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Immunogenetic variation in humans is important in research, clinical diagnosis and increasingly a target for 
therapeutic intervention. Two highly polymorphic loci play critical roles, namely the human leukocyte antigen 
(HLA) system, which is the human version of  the major histocompatibility complex (MHC), and the Killer-cell 
immunoglobulin-like receptors (KIR) that are relevant for responses of  Natural Killer (NK) cells and some subsets 
of  T cells. Their accurate classification has typically required the use of  dedicated biological specimens and a 
combination of  in vitro and in silico efforts. Increased availability of  next generation sequencing data has led 
to the development of  ancillary computational solutions. Here, we report an evaluation of  recently published 
algorithms to computationally infer complex immunogenetic variation in the form of  HLA alleles and KIR 
haplotypes from whole-genome or whole-exome sequencing data. For both HLA allele and KIR gene typing, we 
identified tools that yielded >97% overall accuracy for 4-digit HLA types, and >99% overall accuracy for KIR gene 
presence, suggesting the readiness of  in silico solutions for use in clinical and high-throughput research settings.

The classical human leukocyte antigen (HLA) gene complex on 
chromosome 6, and the killer-cell immunoglobulin-like receptor 
(KIR) genes on the leukocyte receptor complex (LRC) on 

chromosome 19 are complex genomic loci that have been known to be 
difficult to genotype accurately. With the rapidly emerging treatment 
approaches in the fields of  cancer immunotherapy1,2 and autoimmunity3, 
the accurate characterization of  a patient’s immunogenetic composition 
in the HLA and KIR regions is becoming more clinically important. 
HLA proteins play an important role in presenting peptides, lipids 
and glycolipids derived from self, tumor or microbial antigens. They 
display an extreme amount of  allelic polymorphism, as a result of  
pathogen-driven and balancing selection.4 Much research has shown 
HLA variants to be strongly associated with multiple immune and 
non-immune phenotypes in the fields of  cancer5,6, autoimmunity3,7, 
neurodegeneration8, and infectious diseases3,7. In the clinic, achieving 
matched HLA alleles between the donor and recipient is critical 
for organ and stem cell transplantation, such that HLA typing and 
matching have been integrated as part of  standard clinical protocols 
for decades.9–11 HLA typing has also become increasingly important in 
diagnostics and clinical practice. For example, several approved drugs 
carry labels indicating increased risk for adverse events for carriers of  
specific HLA alleles.12–14 
KIR proteins are receptors for HLA class I ligands, and are predominantly 
expressed on natural killer (NK) cells. In contrast to most HLA genes, the 
genes coding for KIR display extensive copy number polymorphism15, 
in addition to considerable allelic variation16 for each gene. KIR have 
shown significant associations with disease phenotypes, mainly in the 
fields of  infectious diseases, autoimmunity, inflammatory diseases, and 
cancer.17 Associations were found for both single KIR genes, and when 
considering their interactions with specific HLA molecules. HLA-KIR 
interactions were demonstrated to predict the risk of  organ rejection after 
kidney transplantation, suggesting a clinical use case for KIR typing.18,19 
KIR proteins are also known to be important co-determinants of  NK 

cell education, which is in part mediated through their interactions 
with different HLA molecules. Such interactions significantly define 
the heterogeneity of  NK cell responsiveness and their sensitivity to 
inhibition by HLA across individuals.20,21 As such, KIR proteins play a 
critical role in the recognition of  “missing-self ” phenotypes in infected 
or tumor cells, which are typically defined by the loss or down-regulation 
of  HLA class I cell surface expression.22 
For research purposes, genotyping arrays covering single nucleotide 
polymorphisms (SNPs) across the genome have been used to impute HLA 
and KIR types. However, they require statistical imputation methods 
to disentangle the complex linkage disequilibrium (LD) between SNPs 
and HLA or KIR types.23,24 These methods also rely on the availability 
of  ancestry-specific or multi-ancestry reference panels that can be 
difficult to obtain, especially for populations not well represented in 
genomic data sets.25 In clinical diagnostics, dedicated immunogenetics 
laboratory solutions to HLA and KIR genotyping are being continually 
developed.26 Initial molecular typing technologies were low throughput 
and/or probe-based assays.27 In recent years, high throughput next 
generation sequencing (NGS) has become increasingly affordable.28 This 
has enabled the prevalent use of  whole-genome sequencing (WGS) and 
whole-exome sequencing (WES) in the clinic.29,30 While well-validated 
bioinformatics pipelines have been implemented to detect millions 
of  genetic variants from the available clinical sequences,31,32 they are 
typically employed uniformly to the entire genome or exome, and can 
be ineffective at particular genomic loci that are highly polymorphic, 
such as the HLA and KIR regions. Dedicated in silico typing tools that 
use NGS data and specifically target the HLA or KIR genes could be a 
cost-effective and efficient alternative to traditional laboratory HLA or 
KIR typing methods. While such NGS-based approaches do not require 
linkage disequilibrium-based statistical imputation for genotyping (since 
the sequencing reads directly contain the information to define e.g. the 
HLA allele status), they do require the use of  comprehensive databases 
that capture the diversity and complexity of  these genomic loci for 
alignment (as opposed to single reference genomes). 
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Despite their biological significance and many practical advantages, 
the development of  clinically-ready in silico HLA and KIR typing have 
thus far been largely hampered by the genetically complex and highly 
polymorphic nature of  the two regions.7,33 Here, we conducted a survey 
of  the current HLA and KIR typing capabilities for potential scaling and 
readiness in clinical applications. We evaluated available computational 
HLA inference tools by comparing the inferred HLA alleles from WES 
and WGS data to a gold standard dataset, which was generated using a 
commercial dedicated typing method. We also assessed and validated a 
recently published KIR method by Roe and Kuang34, which can be used 
to infer KIR gene presence and absence from WGS data. 

Methods
Generation of  a gold standard HLA reference dataset

The gold standard reference dataset contains 56 patient samples. Genomic DNA was 
extracted from 1 ml of  EDTA whole blood on the Roche MagNA Pure 96 system using the 
MagNA Pure 96 DNA and Viral NA Large Volume Kit. They were then sent to LabCorp 
(Burlington, NC, USA) for sequence-based, two-field HLA genotyping, using accepted 
scientific standards meeting the accreditation requirements of  the American Society for 
Histocompatibility and Immunogenetics (ASHI) and the College of  American Pathologists 
(CAP). HLA class I genotypes of  HLA-A, -B, and -C were determined using a combination 
of  long-range sequencing from PacBio (Menlo Park, CA, USA) RSII and Sanger sequencing. 
Class II genotypes for HLA-DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3, -DRB4, -DRB5 
were determined using a combination of  long-range sequencing from PacBio RSII, and NGS 
from Illumina (San Diego, CA, USA) TruSight and MiSeq technologies.

Generation of  a KIR reference dataset

Genotyping of  KIR alleles was performed for 72 patients using the LinkSeq KIR kit according 
to manufacturer’s user guide (Catalog No: 5358R, One Lambda, Canoga Park, CA, USA). 
Briefly, the human genomic DNA was amplified and melt curves were collected on a real-time 
PCR instrument (QuantStudio 5 system, Thermo Fisher Scientific, Waltham, MA, USA). 
The data was exported to SureTyper software 6.1.2 (One Lambda) for interpretation and 
reporting of  the genotype.

Whole-genome and whole-exome sequencing

WGS and WES were performed for the samples in the HLA and KIR reference datasets, on 
Illumina HiSeq instruments using paired-end reads of  150 bp. Each whole genome (WG) 
was sequenced at an average of  30x coverage. For WES, all samples passed QC criteria of  
85% of  targeted bases at 20x or greater coverage (+/- 5%). FASTQ files were generated 
for each WG and exome, and were used as direct inputs for each tool, where appropriate. 
For tools that required BAM files as inputs, the FASTQ files were processed according to a 
workflow built using the GATK best practices from 2015 and GATK v3.532. Briefly, it includes 
read alignment using bwa 0.7.15 with GRCh38 as the reference genome, duplicate marking 
using Picard tools v2.9, indel re-alignment using GATK v3.5, and then base quality score 
recalibration using GATK 3. For bwa, except for the ‘-M’ flag, all the default options were 
used. Individual-level genetic data for this study cannot be made publicly available due to 
consent restrictions.

Selection and configuration of  HLA typing tools

For WGS and WES HLA genotyping, we specifically selected tools that (1) are recently 
published, (2) are easy to install and implement, (3) have the ability to work with WGS and 
WES data, (4) and could genotype both HLA I and II genes for potential clinical use. These 
included HLA*PRG:LA,35 xHLA v1.2 [https://github.com/humanlongevity/HLA]36, HLA-
HD v1.2 [https://www.genome.med.kyoto-u.ac.jp/HLA-HD]37, and HISAT2 v2.1 [https://
ccb.jhu.edu/software/hisat2/index.shtml]38. As a comparison to a more widely used tool, 
we also assessed results from Polysolver v1.039. Polysolver has been widely utilized in many 
benchmarking and research studies, and has been shown to be one of  the more accurate 
HLA class I genotyping tools.40-44 Polysolver requires hg18 or hg19 as the human reference 
genome for read extraction from chromosome 6 in the BAM files; to overcome this limitation, 
we modified the code to include the use of  BAMs that are aligned to hg38 as well. No other 
modifications were made to the code. For xHLA, BAMs were aligned to hg38, and then 
preprocessed with an additional bash script provided by the authors [https://github.com/
humanlongevity/HLA/blob/master/bin/get-reads-alt-unmap.sh]. For HLA-HD and 
HISAT2, the raw FASTQs were used directly. All the tools were run using default settings, and 
with the HLA/IMGT databases versions that came with the respective tools. For the exact run 
parameters, please refer to Supplementary Table 1. 

Evaluation of  HLA typing tools

The tools typically give two alleles per HLA gene, but we do see in occasions, albeit rare, in 
our study where the algorithm provided more than one pair of  possible alleles, and often in 
descending order of  significance. For any results that offer more than two alleles, we only took 

the top two inferred HLA alleles; we assumed a diploid germline genome.

Each in silico HLA typing tool was evaluated by the number of  concordant HLA alleles called 
by the tool when compared with the reference HLA genotypes obtained from LabCorp, for 
the classical HLA I and II genes. Its accuracy was defined as the quotient of  the number 
of  concordant calls and the sum of  the number of  concordant plus discordant calls. For 
uniformity, results from the tools were converted to four-digit resolution before evaluation, 
except for HLA*PRG:LA, which can only perform genotyping at G group resolution. A G 
group contains HLA alleles that have the same genomic sequence for the same binding site, 
while a P group contains all the HLA alleles that have the same protein sequence for the 
antigen binding site of  the HLA binding molecule (exons 2 and 3 for HLA class I and exon 
2 for class II). A minimum of  P group resolution or higher (including G group, four-digit/
two-field resolutions), is usually considered ‘high resolution typing’ and therefore clinically 
relevant.45 For HLA*PRG:LA, gold standard results were first converted to G groups before 
evaluation. G group information was obtained from the IMGT/HLA database [http://hla.
alleles.org/alleles/g_groups.html].

We split the evaluation of  the tools’ accuracy into three categories: (1) HLA I, consisting of  
classical HLA I genes HLA-A, -B, and -C, (2) HLA IIa, consisting of  classical HLA II genes 
HLA-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1, and (3) HLA IIb, consisting of  a second 
group of  classical HLA II genes, HLA-DRB3, -DRB4, and -DRB5 (Table 1). We created a 
second category (HLA IIb) for additional DR genes because only HLA-HD currently 
genotypes them. Additionally, since every individual carries a variable copy number of  the 
three genes HLA-DRB3, -DRB4 or -DRB5 that is highly dependent on the -DRB1 genotype,46 
a no-call by the computational tool is considered concordant with the gold standard results if  
it is not also identified. Some tools cannot genotype the full set of  the classical class II genes, 
thus we also provided the accuracy with respect to each class II gene (Table 2). 

Evaluation of  KIR typing with kpi and interpretation of  results

For inference of  KIR gene presence or absence, we evaluated kpi [https://github.com/
droeatumn/kpi, downloaded March 11th, 2020]. An earlier version of  the software was 
recently presented in a preprint and did not provide a validation of  its accuracy when 
compared to qPCR-based dedicated KIR typing methods.34 Kpi requires WGS FASTQ files 
as input data and outputs a presence / absence call for each KIR gene, as well as possible 
combinations of  KIR haplotypes according to a provided list of  reference haplotypes [https://
github.com/droeatumn/kpi/blob/master/input/haps.txt]. Each KIR gene can in principle 
be characterized by copy number and allelic variation. A KIR haplotype determines the order 
and presence of  single KIR genes.47,48 However, kpi only detects presence or absence of  each 
KIR gene, not allele status or copy number. As a result, the calls for haplotype pairs can be 
ambiguous (due to differences in copy number of  present genes), but the presence of  single 
KIR genes can be resolved.49 As such, KIR typing with kpi, albeit coarse, is still useful because 
many associations have been reported on haplotype or gene level. Furthermore, interactions 
of  KIRs with their HLA ligands are usually defined at the KIR gene level.17,22 It should be 
noted though, that the KIR genes do show extensive allelic polymorphism that can still have 
an effect on such defined interactions.33,50

Inference of  HLA-KIR interactions

NK cell inhibiting as well as activating KIR interactions with their HLA class I ligands were 
defined according to Pende et al.18 Briefly, some KIR interact with groups of  4-digit HLA 
alleles according to specific HLA amino acid residues. HLA-B alleles were classified as either 
Bw4 or Bw6 according to amino acid positions 77 - 83. HLA-C alleles were assigned C1 or C2 
status based on amino acid position 80.18 Other interactions were defined between KIR and 
specific 2-digit or 4-digit HLA alleles (e.g. A*03 - KIR3DL2).

Data availability

Owing to consent restrictions, individual-level genetic data used for this study cannot be made 
available.

Results
High accuracy for HLA I and II typing with current gold 
standard WES and WGS data
We selected HLA genotyping tools to infer HLA identities of  56 patients 
from the EXCELS (NCT00252135)51 and AVANT (NCT00112918)52 
clinical trials. The inferred HLA types were then compared to results 
from the gold standard reference dataset. Despite the limited size of  
our dataset, the diversity of  HLA class I alleles for each HLA gene in 
our samples is highly comparable to the publicly available, ethnically 
varied and sequencing-derived 1000 Genomes/HapMap validation set 
generated by Ehrlich et al.53 (Supplementary Table 2).
From the results consolidated in Table 1, all the selected genotyping tools 
perform generally well, at an accuracy of  >90% for most of  the class I 
and II gene categories, except for xHLA on WES class I and IIa genes. 
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xHLA demonstrated uncharacteristically low accuracy for our WES data 
for both classes I and II, when compared to both reported performance36 
and the other tools. HISAT2 and HLA-HD performed comparably for 
the HLA I genes A, B and C for both WES and WGS data, at >98.8% 
accuracy. Overall, for class II genes, HLA-HD is consistently the most 
accurate HLA typing tool for both WES and WGS data, at >97.6% 
accuracy for DRB3, DRB4, and DRB5, and >98.6% accuracy for the 
DPA1/B1, DQA1/B1 and DRB1 genes. Moreover, it also provides the 
widest range of  HLA II genes, with the ability to genotype all the classical 
class II genes (including HLA-DRA, -DRB3, -DRB4 and -DRB5), while 
other tools are restricted to a subset of  classical class II alleles. However, 
HLA-HD has lower accuracy for DQA1 when working off WES data, 
compared to HISAT2 (Table 2). 
While we observed similar or increased accuracy when comparing 
results from WGS to WES data from the same tool (Table 1), WGS and 
WES miscalls were not always the same. This is evident when assessing 
accuracy at the gene level. For example, the increase in overall accuracy 
of  HISAT2 when using WGS data for identifying class II alleles was 
mainly due to a lower HLA-DRB1 accuracy when using WES data. 
We next focused on the top performant methods, HLA-HD and 
HISAT2. Notably, the number of  miscalls in HLA I genes was too low 
to characterize patterns or biases in the miscalls (Table 1; maximum of  
4 miscalls). For class II genes, HISAT2 showed the highest number of  
HLA-DRB1 miscalls when using WES data (Table 2). By contrast, HLA-
HD miscalled mostly in the class IIb genes, where it failed to discriminate 
the highly similar alleles of  the paralogous genes, HLA-DRB3, -DRB4 
and -DRB5. There was no obvious bias in miscalls of  homozygous genes 
in the HLA-HD and HISAT2 results (Supplementary Table 3). We note 
that most of  HLA-HD miscalls still called an allele in the same G group as 
the anticipated allele. In particular, almost all the miscalls in HLA-DQA1 
(5/6 of  -DQA1 miscalls and 5/8 of  total miscalls) were made when they 
were called as -DQA1*03:01 and the anticipated calls were -DQA1*03:02 
and -DQA1*03:03; all three alleles are in the same G group. For HISAT2, 
many of  the miscalls in class II genes were due to missing calls, i.e. calls 
that the tool was not able to assign an allele at all.
High accuracy for identifying KIR gene absence/presence
We used kpi to infer KIR gene presence for 824 patients with available 
WGS data from the AVANT trial (NCT00112918).52 We found that the 
gene carrier frequencies were very similar to those of  published KIR 
gene carrier frequencies from an English cohort of  Caucasoid ethnicity.54 
(Figure 1a). The software was unable to predict possible haplotype pairs 
for 3% (n=25) of  cases.
We selected 72 of  these 824 patients to perform qPCR-based KIR typing, 
based on DNA sample availability and the diversity of  kpi-predicted 
KIR haplotypes. These patients are different from those selected for the 
HLA gold standard data because of  limited availability of  DNA. For 
this selection, we also included eight of  the 25 patients that had yielded 
uninterpretable haplotype combinations using kpi.
99.2% of  kpi gene presence/absence calls were correct when compared 
to our qPCR-based reference (range of  95.8% - 100% for the 16 

tested genes, Figure 1b, Supplementary Table 4). When excluding the 
four framework genes KIR3DL3, KIR3DP1, KIR2DL4, and KIR3DL2, 
which were invariable in our dataset and are present in most common 
haplotypes, the accuracy for the 12 remaining genes was 99.0%. Three 
patients were typed with one error each (KIR2DS3), and one patient with 
six errors. The eight qPCR-typed individuals with uninterpretable kpi 
haplotype results had correct kpi gene calls, which could not be clearly 
assigned to a reference haplotype combination as provided by the 
software (Supplementary Table 5). 

Discussion
The broad availability of  NGS data, generated in a multitude of  clinical 
scenarios, allows for the inference of  disease-relevant immunogenetic 
variation without additional dedicated typing efforts. Hence, in order 
to evaluate the usefulness in a clinical setting, we were interested in a 
systematic comparison of  the newest generation of  computational HLA 
typing solutions, run alongside the more well-established HLA typing 
tool Polysolver, that is limited in only typing HLA I genes. Our analyses 
suggest that for both WES and WGS data, most of  the tools outperform 
Polysolver in HLA inference, in both class I genotyping accuracy and 
the ability to perform inference on HLA II genes. For KIR typing 
using kpi, we are not aware of  a published independent validation of  
its performance. Our evaluation demonstrates that kpi performs well at 
determining the absence or presence of  a KIR gene, but it is not able to 
ascertain KIR allele or gene copy number. 
Our analyses also show the breadth of  class II genes that current state-of-
the-art tools can infer. In particular, only HLA-HD was able to genotype 
the classical HLA II genes, HLA-DRB3, -DRB4, and -DRB5, and we 
were able to further examine the results with our gold standard dataset. 
Interestingly, we found that many of  the HLA-DRB3, -DRB4 and -DRB5 
miscalls can be salvaged using knowledge of  the strong (and clear) linkage 
disequilibrium between the HLA-DRB1 gene and its DRB paralogs.55 It 
appears that incorporating this piece of  biological information could be 
useful in developing tools that would like to genotype all the DRB genes, 
especially when there is high accuracy in genotyping the DRB1 gene.
Additionally, with WGS and WES data for the same subjects, we observed 
that HLA inference from WGS data has yielded marginally higher 
accuracy compared to WES in many HLA genes (Tables 1 and 2). This 
possibly indicates that the addition of  non-coding sequence information, 
or a more uniform read coverage in the HLA region, might be more 
relevant in these genes, especially in resolving alleles that are in the same 
G group, e.g. HLA-DQA1*03:01, -DQA1*03:02 and -DQA1*03:03. It 
might also point to the use of  bait sets in WES, which can bias the calling 
of  some alleles; WGS does not require such baits.
Of  note, the dedicated HLA typing approach (LabCorp) identified one 
novel HLA-C allele in our cohort of  56 individuals at two-digit resolution. 
Even though all the tools gave an estimation (i.e. it was not a missing 
call) and were correct at the two-digit resolution, none of  the tested tools 
were able to identify the allele as novel. This is because the inferences 
are all based on aligning sequencing reads to a database of  known 

Method WES Allele concordance (%) WGS Allele concordance (%)

I** IIa IIb I** IIa IIb

xHLA 156/330 (47.2)^ 187/330 (56.7)^ -- 327/336 (97.3) 327/336 (97.3) --

HLA-HD 334/336 (99.4) 552/560 (98.6) 329/336 (97.9) 334/336 (99.4) 557/560 (99.5) 328/336 (97.6)

HISAT2 332/336 (98.8) 310/336 (92.3) -- 334/336 (99.4) 324/336 (96.4) --

HLA*PRG:LA (G groups only) 333/336 (99.1) 335/336 (99.7) -- 333/336 (99.1) 335/336 (99.7) --

Polysolver 328/336 (97.6) -- -- 330/336 (98.2) -- --

^1 sample failed to run in xHLA WES. 
**Included miscalls for a novel HLA-C allele at 4-digit resolution. All tools matched the LabCorp result at 2-digit resolution correctly.

Table 1. Overall evaluation results for HLA typing using WES and WGS. HLA genes are categorized into classical class I genes (A, B, C), IIa genes (DPA1, 
DPB1, DQA1, DQB1, DRB1), and IIb genes (DRB3, DRB4, DRB5). The class IIa genes that each tool can genotype differ: HLA-HD can infer all of  the above; xHLA can 
only infer DPB1, DQB1 and DRB1; HISAT2 and HLA*PRG:LA only DQA1, DQB1 and DRB1. Note that HLA*PRG:LA was evaluated based on the G group resolution. 
Results from the older and well-utilized Polysolver were provided as an additional source of  comparison for HLA I genes. 
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HLA alleles. This might not be highly important for large-scale genetic 
association approaches, but might be relevant in a clinical setting focused 
on individual patients, especially for ethnicities that have thus far been 
underrepresented with regard to genome sequencing, let alone HLA 
typing.56,57 
The choice and accuracy of  a given HLA method might depend on read 
length and sequencing coverage, which are factors that are not included 
in the current study. A recent comparison of  HLA-HD and xHLA for 
use with target capture methods or amplification sequencing suggested 
that HLA-HD might decrease in sensitivity at read lengths below 150 
base pairs (paired-end).58

We noticed that documentation for most of  the HLA typing tools tested is 
mainly centered on the final inference, but not the auxiliary output files. 
The latter set of  files typically contain the scores for all the candidates 
used for inference. While accuracy is important, tool documentation in 
a clinical setting is also imperative to better understand the tool and its 
outputs, so that best practices can be developed in the clinic for different 
contexts.
As for the KIR typing efforts, kpi was shown to predict KIR gene 
presence/absence at >99% accuracy overall, and at >95% for each 
gene. Six out of  nine errors were found in a single individual. This 
was likely due to a sample swap, and the remaining three miscalls were 

all for KIR2DS3 in different patients. In this case, all other genes were 
inferred at 100% accuracy. However, since kpi detects gene presence/
absence and does not perform an estimation of  copy number, it assigns 
one or more possible haplotype combinations, resulting in considerable 
ambiguity. Thus, we recommend to analyze kpi results at the level of  
individual KIR genes, if  possible. It is likely that the 25 uninterpretable 
haplotype pairs are due to carriers of  rare haplotypes not present in 
the reference, which would prevent an assignment of  possible reference 
haplotype combinations. 
Notably, kpi requires WGS data and does not consider allelic variation 
within KIR genes. This is a significant limitation, since allotypes for a 
given KIR gene can be functionally different,59 and also have differential 
binding capacities to their predicted HLA ligands.50,60,61 Allele-level 
typing would be desirable. The only software presently available that we 
are aware of  that provides this level of  granularity was not designed to 
work with NGS data in a high-throughput setting.62

In conclusion, our survey for both high-resolution four-digit clinically-
relevant HLA typing and inference of  KIR gene presence from NGS 
data (of  conventional read length and coverage) indicated that recently 
published software tools can yield very high accuracy (>97% for HLA 
alleles and >95% for KIR genes, respectively) that may be suitable not 
only for research us, but also for the clinic. For comparison, the 2019 
Standards for Accredited Laboratories issued by the American Society 
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Figure 1. KIR gene carrier 
frequencies and accuracy of  kpi 
typing

(A) KIR gene presence for AVANT 
patients (N=824) was inferred from kpi 
haplotype predictions, and compared 
to published frequencies for an English 
reference cohort (N=584). (B) For 72 
AVANT patients typed with kpi, KIR 
typing with a qPCR-based method 
(LinkSeq) was performed to assess typing 
accuracy.

HLA II 
gene

xHLA (%) HLA-HD (%) HISAT2 (%) HLA*PRG:LA (%)

WES^ WGS WES WGS WES WGS WES WGS

DPA1 -- -- 112/112 (100) 112/112 (100) -- -- -- --

DPB1 70/110 (63.6) 109/112 (97.3) 110/112 (98.2) 110/112 (98.2) -- -- -- --

DQA1 -- -- 106/112 (94.6) 111/112 (99.1) 111/112 (99.1) 110/112 (98.2) 112/112 (100) 112/112 (100)

DQB1 53/110 (48.2) 107/112 (95.5) 112/112 (100) 112/112 (100) 111/112 (99.1) 110/112 (98.2) 111/112 (99.1) 112/112 (100)

DRB1 64/110 (58.2) 111/112 (99.1) 112/112 (100) 112/112 (100) 88/112  (78.6) 104/112 (92.9) 112/112 (100) 111/112 (99.1)

DRB3 -- -- 110/112 (98.2) 111/112 (99.1) -- -- -- --

DRB4 -- -- 110/112 (98.2) 108/112 (96.4) -- -- -- --

DRB5 -- -- 109/112 (97.3) 109/112 (97.3) -- -- -- --

^1 sample failed to run in xHLA WES.
Table 2. Evaluation results by HLA II genes for HLA typing using WES and WGS. Note that HLA*PRG:LA was evaluated based on the G group 
resolution, not at 4-digit resolution. 
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for Histocompatibility and Immunogenetics only requires a minimum 
of  80% concordance with another CLIA-certified ASHI-accredited 
laboratory to be deemed satisfactory in clinical testing.63 It is noteworthy 
that WGS and WES continue to become less expensive, thereby 
presenting an alternative even in scenarios that focus only on HLA or 
KIR typing. However, a foreseeable hurdle is the process of  obtaining 
regulatory approval for computational tools for HLA and KIR typing in 
the clinic, either as a stand-alone device, or as part of  a pipeline. Such a 
process could be tricky as it can be highly dependent on the context of  
how the tool is being applied in the clinic. There are pros and cons for 
each tool. Other considerations in the choice of  method that we did not 
explore in this study and might merit investigation in the future, include 
the characteristics of  the NGS datasets at hand, such as the read length 
and read coverage, which can affect accuracy and thus cause deviations 
from what is shown in the present report.
Finally, we would like to further emphasize that computational tools 
can generate HLA and KIR information in a high-throughput manner 
on large cohorts of  patients with clinical sequencing. Furthermore, 
the time and logistical challenges and risks associated with acquisition, 
preparation and shipping of  valuable clinical specimens to perform a 
separate genotyping would be greatly reduced. In a clinical setting, the 
HLA and KIR results from these tools can then be applied directly to 
detect immunogenetic biomarkers that might be relevant for treatment 
decisions, or to predict the likelihood of  adverse events for a given 
treatment of  choice.64 HLA typing is also a requirement in the context of  
individualized cancer treatment strategies, including immunization efforts 
and neoadjuvant-directed T-cell therapies.65,66 Neoepitope prediction 
requires highly accurate HLA types in order to maximize the likelihood 
of  an immunogenic anti-tumor response.67 KIR genes are emerging 
biomarkers in several disease areas, including cancer immunology,68 
and should ideally be investigated in the context of  their interactions 
with their HLA ligands. Having both HLA and KIR information will 
also allow stratification of  patients according to their individual and 
biologically relevant HLA-KIR interactions (Supplementary Figure 1).22 
As more computational tools for HLA and KIR typing are likely being 
developed in the future, they should be continuously evaluated so that 
they can fulfill a greater role in assessing clinical genomes.
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