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Abstract6

Selection in humans often leaves subtle signatures at individual loci. Few stud-7

ies have measured the extent to which these signals are shared among human8

populations. Here a new method is developed to compare weak signals of se-9

lection in aggregate across the genome using the 1000 Genomes Phase 3 Data.10

Results presented here show that selection producing weak selection serves to11

increase population differences around coding areas of the genome.12

1 Introduction and background13

Until relatively recently, studies of natural selection in humans focused on clas-14

sic selective sweeps that have large effects on isolated regions of the genome15

(Sabeti et al., 2002; Voight et al., 2006). In a classic selective sweep, a new benefi-16

cial mutation appears in one person and spreads through a population (Smith17

and Haigh, 1974). When an allele is sweeping through the population, sur-18

rounding DNA from the original haplotype on which the mutation occurred19

tends to “hitchhike” with the selected allele. This results in linkage disequilib-20

rium (LD), a nonrandom association of alleles at two or more loci (Lewontin21

and Kojima, 1960). The blocks around selected loci are longer and contain less22

diversity the greater the strength of selection. Mutation and recombination23

reintroduce variation into blocks of LD (Lande, 1975), and given sufficient gen-24

erations following the sweep, LD blocks around a locus are broken apart. The25

extent to which this has occurred depends on the local mutation and recombi-26

nation rates and the amount of time that has passed. This “signal” is used by27

a variety of methods to detect natural selection (Booker et al., 2017; Haasl and28

Payseur, 2016; Vitti et al., 2013).29

As research continues it has become apparent that the most common forms30

of selection in humans are those that have smaller effects on LD around indi-31

vidual loci such as polygenic adaptation (Daub et al., 2013; Hernandez et al.,32
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2011; Pritchard et al., 2010) and selection on existing variation (Harris et al.,33

2018; Schrider and Kern, 2017). These forms of selection are unlikely to gen-34

erate significant signals using statistics designed for classic sweeps, although35

they may account for some fraction of those that fail to reach significance. Fur-36

thermore, while classic selective sweeps are usually geographically local and37

therefore tend to increase population differences (Fagny et al., 2014; Vitti et al.,38

2013), much less is known about how often weak signals of selection are shared39

between populations. Weak signals of selection are more likely to be shared be-40

tween populations because the types of weak selection that produce them are41

slower, and alleles that arose in a common ancestor are more likely to still be42

polymorphic. In the context of this paper, a “weak” signal refers to signals43

of selection that do not reach significance or an Integrated Haplotype Score44

(|iHS|) greater than two. This term is therefore relative to the statistic being45

calculated rather than reflecting a rigid category of selective pressure.46

Theoretically, populations ought to share more signals of selection if they47

are closely related for the following reasons:48

1. Beneficial mutations are more likely to become lost or fixed the more49

time that has elapsed since mutation. If two populations are distantly50

related, beneficial mutations are likely to be either fixed or lost in one51

or both of the populations. If two populations are closely related, sig-52

nals from completed sweeps in their common ancestor are more likely53

to be preserved and detectable in each. Furthermore, the same beneficial54

mutation may still be polymorphic and increasing in frequency in both55

populations, producing a shared signal.56

2. Closely related populations often share similar environments. If each57

population experiences a beneficial mutation near the same locus, both58

populations may show evidence of selection in the same region.59

3. Neutral mechanisms can produce spurious signals of selection by chance.60

Closely related populations are expected to share such signals because a61

larger portion of their population history is shared.62

This theoretical expectation has been supported empirically. Pickrell et al.63

(2009) show that populations within the same continent are more likely to share64

signals of selection. Similarly, Johnson and Voight (2018) found that regions of65

the genome with high concentrations of large |iHS| scores were more likely to66

overlap between populations if those populations are closely related.67

Here, methods traditionally used to detect classic selective sweeps are im-68

plemented to characterize genome-wide patterns of shared weak signals of se-69

lection. While methods have been developed to detect subtler signatures of70

selection (Field et al., 2016; Schrider and Kern, 2016), some of the methods for71

detecting classic selective sweeps still have some utility for studying popula-72

tion differences. Hard selective sweeps may be an uncommon mechanism of73

adaptation in humans (Coop et al., 2009; Hernandez et al., 2011; Schrider and74

Kern, 2017), but they are an important case. Many large adaptive changes have75
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occurred in the recent past via classic selective sweeps (Fagny et al., 2014; Vitti76

et al., 2013). These signals are known to be recent because ancient adaptation77

that occurred via this mechanism has already driven the causative variant to78

fixation and the signal has been obscured by subsequent recombination and79

mutation. It may be possible to detect older instances of selection with some of80

the same methods because moderately beneficial alleles increase in frequency81

much slower and the resulting signal persists longer. However, because |iHS|82

is standardized, and most large significant signals are the result of selection83

within the last 20,000 years (Voight et al., 2006), ancient signals are unlikely to84

produce significant signals of selection at individual loci. For this reason, this85

research investigates genome-wide patterns of weak signals of selection rather86

than identifying particular loci under selection.87

2 Results88

2.1 Weak signals of selection89

To get an idea of the relevant strength of selection, a catalog of significant |iHS|90

signals for the 1000 Genomes Phase 3 data were obtained from Johnson and91

Voight (2018). These signals were binned by their size to search for any clear92

cutoffs in the size (in base pairs) of selection signals from |iHS| (Figure 1). Most93

significant |iHS| signals were at least 100kb long. A model was adapted from94

Gillespie (2004) to determine the relationship between the selection coefficient95

(s), the recombination rate (r), and the size of linkage disequilibrium blocks96

around a selected allele at an intermediate frequency of 0.5 (Figure 2). The97

strongest signals of classic sweeps will therefore commonly have a selection98

coefficient of 0.01 or greater. Here we hoped to exclude the majority of these99

signals by removing sites with |iHS| values greater than two. The remaining100

sites should disproportionately be from loci with selection coefficients smaller101

than 0.01.102

2.2 The Integrated Haplotype Score (|iHS|)103

To measure signals of selection, |iHS|was calculated for samples from the 1000104

Genomes Project. |iHS| identifies regions under selection by comparing the105

difference in LD between carriers of the reference and alternate alleles. Large106

|iHS| scores indicate a substantial difference in LD. Correlation of sample |iHS|107

scores of two populations was calculated for each pair of samples. This correla-108

tion was calculated separately for genic and nongenic portions of the genome.109

Unlike genetic drift, selection affects specific loci and linked variation rather110

than the entire genome. Genic regions should more commonly be the target111

of selection because they are more often functional (Barreiro et al., 2008; Coop112

et al., 2009). The difference between genic and nongenic correlations at a given113

value of genetic distance is likely the result of selection. While selection is114

known to occur in some noncoding regions (Forni et al., 2014; Hernandez et al.,115

3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.055954doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.055954
http://creativecommons.org/licenses/by-nc/4.0/


0

400

800

1200

0 100 200 300 400
Segment length (Mb)

Fr
eq

ue
nc

y

0
2000

6000

10000

14000

Figure 1: Normal and cumulative histogram of significant |iHS| region sizes
in 26 1000 Genomes Phase 3 data. A sharp cliff occurs at 100kb, implying
most cases of classic selective sweeps considered to be significant leave signals
grearelevantter than 100kb.

2011; Ponjavic et al., 2007), this should have the effect of making any observed116

differences between genic and nongenic regions more conservative. In either117

case, correlation is expected to be relatively large and positive when the two118

populations have both experienced selection in the same areas of the genome.119

This occurs not only because particular SNPs may be under selection, but also120

because |iHS| scores at linked sites near mutually selected loci should covary121

as well.122

To limit the effect of hard sweeps, loci with significant |iHS| values (greater123

than two) were removed from the calculation. To compensate for the effects124

of linkage, regions were considered nongenic if they were at least 500kb from125

genic regions. The resulting correlations were regressed with a Loess algorithm126

against Nei’s genetic distance for each pair of populations. Confidence inter-127

vals were generated using a moving block bootstrap (Liu and Singh, 1992) with128

a block size of 500kb. The outcome is shown in Figure 3.129

The left edge of the graph refers to pairs of populations that are genetically130

similar and tend also to be geographically close. Samples from the same geo-131

graphic regions experience similar correlations in genic and nongenic sections132

of their genome. As the genetic distance between samples increases, the cor-133

relation between samples in both genic and nongenic regions decreases until134

it approaches zero in the most genetically distant comparisons, Africans and135

Eastern Asians. However, the correlation of |iHS| in genic and nongenic re-136

gions does not decrease at the same rate. The pairwise genic correlation is137

consistently lower than the pairwise nongenic correlation for all sample pairs138
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Figure 2: Determining the relationship between the strength of selection and
LD block size. The recombination rate (r) is held constant while the selection
coefficient (s) varies between replicates. Each replicate is allowed to run until
the beneficial allele reaches a frequency of 0.5. The red line indicates the point
at which sites are no longer in LD with the site under selection. With known r
and block size, s can be determined.
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Figure 3: Correlation of |iHS| scores for nongenic regions compared to genic
regions.
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Figure 4: Correlation of XP-EHH scores for nongenic regions compared to
genic regions.

except at large genetic distances.139

2.3 The Cross Population Extended Haplotype140

Homozygosity (XP-EHH)141

The above analysis was repeated for XP-EHH. XP-EHH compares LD differ-142

ences between two samples, identifying where selection has occurred in one143

sample but not the other. XP-EHH was chosen as a supplementary analysis144

to |iHS| because it is more sensitive to selection in which the beneficial is near145

fixation. Like |iHS|, XP-EHH correlation between populations decreases with146

increasing genetic distance. Unlike iHS, XP-EHH genic and nongenic corre-147

lations overlap considerably (see Figure 4). However, XP-EHH correlations148

in either nongenic or genic regions were consistently larger than their |iHS|149

counterparts.150

2.4 Simulations in SLiM151

Correlations tend to be lower in genic than in nongenic regions. I will ar-152

gue that this implies that, even when selection is weak, its primary effect is153

disruptive, tending to increase differences between populations. To establish154

this point, simulations were conducted using Selection on Linked Mutations155

(SLiM) to show that disruptive selection tends to reduce the correlation be-156

tween |iHS| signals. In each simulation, a single population splits into two.157

The time of this split varies among simulations to model differences in genetic158
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Figure 5: |iHS| correlation with positive selection occurring in one branch.
Wilcoxon signed-rank test, n=21, p=0.002.
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Figure 6: |iHS| correlation with purifying selection occurring in one branch.
Wilcoxon signed-rank test, n=21, p=0.357.
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distance. Following the split, populations experience one of three evolution-159

ary scenarios: neutrality, positive selection, or purifying selection. All three160

models experience neutral mutations. In both cases of selection, non-neutral161

mutations occur in a single population following the split. Results were stan-162

dardized against the neutral simulations with the same divergence time, and163

the correlation analysis proceeds in the same manner as the real data.164

The results of this process are shown in Figure 5 and 6. For any particu-165

lar divergence time, confidence intervals of neutral and selection models over-166

lapped. However, there is a difference between the scenarios when points are167

considered together. In each case a Wilcoxon signed-rank test was conducted168

to assess if the selection correlation could have been drawn from the same dis-169

tribution as the neutral correlation. The correlation of |iHS| in the presence170

of positive selection was significantly lower than in the neutral model (n=21,171

p=0.002). Previous work has suggested that |iHS| is not sensitive to purifying172

selection (Enard et al., 2014) and that conclusion was supported here. The cor-173

relation of |iHS| in the presence of purifying selection was indistinguishable174

from the neutral model (n=21, p=0.357).175

To get an idea of how far back selection can be detected, the basic model176

of positive selection was repeated for increasing divergence times. In these177

simulations, beneficial mutations (s=0.01) are introduced into one population178

following the population split for 2,000 generations. At this point, no more179

beneficial mutations are introduced and selection on existing beneficial muta-180

tions is halted, allowing any existing signals to decay. When divergence times181
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Figure 7: Correlation of |iHS| for a set of divergence times ranging from 2,000
to 4,000 generations ago. While neutral regions have a correlation around zero,
selection has the effect of decreasing correlation further.
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range from 2,000 to 4,000 generations ago (about 50-100-kya) (Figure 7), corre-182

lations are small relative to the recent divergence times discussed above, but183

correlations in selected regions are still significantly smaller than in neutral re-184

gions (n=40, p=2.07e-4). If divergence times are increased further (Figure 8), the185

significant difference between selected and neutral regions disappears (n=40,186

p=0.83). This strongly suggests that the correlation of |iHS| is sensitive to in-187

stances of selection that are much older than the effective range of traditional188

use of |iHS| (Voight et al., 2006).189

Simulations of positive selection were repeated using a model of soft selec-190

tive sweeps, in which a mutation becomes beneficial after it has already drifted191

to a relatively high frequency. Soft sweeps introduce initial allele frequency as192

an additional dimension to the simulations. While |iHS| is sensitive to soft193

sweeps with starting allele frequencies as large as 0.1 (Ferrer-Admetlla et al.,194

2014), it is unclear to what extent soft selective sweeps will be detected by the195

methods proposed above. To determine the relevant range of soft sweep pa-196

rameters, simulations were run over a wide range of combinations of starting197

allele frequencies and sweep frequency. Soft sweeps, in general, appear to have198

the same effect as classic sweeps from de novo mutations, depressing the corre-199

lation of |iHS| in regions that have experienced selection. The largest allele fre-200

quency for which soft sweeps caused a significant difference between selected201

and neutral regions in our simulations was the 0.09-0.1 bin (n=40, p=0.041). The202

effect size is small in both cases due to their proximity to the cutoff. Figure 9203

shows the results of the simulations using the 0.09-0.1 bin. Figure 10 (n=40,204
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Figure 8: Correlation of |iHS| for a set of divergence times ranging from 4,000 to
6,000 generations ago. No significant difference between neutral and selected
regions is detectable.
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p=0.113) shows the result of simulations in the first insignificant frequency bin205

of 0.1-0.2.206

3 Discussion207

3.1 Weak signals differ between populations208

The smaller correlation of |iHS| in genic regions compared to nongenic regions209

implies that populations share few signals of weak selection. This result sup-210

ports the hypothesis that weak positive selection has a similar disruptive effect211

as hard classic sweeps. This pattern is also present in the simulated data.212

Simulations including beneficial mutations in one population resulted in213

a depressed correlation of |iHS| compared to neutral simulations. Models of214

purifying selection did not have the same effect. This suggests that positive215

selection rather than purifying selection across genic regions is more likely to216

be driving the increase in population differences.217

This effect is amplified when the distance from genic regions increases. If218

nongenic regions are at least 1Mb from genic regions, confidence intervals for219

correlation of nongenic regions increase, but the difference between genic cor-220

relation and nongenic correlation of |iHS| increases substantially (Figure 11).221

The sample size as measured by the number of bases and number of regions222

in the genome both decrease. This change implies two things. First, it sup-223

ports the notion that nongenic regions are substantially affected by selection at224

neighboring genic sites. Second, the pattern in the nongenic regions continues225
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Figure 9: |iHS| correlation with soft-sweeps occurring in one branch with a
starting allele frequency between 0.09 and 0.1.
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Figure 10: |iHS| correlation with soft-sweeps occurring in one branch with a
starting allele frequency between 0.1 and 0.2.

to change with increasing distance from genic regions, even to the point that226

nongenic regions are reduced to a small portion of the genome. This result227

could be used to support the hypothesis the majority of the genome is affected228

by positive selection to some extent (e.g., Pouyet et al. (2018); Schrider and229

Kern (2017)).230

3.2 XP-EHH231

The correlation of XP-EHH in genic regions was consistently lower than in non-232

genic regions, but not significantly. The hypothesis that the patterns in genic233

regions are due to population history rather than selection cannot be rejected.234

In other words, the results are consistent with theoretical arguments 1, 2, and235

3 enumerated above. However, the XP-EHH results are still informative when236

compared to |iHS|. The difference in sensitivity between |iHS| and XP-EHH is237

visible in Figure 12. Pairwise XP-EHH correlation is larger in closely related238

populations than pairwise |iHS| correlation. This reflects the ability of XP-EHH239

to detect differences in haplotype structure that are the result of older selection240

(near fixation) or population history. This implies that the correlation methods241

implemented here may be repeated for other methods of detecting selection.242

Correlations of XP-EHH scores between African populations are substan-243

tially small compared to population comparisons with similar genetic distance.244

This values cluster in the lower left of Figure 12. This is likely due to the in-245

creased similarity of these samples to the reference XP-EHH sample, Yoruba.246
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Figure 11: Genic regions compared to nongenic regions with a large flank size
of 1Mb.
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Figure 12: Correlation |iHS| and correlation of XP-EHH scores. Genic regions
with population labels can be found in Appendix A.
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4 Methods247

4.1 Pairwise correlation of |iHS|248

To measure selection, the Integrated Haplotype Score (|iHS|) was calculated249

for the 1000 Genomes Phase 3 data acquired from ftp://ftp.1000ge- nomes.250

ebi.ac.uk/vol1/ftp/release/20130502/. Recently admixed populations were251

excluded from this analysis, leaving 21 samples from Eurasian and African252

populations. Data were divided by population sample and filtered to exclude253

sites with a minor allele frequency less than 0.05.254

|iHS| was calculated using the selscan package (Szpiech and Hernandez,255

2014). |iHS| is sensitive to variation in allele frequency (Voight et al., 2006) and256

local recombination rate (O’Reilly et al., 2008). This was compensated for in257

two ways. First, when integrated across the chromosome, genetic map distance258

was used rather than physical distance. Genetic maps for the 1000 genomes259

were downloaded from the Pickrell lab (https://github.com/joepickrell/260

1000-genomes-genetic-maps). The map positions for missing sites were im-261

puted from neighboring sites. Second, when the ratio of scores is taken be-262

tween the two allele types, the effects of recombination ought to disappear263

because the recombination rate is the same for carriers of both alleles. To ver-264

ify this process, |iHS| was first standardized using allele frequency bins and265

then was regressed against recombination rate. A strong relationship between266

frequency standardized |iHS| and recombination rate remained. Following the267

example of Johnson and Voight (2018), |iHS| scores were restandardized using268

46 frequency and 21 recombination bins. Frequency bins ranged from 0.05 to269

0.95 and recombination bins were determined by grouping the data into per-270

centiles.271

Standardized |iHS| scores were split into genic and nongenic regions of272

the genome for each sample using coordinates of known genes and gene pre-273

dictions from the UCSC table browser (Karolchik et al., 2004). Dividing the274

data into genic and nongenic regions allows us to distinguish between shared275

sweeps in a common ancestor or independent sweeps after a common ancestor276

from spurious signals of selection from common ancestry (theoretical points 1277

and 2 from 3 above). Unlike genetic drift, selection affects specific loci and278

linked variation rather than the entire genome. Genic regions should more279

commonly be the target of selection because they are more often functional280

(Barreiro et al., 2008; Coop et al., 2009). The difference between genic and non-281

genic correlations at a given value of genetic distance can be attributed to se-282

lection.283

Regions were considered nongenic if they occurred outside of a flanking re-284

gion around genes. This cutoff is used to compensate for the effects of linkage285

(Slatkin, 2008; Wall and Pritchard, 2003). To determine the appropriate flank286

size, correlation of |iHS| was calculated between populations for each subdi-287

vision of the genome and increasing flank size. The absolute value of iHS is288

taken because the sign of iHS only indicates allele state. A beneficial allele will289

produce both positive and negative scores with large magnitudes at neighbor-290
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ing sites. Correlation was limited to loci with |iHS| values within two standard291

deviations of zero. This distinction was made to eliminate loci showing po-292

tential evidence for strong selective sweeps. The ideal flank size for nongenic293

regions was assessed based on sample size and the effect of linked genic sites294

(Table 1). As flanking regions become large, both sample size and the influence295

of genic regions on nongenic regions decrease. Within genic regions the size of296

the flanking region had little effect on |iHS| correlations (Figure 13). There-297

fore, “genic” in this study is defined to mean a flank size of zero. For nongenic298

regions, a flank size of 500kb was used to balance between sample size and the299

effect of neighboring genic regions (Figure 14).300

Once flank sizes were determined, genic and nongenic |iHS| correlation301

matrices of the determined flank size were regressed against Nei’s genetic dis-302

tance using the Loess algorithm. Nei’s genetic distance (Nei, 1972) was cal-303

culated for each pair of population samples using the allele frequencies taken304

from the 1000 Genomes data.305

A moving blocks bootstrap (Liu and Singh, 1992) was used to generate con-306

fidence intervals around the regressions. This method was chosen because loci307

near one another are used in each other’s calculation of |iHS|, implying that308

|iHS| calculation of neighboring sites is not independent. The moving blocks309

bootstrap method compensates for this problem by sampling entire regions of310

the genome rather than individual loci. Blocks of 500 kilobases (kb) were sam-311

pled from the standardized |iHS| output. This cutoff was chosen because most312

blocks of LD in the genome are smaller than 500kb (Slatkin, 2008; Wall and313

Pritchard, 2003). The number of blocks used in each bootstrap is equal to the314

number of blocks required to simulate the length of the real data. Correlation315

Table 1: The flank sizes tested for genic and nongenic regions. Genic regions
are given flanking regions and nongenic regions are considered to be anywhere
not included.

Type Genic flank size (kb) Regions Total bases

genic 0 21,531 1,281,434,774
100 1,588 2,160,261,718
200 7,458 2,374,098,102
300 465 2,485,778,284

nongenic 300 445 256,313,467
400 280 187,125,998
500 193 142,103,389
600 131 111,130,841
700 97 89,398,183
800 66 73,840,405
900 47 63,052,677

1,000 36 54,964,754
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Figure 13: Difference in correlation of |iHS| in genic regions given varying flank
sizes.
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Figure 14: Difference in correlation of |iHS| in nongenic regions given varying
flank sizes.

of |iHS| was calculated for each resampling. The model fit to the real data is316

then applied to the resampling of the data. This process is repeated 1,000 times.317

The inner 95% of these replicates become the confidence intervals for the real318

data.319
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4.2 Pairwise correlation of XP-EHH320

Tests performed on |iHS| were repeated for XP-EHH. XP-EHH requires a sec-321

ond population to serve as a comparison. Results of XP-EHH indicate where322

selection has occurred in one population or the other, but not both. Each test323

used the same second or reference population, the Yoruba. This will bias the324

XP-EHH results against signals that populations share with the reference pop-325

ulation. However, it allows for the pairwise comparison of nonreference pop-326

ulations. XP-EHH was calculated using the selscan package (Szpiech and Her-327

nandez, 2014). XP-EHH scores were standardized using 46 frequency and 21328

recombination bins. Frequency bins ranged from 0.05 to 0.95 and recombina-329

tion bins were determined by grouping the data into percentiles. A moving330

blocks bootstrap (Liu and Singh, 1992) was used to generate confidence inter-331

vals following the same methods described or |iHS| above.332

The correlation of XP-EHH was then calculated from the standardized val-333

ues. Final standardized scores were filtered in both populations to exclude334

sites that showed evidence for selection in Yoruba. The inclusion of these sites335

would bias the results. Covariance between populations would be positive in336

regions where Yoruba experienced selection that was relatively strong com-337

pared to the populations being compared. In these regions, both populations338

would have negative XP-EHH scores with relatively large magnitudes. This339

increase in covariance would be artificial, rather than reflecting any difference340

in the populations being compared. The pairwise XP-EHH correlations within341

Africa clustered at lower correlations than other within continent comparisons.342

This was visible in Figure 12. Figure 15 shows the same set of results with343

Africa excluded. The trend in the data does not change in any statistically sig-344

nificant way.345

4.3 Simulation346

Simulated data were generated using SLiM (Haller and Messer, 2018; Messer,347

2013). SLiM is a forward-time simulator that allows researchers to model evo-348

lutionary scenarios in the presence of linkage. For this work, three basic sim-349

ulations were performed: a neutral model, a model of purifying selection, and350

a model of positive selection. Instead of attempting to model human history,351

a simple model was constructed in which a single population separates into352

two populations at a prespecified time. This divergence time was adjusted to353

values between 50 and 2000 generations. A constant population size of 10,000354

was used throughout the simulation. The recombination rate was held con-355

stant across the simulated genome to eliminate any possibility of an association356

between linkage disequilibrium and recombination rate. Parameter values can357

be found in Table 2.358

In the neutral case, mutations have no effect. In both cases of selection,359

selection occurs in one population following a population split. This creates a360

scenario in which all loci under selection in one population were neutral in the361

other. Beneficial or deleterious mutations constituted 5% of the total number362
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Table 2: Values used in the simulations

Model Population size Split time µ r s Starting p

Hard 10,000 50 to 2000 2.36e-8 1e-8 0.005 or -0.005 0.00005
Soft 10,000 50 to 2000 2.36e-8 1e-8 0.01 0.0001 to 0.5

of mutations in their respective simulations and have a selection coefficient of363

0.005 and -0.005, respectively. |iHS| is standardized to eliminate the effects of364

allele frequency differences caused by drift. In real data, the entire genome is365

standardized together, and results indicate how exceptional a particular site is366

given its allele frequency. To replicate this effect in the simulated data, neutral367

and non-neutral simulations with the same divergence time were standardized368

jointly for allele frequency.369

For each simulation, a moving blocks bootstrap was used to find confidence370

intervals. A block size of 500 kb was used in the simulations to be consistent371

with the analysis performed on the real data. Each simulation is independent372

allowing the use of a sign-rank test. The Wilcoxon signed-rank test was per-373

formed between the selection and neutral models.374

Simulations of soft sweeps differed from hard sweeps models by using a375

constant selective coefficient of 0.01, and varied beginning allele frequencies.376

Soft sweeps start following the population split but occur at manually speci-377

fied loci meeting the desired allele frequency. This occurs at user-specified in-378
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Figure 15: Correlation of XP-EHH scores omitting African samples.
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tervals. In hard sweep models, most mutations, including the beneficial ones,379

are lost to drift. Soft sweeps starting at higher allele frequencies are unlikely to380

be lost. This presents a problem because the absolute number of soft sweeps381

affects the result. Therefore these simulations were run varying the number of382

introduced of soft sweeps until an allele frequency cutoff was observed.383
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