PIR and 262 

VPS13C; rs6629111, which regulates CA5B; and sites [rs714205, rs1514280, rs4240157 and 263 

rs4646131] within ACE2[33]). We also note that the regulatory sites we identified included 264 

transcription factor binding sites for Ap-1, RXRA (a DNA-binding receptor involved in host-265 

virus interactions) [55], GR or NR3C1 (a regulator of inflammation in asthma and COPD) [56], 266 

Pou2f2 (trans-activator of NR3C1)[57], and P300 (a chromatin modifier; S4 Table) [58]. 267 

Expression data within the search-based exploration of expression compendium (SEEK) 268 

supports a strong co-expression relationship between ACE2 and PIR (lung cancer, ovarian 269 

tumor) and a weaker association with CA5B (ovarian cancer) (http://seek.princeton.edu/ [59]). 270 

However, the possible mechanism(s) that link ACE2 silencing to alterations associated with 271 

these regulatory regions remains unknown until empirically determined in lung cells in the 272 

presence/absence of real or simulated viral infection. 273 

Whilst this study is novel and uses empirically derived data in the analyses, the observations 274 

are limited by the fact that the identification of the regulatory interactions is only putative until 275 

proven by targeted experiments. Ideally, the Hi-C datasets should be derived from matched 276 

tissues prior and post SARS-CoV-2 infection. Finally, the GTEx database has recognized 277 

limitations, including the ethnic diversity of the samples. These limitations will form the basis 278 

of future studies. 279 

 280 

Conclusion  281 
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We identified putative regulatory regions in and surrounding ACE2 that regulate the expression 282 

of PIR, CA5B, and VPS13C in the lung. We contend that viral induced chromatin-dependent 283 

repression of the ACE2 gene increases the activity of these regulatory sites and promotes an 284 

intra-cellular environment suitable for viral replication.  The altered gene products represent 285 

new targets for anti-SARS-CoV-2 therapeutics. 286 

  287 

288 
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Figure legends 515 

Fig 1. Elements located within and surrounding the ACE2 locus regulate the lung-specific 516 
expression of PIR, CA5B, CA5BP1, VPS13C, and PHKA2. (A) Common genetic variants 517 

(SNPs) located within the ACE2 locus form spatial cis-acting regulatory interactions with PIR, 518 

CA5BP1, and CA5B across sub-TAD boundaries on chrX:15,300,000-15,600,000. Inter-TAD 519 

trans-acting interactions regulate PHKA2 (3.2 Mb away) and VPS13C (located on chromosome 520 

15). Visualization of TAD and chromatin interactions was performed using the 3D genome 521 

browser (http://yuelab.org/)[35] and UCSC browser’s interact tool 522 

(http://genome.ucsc.edu)[36], respectively. (B) Within ACE2, MAFs for the SNPs that tag the 523 

regulatory sites showed significant bias in four different populations (i.e. African [AFR], Ad 524 

Mixed American [AMR], East Asian [ASN] and European [EUR]) at one PIR (rs714205) and 525 

three CA5B regulatory sites (rs4646142, rs2285666, and rs2106809), consistent with selection 526 

acting on these loci. MAFs were obtained from HaploReg v4.1 527 

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) [37].  528 

 529 

Fig 2. Hypothesis: SARS-CoV-2 infection is associated with an ACE2 dependent switch 530 

that alters expression of proteins that promote an environment for viral proliferation in 531 
the lung. (A) In middle-aged non-infected individuals, control regions within ACE2 are 532 

capable of downregulating the expression of PIR, which is involved in the NF-κB pathway. 533 

Enhancer elements within ACE2 are poised to upregulate CA5B expression, which encodes an 534 

enzyme important for pyrimidine synthesis. In addition to this, an enhancer region within the 535 

BMX gene (still within the same TAD) contributes to VPS13C regulation. (B) We hypothesize 536 

that upon viral infection, SARS-COV-2 represses ACE2 expression, which increases the 537 

activity of the PIR repressor and CA5B enhancer. This results in a reduction in the production 538 

of PIR - the redox switch necessary for NF-κB activation, while also increasing pyrimidine 539 

synthesis, which is necessary for viral replication.  540 

 541 

Supplementary Tables 542 

S1 Table. Lung-specific Hi-C libraries used in the analysis 543 

S2 Table. Lung-specific spatial SNP-gene relationships in the ACE locus 544 

S3 Table. Genetic diversity estimate (Fst) across ACE2 in the Indian, Malay and Chinese 545 

populations in the GUSTO cohort.  546 

S4 Table. The common variants overlap DNA binding motifs. Data from Haploreg v4.1 547 

(3/3/2020) 548 

 549 

 550 

Supplementary Figures 551 

S1 Figure. The CoDeS3D algorithm used in this study. Restriction fragments containing 552 

SNPs located within the ACE locus (chrX:15,519,996-15,643,106) were identified. Lung-553 
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specific Hi-C libraries were interrogated to identify genes in fragments that spatially interact 554 

(in cis- and trans-) with SNP-containing fragments. The identified spatial SNP-gene pairs were 555 

further used to query GTEx lung tissue (dbGaP Accession phs000424.v8.p2, 556 

UBERON:0008952). The Benjamini-Hochberg FDR control algorithm was applied to adjust 557 

the p values of the resulting eQTL associations to identify only significant (FDR < 0.05) lung-558 

specific SNP-gene spatial relationships in the ACE locus. 559 

 560 

S2 Figure. The eQTL data used in this study was obtained from lung samples taken from 561 
middle-aged individuals. To assess the correlation of genetic variation with the changes in 562 

gene expression, the GTEx project (https://gtexportal.org/home/) collected and analysed lung 563 

samples from donors who were densely genotyped. The age-distribution graph illustrates that 564 

approximately 70% of the lung samples that were obtained were from donors aged between 50 565 

and 60.  566 

 567 
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