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As the number of genomics datasets grows rapidly, sample mislabeling has become a high stakes 1 

issue. We present CrosscheckFingerprints (Crosscheck), a tool for quantifying sample-relatedness and 2 

detecting incorrectly paired sequencing datasets from different donors. Crosscheck outperforms 3 

similar methods and is effective even when data are sparse or from different assays. Application of 4 

Crosscheck to 8851 ENCODE ChIP-, RNA-, and DNase-seq datasets enabled us to identify and correct 5 

dozens of mislabeled samples and ambiguous metadata annotations, representing ~1% of ENCODE 6 

datasets. 7 

Biomedical research is rapidly embracing large-scale analysis of next-generation sequencing (NGS) 8 

datasets, often by integrating data generated by consortia or many individual research labs. Parallelized 9 

NGS analysis of tissues from many different patients is also commonplace in clinical genomics pipelines.  10 

In these settings, sample or data mislabeling, where datasets are incorrectly associated with a donor, 11 

can lead to erroneous conclusions, misdirect future research, and affect treatment decisions1-3 (Fig 1a). 12 

Verifying the relatedness of samples that nominally share a donor is therefore a crucial quality-control 13 

step in any NGS pipeline.  14 

Several methods utilize genetic information from NGS datasets as an endogenous barcode to 15 

verify sample relatedness4-10. The common logic behind these tools is that each genome harbors a 16 

unique set of single nucleotide polymorphisms (SNPs) which are shared between datasets originating 17 

from the same donor. A limitation of these methods is their requirement that sequencing reads from 18 

both inputs overlap the exact genomic position of informative SNPs. When insufficient reads satisfy this 19 

condition—for example when the input datasets are shallow or target different genomic regions (i.e 20 

different transcription factors), the power to evaluate sample relatedness is compromised. Many NGS-21 

based studies now integrate multiple types of assays11-15 and utilize shallow sequencing to reduce cost at 22 

the expense of read-depth. This is commonly encountered in highly multiplexed experiments, 23 

sequencing spike-ins, and large cohort sequencing efforts in population and cancer genomics (i.e. 1000 24 

Genomes, structural variant calling). We therefore set out to develop a method for quantifying sample-25 

relatedness that was both robust to shallow sequencing depth and that could be systematically applied 26 

to modern large-scale projects incorporating multiple data types. 27 

Linkage disequilibrium (LD) is the non-random association of alleles at different loci within a 28 

given population16. This association implies that comparing datasets across SNPs in high LD—termed LD-29 

blocks—would provide more statistical power to compare datasets than using single SNPs alone. 30 

Because of LD, two non-overlapping reads from different datasets may support (or provide evidence 31 

against) a common genetic background, as long as they overlap SNPs in the same LD block (Fig 1b). For 32 

each input dataset, Crosscheck uses reads overlapping SNPs within each LD block to calculate a block 33 

allele fraction and compute diploid genotype likelihoods, which are then compared (Methods). The 34 
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relative likelihood of a shared or distinct genetic background at each block is reported as a log-odds ratio 35 

(LOD score). These scores are combined across all blocks to report a genome-wide LOD score. This 36 

calculation relies on two approximations: that linkage between SNPs in an LD block is perfect, and that 37 

SNPs in distinct blocks are independent. A positive LOD score indicates a higher likelihood that the two 38 

datasets share a donor, while a negative LOD score suggests that the datasets are from distinct donors. 39 

The Crosscheck calculation assumes that the two datasets are a priori equally likely to be from the same 40 

donor as they are from different ones. It is possible to incorporate a different prior expectation for a 41 

mismatch by shifting the LOD scores (Methods). Though the magnitude of the LOD score reflects 42 

genotyping confidence, simplifying assumptions prevent direct interpretation of the LOD score as a true 43 

likelihood ratio (Methods). Crosscheck is implemented as part of Picard-Tools (https://github.com/ 44 

broadinstitute/picard), and is routinely used for quality control by the Broad Institute’s Genomics 45 

Platform, using a small set of LD blocks optimized for use with whole-exome-sequencing data. 46 

We reasoned that applying Crosscheck across a large, genome-wide set of LD-blocks (haplotype 47 

map) would allow us to compare the genotype of diverse datasets and would be robust to low coverage 48 

and sequencing errors. We constructed a map consisting of nearly 60,000 common (minor allele 49 

frequency ≥ 10%) bi-allelic SNPs from the 1000 Genomes11 project, the majority of which lie in LD-50 

blocks of two or more SNPs in order to maximize the probability of informative read overlap (Fig 1c, 51 

Methods). SNPs within each block are highly correlated (𝑟2 > 0.85), while SNPs between blocks are 52 

approximately independent (𝑟2 < 0.10). Increasing or decreasing the thresholds for within-block and 53 

between-blocks correlations by 0.05 had no effect on the method's performance on a testing data set 54 

(described in the next paragraph). Finally, in order to reduce bias from donor ancestry, we required that 55 

LD blocks have similar allele frequencies across different human sub-populations. The pipeline for 56 

creating haplotype maps exists as a standalone tool 57 

(https://github.com/naumanjaved/fingerprint_maps) and can be customized to create LD blocks in 58 

specific genomic areas (i.e. coding regions) and for either hg19 or GRCh38.  59 

To pilot our method, we calculated LOD scores between donor-matched and donor-mismatched 60 

pairs of public datasets from the ENCODE12 database, which hosts data from thousands of diverse NGS 61 

experiments (Methods). Classification performance was measured in terms of the false flag rate (FFR), 62 

the fraction of donor-matched pairs incorrectly flagged as donor-mismatches, and the false match rate 63 

(FMR), the fraction of donor-mismatched pairs incorrectly identified as donor-matches. Our testing set 64 

comprised of all pairwise comparisons between 279 RNA-, DNase-, and ChIP-seq (targeting histones, 65 

CTCF, or POL2) datasets with verified donor annotations (supplementary table S1), and all donor-66 

mismatched comparisons between 98 ChIP-seq experiments targeting transcription factors and 67 

chromatin modifiers (supplementary table S2). This resulted in a final testing set of 34,336 donor-68 

mismatches, and 9,767 donor-matches. Regardless of the input assay or enrichment target, Crosscheck 69 

correctly classified almost all dataset pairs with 0% FMR and 0.01% FFR, and showed a clear separation 70 

between donor-mismatches (negative LOD) and donor-matches (positive LOD) (Fig. 1d). Our method 71 

therefore confidently detects donor-matched and donor-mismatched dataset pairs.   72 

We next quantified how using LD blocks improves classification performance. We generated two 73 

equally sized subsets of our full haplotype map—one comprised solely of unlinked SNPs and the other 74 

containing only LD blocks with two or more SNPs, and used these to classify the same testing dataset 75 

pairs. To simulate sparse datasets generated by spike-ins and multiplexed sequencing, we conducted 76 

each comparison at a range of sequencing depths, expressed as the percentage of reads subsampled 77 
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from the original datasets (Methods, Supplementary Fig 1a).  Using LD blocks significantly decreased 78 

FMR and FFR, particularly at lower read depths and for cross-assay/target comparisons (Fig 1e, 79 

Supplementary Fig 1b). For example, at 5% sub-sampling (≤ ~107 reads), using LD blocks decreased the 80 

FMR and FFR by nearly 10% relative to using single SNPs for cross-assay comparisons. 81 

As mentioned above, there are other tools that quantify genetic sample relatedness. For 82 

comparison purposes, we considered only methods that could be applied to the general use case that 83 

Crosscheck is designed to address, namely comparing any two NGS datasets, and that can be deployed 84 

at scale, so that calculating tens-to-hundreds of thousands of comparisons is tractable. Two of the 85 

methods we examined, HYSIS6 and BAM-matcher7, did not satisfy these criteria. Two other tools, 86 

Conpair8 and BAMixChecker9, provided inconclusive results for a high percentage of the testing-set 87 

comparisons (Methods). NGSCheckmate10(NGSC) is a model-based method that compares datasets by 88 

correlating allele fractions across a panel of reference SNPs, and was the only other method that could 89 

be directly compared to Crosscheck on the testing dataset. At high and intermediate read-depths, both 90 

methods show similar performance. At lower read depths (≤ 15% subsampling) however, Crosscheck 91 

outperforms NGSC, as indicated by a consistently lower FMR and FFR (Fig. 1f). Crosscheck is particularly 92 

effective at classifying cross assay dataset pairs, where it shows a 2-3% lower FMR and FFR than NGSC at 93 

5% subsampling. In these use cases, Crosscheck performs better than NGSC due to its use of LD and the 94 

large number of SNPs in the haplotype map. Using LD blocks allows comparison of non-overlapping 95 

reads, while using a large set of SNPs increases the chance that input datasets will contain genetically 96 

informative reads. An illustrative example is a specific comparison between two ChIP-seq datasets, one 97 

targeting H3K27me3 and the other H3K27ac. At 5% subsampling, these datasets cover 8% and 2% of the 98 

genome respectively, and overlap at only 0.02%, which is expected from these mutually exclusive 99 

histone modifications. Given this small set of potentially informative reads, NGSCheckmate wrongly 100 

concludes that the datasets are derived from the same donor, while CrossCheck is still able to make the 101 

correct call (Supplementary Fig. 1e).We have also tested CrossCheck, NGSC, BAMixChecker and Conpair 102 

on sample pairs from 7 donors that are genetically related. We found that CrossCheck can identify all 103 

pairs of samples from related individuals as donor mismatches, and is superior in this context to the 104 

other tools (Supplementary Fig. 2). 105 

Finally, we used the distribution of LOD scores from incorrectly classified pairs to define an 106 

inconclusive LOD score range of -5 < LOD < 5, in which a dataset pair cannot be confidently classified 107 

(Methods, Supplementary Fig. 1c). Outside of this range, any pair with LOD ≥ 5 is denoted a donor-108 

match, and those with LOD ≤ -5 are flagged as donor-mismatches. The inconclusive range highlights the 109 

interpretability of Crosscheck’s LOD score relative to NGSC’s binary outputs (match or mismatch), since 110 

clear donor-mismatches can be prioritized and investigated separately from inconclusive comparisons. 111 

We conclude that using Crosscheck with a full haplotype map enables more accurate detection of 112 

donor-mismatched pairs in diverse and shallow collections of data. To illustrate the utility of our method 113 

on a consortium-scale dataset, we next analyzed the remaining datasets in ENCODE. We used our 114 

method to verify the donor-annotation for all human hg19 aligned DNase-, RNA-, and ChIP-seq datasets 115 

in the ENCODE database whose annotated donor was represented by at least 4 datasets – a total of 116 

8,851 datasets (Fig 2a). To scale our analysis to a database of this size, we compared each dataset to a 117 

set of three representative datasets from its annotated donor, and flagged any dataset with LOD < 5 for 118 

further review (Methods). To exclude the possibility that the representative set for each donor 119 

contained a donor-mismatch, we required that all pairwise comparisons between representative 120 
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datasets yield an LOD score ≥ 5. This strategy scales linearly with the size of the database, and in our 121 

case results in a 1000-fold reduction in computation relative to performing all pairwise comparisons. 122 

Our strategy confirmed the annotated donor for 97% of datasets. The remaining 3% (256 123 

datasets) were flagged as potential donor-mismatches (LOD ≤ -5), and only ~0.1% yielded inconclusive 124 

results (-5 < LOD < 5) (Fig 2b). We next compared each flagged mismatch to the representative datasets 125 

for each of the ENCODE donors in order to nominate a true donor identity. We also compared each 126 

flagged mismatch to all other flagged mismatches in order to identify genetically consistent clusters and 127 

uncover patterns of mislabeling.  128 

This analysis uncovered 3 major categories of mislabeling (as well as a small fraction, 0.4%, of 129 

datasets that exhibited a pattern consistent with cross-sample contamination, as described in Methods 130 

and Supplementary Fig. 3). The first is a straightforward error where cells from one donor are mistakenly 131 

labeled as deriving from a different donor. The likelihood of such a mistake increases when working with 132 

several cell lines that are each used in a large number of experiments. For example, out of 4 flagged 133 

datasets labeled as K562, two were shown to actually derive from GM12878 cells while the other two 134 

derived from HEK293 cells. This type of mislabeling may also occur for primary cells or tissues when 135 

many biological samples from multiple donors are obtained from the same source, as in the case of 300 136 

embryonic tissue samples processed by ENCODE from a single lab.  137 

The second class of mislabeling occurs when biological samples of the same cell type from 138 

multiple donors are incorrectly labeled as deriving from a single donor. This is the case with some of the 139 

commercially available primary cell lines that have been deeply interrogated by the consortium over 140 

more than a decade, and for which cells have been procured multiple times. For example, HUVEC cells 141 

are annotated as being derived from two different donors in the ENCODE metadata. However, our 142 

analysis indicates that HUVEC samples actually derive from at-least 5 distinct donors (Fig 2c). This mis-143 

annotation went undetected by ENCODE’s previous quality control pipelines because all samples were 144 

of the same cell type and so exhibited similar epigenetic profiles.  145 

The HUVEC example also highlights the third type of labeling inaccuracy, in which a single donor 146 

is accessioned multiple times by dozens of different labs over several years. This results in slight 147 

variations in donor name or description, leading to genetically identical samples being incorrectly 148 

attributed to distinct donors. For example, some samples deriving from putative donor A are attributed 149 

to HUVEC donor 1, while other samples from donor A are attributed to the distinct HUVEC donor 2.  150 

Overall, our analysis of the ENCODE dataset suggested that substantive mislabeling error 151 

occurred at a rate of ~1%. For these datasets, true donor identities were confirmed using ENCODE’s 152 

extensive metadata records and all mislabeled datasets were corrected (Methods).  153 

In conclusion, we present a robust and easy-to-use method for quantifying sample relatedness 154 

which outperforms similar methods. Combined with our method for database analysis and haplotype 155 

map, CrosscheckFingerprints can be readily applied for detecting sample mislabeling in large, diverse 156 

databases without any optimization. We suggest it as a critical component of any NGS quality control 157 

pipeline.  158 
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Methods 159 
LOD Derivation 160 

Here, a basic overview of the fingerprinting LOD score derivation is provided. A more detailed derivation 161 
is available at the Picard repository at:  162 

https://github.com/broadinstitute/picard/raw/master/docs/fingerprinting/main.pdf 163 

Consider a LD block/locus containing a single bi-allelic SNP with major allele 𝐴 and minor allele B, and 164 
two sequencing datasets 𝑥 and 𝑦. Let 𝜃 and 𝜑 denote the diploid haplotype of datasets 𝑥 and 𝑦 165 
respectively at this locus. 𝜃 and 𝜑 can each take one of three possible haplotypes: AA, AB, or BB. Let 𝑠 166 
be a Bernoulli random variable where 𝑠 = 1 denotes a sample swap (indicating that 𝑥 and 𝑦 arose from 167 
two independent individuals) with posterior probability 𝑝(𝑠 = 1| 𝑥, 𝑦), and 𝑠 = 0 denotes a shared 168 
genetic origin (the samples came from the same individual). Using Bayes' rule and the prior probability 169 
of no-swap, the posterior odds ratio of a no-swap vs. swap is given by: 170 

 𝒑(𝒔 = 𝟎| 𝒙, 𝒚)

𝒑(𝒔 = 𝟏| 𝒙, 𝒚)
=
𝒑(𝒙, 𝒚 | 𝒔 = 𝟎) 𝒑(𝒔 = 𝟎)

𝒑(𝒙, 𝒚 | 𝒔 = 𝟏) 𝒑(𝒔 = 𝟏)
 (1) 

We assume that in the case of a swap, the distinct individuals are independently sampled from the 171 
population and that samples from the same individual have the same genotype, allowing us to write 172 
𝑝(𝜃, 𝜑 | 𝑠) = 𝑝(𝜃) 𝑝(𝜑) for 𝑠 = 1, and 𝑝(𝜃, 𝜑 | 𝑠) = 𝑝(𝜃) if 𝜃 =  𝜑. Given that 𝑥 is conditionally 173 
independent of 𝜑 and 𝑦 given 𝜃, and 𝑦 is conditionally independent of 𝜃 given 𝜑, we can also write 174 
𝑝(𝑥, 𝑦 | 𝜃, 𝜑) = 𝑝(𝑥 | 𝜃) 𝑝(𝑦 | 𝜑). 175 

With these two expressions, we derive that:   176 

 𝒑(𝒙, 𝒚 | 𝒔) =  ∑𝒑(𝒙, 𝒚 |𝜽,𝝋, 𝒔) 𝒑(𝜽,𝝋 |𝒔)

𝜽,𝝋

= 

{
 
 

 
 ∑𝒑(𝒙|𝜽) 𝒑(𝜽)

𝜽

∑𝒑(𝒚|𝝋)

𝝋

𝒑(𝝋) 

∑ 𝒑(𝒙|𝜽) 𝒑(𝒚|𝝋) 𝒑(𝜽)

𝜽= 𝝋

 

if 𝒔 =  𝟏 

if 𝒔 = 𝟎 

(2) 

Substituting the results of (2) into (1), we rewrite the posterior odds of no-swap as:  177 

 ∑ 𝒑(𝒙|𝜽) 𝒑(𝒚|𝝋) 𝒑(𝜽)𝜽=𝝋

∑ 𝒑(𝒙|𝜽) 𝒑(𝜽)𝜽 ∑ 𝒑(𝒚|𝝋) 𝒑(𝝋)𝝋
∙
𝒑(𝒔 = 𝟎)

𝒑(𝒔 = 𝟏)
 (3) 

Next, we consider evidence over multiple blocks 𝑖 with correspondingly indexed 𝜃𝑖, 𝜑𝑖, 𝑥𝑖, and 𝑦𝑖. We 178 
assume that the haplotypes at distinct blocks are independent, and that reads at one block give no 179 
information about another. In practice, this assumption is enforced by guaranteeing that a single read 180 
cannot be used to provide genotype evidence at more than one locus. We calculate: 𝑝(𝑥 | 𝜃) =181 
 ∏ 𝑝(𝑥𝑖 | 𝜃𝑖)𝑖  and 𝑝(𝑦 | 𝜑) =  ∏ 𝑝(𝑦𝑖  | 𝜑𝑖)𝑖 , and substitute into (3) to get:  182 
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∏(

∑ 𝒑(𝒙𝒊 | 𝜽𝒊) 𝒑(𝒚𝒊 | 𝝋𝒊) 𝒑(𝜽𝒊)𝜽𝒊=𝝋𝒊

∑ 𝒑(𝒙𝒊 | 𝜽𝒊) 𝒑(𝜽𝒊)𝜽𝒊
∑ 𝒑(𝒚𝒊 | 𝝋𝒊) 𝒑(𝝋𝒊)𝝋𝒊

)

𝒊

∙
𝒑(𝒔 = 𝟎)

𝒑(𝒔 = 𝟏)
 (4) 

Finally, since the odds ratio of no-swap to swap may vary by several orders of magnitude depending on 183 
the input files, we compute the base 10 logarithm in order to facilitate comparison and interpretation:   184 

 
𝑳𝑶𝑫 = 𝐥𝐨𝐠(

𝒐𝒅𝒅𝒔𝒔𝒂𝒎𝒆 𝒊𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍
𝒐𝒅𝒅𝒔𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝒊𝒏𝒅𝒊𝒗𝒊𝒅𝒖𝒂𝒍

)

=  ∑𝒍𝒐𝒈(
∑ 𝒑(𝒙𝒊 | 𝜽𝒊)𝒑(𝒚𝒊 | 𝝋𝒊)𝒑(𝜽𝒊)𝜽𝒊=𝝋𝒊

∑ 𝒑(𝒙𝒊 | 𝜽𝒊)𝒑(𝜽𝒊)𝜽𝒊
∑ 𝒑(𝒚𝒊 | 𝝋𝒊)𝒑(𝝋𝒊)𝝋𝒊

∙
𝒑(𝒔 = 𝟎)

𝒑(𝒔 = 𝟏)
)

𝒊

  
(5) 

The program assumes a conservative prior of 
𝒑(𝒔=𝟎)

𝒑(𝒔=𝟏)
= 𝟏  by default. A different prior would result in a 185 

shift of the LOD score by a constant, and users may adjust the LOD score by such a constant as needed 186 
on a case-by-case basis. A positive LOD (log-odds ratio) is interpreted as evidence for the two datasets 𝑥 187 
and 𝑦 arising from the same individual, while a negative LOD is evidence of a sample-swap, i.e. the two 188 
datasets arose from different individuals. Scores close to zero are inconclusive, and tend to result from 189 
low coverage, or poor overlap between the two datasets, at the observed sites.  190 

To see the expected maximal contribution of a single locus, we assume that the likelihoods in (5) are 191 
vanishingly small when the data doesn’t match the genotype. Thus, the LOD for a single locus reduces to 192 
− log𝑝(𝜃). The expected LOD contribution needs to be marginalized over the different possible 193 
genotypes, leading to a −∑ 𝑝(𝜃) log 𝑝(𝜃)𝜃 , which obtains a maximal value of 1.5 log10 2  ≈ 0.45 at an 194 
allele frequency of 0.5(leading to 𝑝(𝜃 = 𝐴𝐴) = 0.25, 𝑝(𝜃 = 𝐴𝐵) = 0.5,  and 𝑝(𝜃 = 𝐵𝐵) = 0.25). This 195 
means that when creating the haplotype map, it is most informative to choose variants with an allele 196 
frequency close to 0.5. 197 

There is no theoretical lower limit to the contribution of a single locus. This is because, in theory, 198 
overwhelming evidence (hundreds of genetically-consistent, high-quality reads) of different genotypes 199 
for two datasets at even a single locus is sufficient to rule out that the samples are derived from the 200 
same donor. However, as noted below in the section on the limitations of LOD calculation, there are 201 
multiple factors that this formulation does not account for. Our approach ultimately relies on 202 
cumulative evidence, albeit noisy, from a large number of loci, rather than looking for the small number 203 
of high-confidence cases. It is for this reason that in the implementation of equation (5) in the code, we 204 
have included an explicit lower cap on the possible contribution of any single LD block. The selection of 205 
the specific value at which to cap the negative contribution was guided by the following argument: We 206 
consider a single specific locus, and assume a conservative prior, (𝑠 = 0)/𝑝(𝑠 = 1) = 1 . In addition, we 207 
assume that at that locus one dataset is only compatible with a single genotype, namely  𝑝(𝑦 | 𝜃) is 208 
nonzero for only one value of 𝜃. In this case the contribution to the likelihood ratio for that locus 209 
reduces to:   210 

𝑝(𝑥 | 𝜃)𝑝(𝑦 | 𝜃)𝑝(𝜃)

(∑ 𝑝(𝑥 | 𝜃𝑖)𝑝(𝜃𝑖)𝜃𝑖 )𝑝(𝑦 | 𝜃)𝑝(𝜃)
≳ 𝑝(𝑥 | 𝜃) 211 
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If both samples are in fact from the same donor, and the discrepancy between x and 𝜃 is due to a 212 
sequencing error, 10−3 is a reasonable ballpark estimate of 𝑝(𝑥 | 𝜃)17. With this, the actual score 213 
calculated by CrossCheck is: 214 

 
𝑳𝑶𝑫′ =  ∑𝒎𝒂𝒙(𝒍𝒐𝒈(

∑ 𝒑(𝒙𝒊 | 𝜽𝒊)𝒑(𝒚𝒊 | 𝝋𝒊)𝒑(𝜽𝒊)𝜽𝒊=𝝋𝒊

∑ 𝒑(𝒙𝒊 | 𝜽𝒊)𝒑(𝜽𝒊)𝜽𝒊
∑ 𝒑(𝒚𝒊 | 𝝋𝒊)𝒑(𝝋𝒊)𝝋𝒊

∙
𝒑(𝒔 = 𝟎)

𝒑(𝒔 = 𝟏)
) , 𝝈)

𝒊

  (6) 

Where 𝜎 = −3 by default, and is a parameter that can be set by the user. 215 

Calculation of data likelihoods 𝐩(𝐱 | 𝛉) from sequencing reads 216 

The program assumes that sequencing data arrives in the form of reads from a single individual (i.e. not 217 
contaminated), from a diploid location in the genome, and with no reference bias. Only non-secondary, 218 
non-duplicate reads with mapping quality greater than 20 are used to calculate likelihoods. In addition, 219 
bases must have a quality score of at least 20 and must agree with either the reference or pre-220 
determined alternate base to support observations at haplotype blocks. Since the algorithm assumes 221 
that read evidence is independent, the reads should have been duplicate-marked prior to fingerprinting. 222 
The algorithm doesn’t use SNPs from the same read-pair twice, since this would violate the assumption 223 
of independence.  224 

Consider a dataset 𝑥 for which we observe 𝑛 total sequencing reads, denoted by 𝑟𝑘, at a locus 225 
containing a single bi-allelic SNP with major allele 𝐴 and minor allele 𝐵. The possible block haplotypes 226 
are then 𝜃 𝜖 {𝐴𝐴, 𝐴𝐵, 𝐵𝐵}. For each read 𝑟𝑘 which overlaps the SNP, let 𝑜𝑘  𝜖 {𝐴, 𝐵} denote the observed 227 
SNP allele and let 𝑒𝑘  𝜖 (0,1) denote the probability of error of each observation(the quality score). We 228 
seek to compute the likelihood of the data (the sequencing reads 𝑟𝑘) given the haplotypes. The 229 
likelihood of a single base observation 𝑝(𝑜𝑖, 𝑒𝑖 | 𝜃) is expressed by: 230 

 
𝒑(𝒐𝒌, 𝒆𝒌 | 𝜽) =  {

𝑰𝑩(𝒐𝒌)𝒆𝒌 + 𝑰𝑨(𝒐𝒌)(𝟏 − 𝒆𝒌)
𝟎. 𝟓

𝑰𝑨(𝒐𝒌)𝒆𝒌 + 𝑰𝑩(𝒐𝒌)(𝟏 − 𝒆𝒌)
 

𝜽 = 𝑨𝑨 
𝜽 = 𝑨𝑩 
𝜽 = 𝑩𝑩 

(6) 

where 𝐼 is an indicator function such that 𝐼𝐴(𝑜) =  {
1 𝑖𝑓 𝑜 = 𝐴
0 𝑖𝑓 𝑜 = 𝐵

 and 𝐼𝐵(𝑜) =  {
1 𝑖𝑓 𝑜 = 𝐵
0 𝑖𝑓 𝑜 = 𝐴

 and the 231 

assumption is that an error will cause a switch in the observed allele from A to B. 232 

The likelihood model for all reads 𝑟 can then be written as:  233 

 
𝒑(𝒓 | 𝜽) =  𝒑(𝒐, 𝒆 | 𝜽) =  ∏𝒑(𝒐𝒌, 𝒆𝒌 | 𝜽)

𝒏

𝒌=𝟎

  (7) 

Incorporation of Linkage Information 234 

The calculations above assume an LD block containing a single SNP for ease of computation, but the 235 
framework is easily extended to account for LD blocks containing multiple SNPs, which increases power 236 
of comparison. Each LD block used for genotyping contains an “anchor” SNP which is in high linkage with 237 
all other SNPs within the block, and independent of all other anchor SNPs in other blocks. Given that all 238 
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SNPs in a block are tightly linked(enforced with a strict 𝑟2 correlation cutoff), we make the simplifying 239 
assumption that the genotype at any SNP within an LD block is perfectly correlated with the genotype 240 
of the anchor SNP, and that all SNPs within a block have the same allele frequency, equal to that of 241 
the anchor SNP. Then, reads overlapping any SNP within a block can be used to infer a total block 242 
haplotype, which is represented by the possible diploid genotypes of the anchor SNP. For example, 243 
consider an anchor SNPs 𝑆1 with major allele 𝐴 and minor allele 𝐵, and a linked SNP 𝑆2 with major allele 244 
𝐶 and minor allele 𝐷. Then any observation of allele 𝐶 at SNP 𝑆2 is taken as evidence of allele 𝐴 at 𝑆1, 245 
and any observations of allele 𝐷 at 𝑆2 is taken as evidence of allele 𝐵 at 𝑆2. Using this strategy, evidence 246 
across all SNPs within a block can be used to infer a total block haplotype, which can be represented by 247 
the 3 possible diploid genotypes of the anchor SNP. That is, for an anchor SNP with major allele 𝐴 and 248 
minor allele 𝐵, the possible block haplotypes are 𝐴𝐴, 𝐴𝐵, and 𝐵𝐵, with prior probabilities dependent on 249 
the allele frequencies of 𝐴 and 𝐵. 250 

Limitations of LOD calculation 251 

Though the magnitude of the LOD score reflects greater genotyping confidence, it cannot be directly 252 
interpreted as a likelihood ratio (e.g. an LOD of 200 does not correspond to a 10200 probability of a 253 
shared vs. different genetic origin), as the model does not fully account for sequencing noise, data 254 
quality, contamination, and relatedness. In addition, we did not model the incomplete dependence 255 
between haplotype blocks, nor the incomplete dependence of SNPs within blocks.  256 

Our framework also assumes that the only two sources of a base are the observed allele or a sequencing 257 
error. This assumption can lead to incorrect results in the cases where a sample has particularly noisy 258 
data due to pre-sequencing events (such as PCR or FFPE processing), non-conforming LD blocks, or high 259 
contamination. These samples could be genotyped as heterozygous due to the noisy region or the non-260 
confirming LD block structure. Including these error modes into the model would increase robustness 261 
and accuracy.  262 

Implementation Details 263 

Crosscheck is implemented as part of the Picard-Tools suite, a set of Java command line tools for 264 
manipulating high-throughput sequencing data. It accepts VCF/BAM/SAM formatted inputs and can 265 
perform comparisons at the level of samples, libraries, read-groups, or files.  Crosscheck is provided 266 
alongside a utility called ExtractFingerprints which for an input bam, outputs a VCF containing the 267 
genotypes and genotype likelihoods across all LD blocks within the supplied haplotype map. This VCF 268 
can be used to store fingerprints for downstream analyses or for use with Crosscheck. More information 269 
is available at https://github.com/broadinstitute/picard 270 

Runtime and Memory requirements 271 

For BAM mode, running Crosscheck requires approximately 2.5 gb RAM for a single input pair of BAMs. 272 
Runtime is dependent on the size of the input file. Based on our benchmarking experiments, runtimes 273 
are < 10 minutes for DNAse-seq, < 30s for ChIP-seq, and are on average about 2 hours for RNA-seq 274 
datasets. For VCF mode, Crosscheck requires approximately 2.5 gb of ram for a single pair of inputs, with 275 
runtimes < 30s using the standard hg19 haplotype map. CrosscheckFingerprints is multi-threading 276 
enabled in order to speed up comparisons and fingerprint generation when multiple input pairs are 277 
provided.  All comparisons were conducted on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz processors.  278 
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Map construction overview 279 

Maps are constructed from 1000 Genomes11 phase 3(1000GP3) single-nucleotide polymorphisms(SNPs) 280 

which are bi-allelic, phased, and have a minor allele frequency(MAF) ≥ 10%. This MAF threshold is 281 

introduced since the expected maximal LOD contribution is obtained at an allele frequency of 0.50 282 

(intuitively, rare variants are unlikely to be present in either of two samples being compared from 283 

different individuals).  Additionally, SNPs must not differ in their MAF by more than 10% between the 5 284 

ancestral sub-populations(AFR, SAS, EAS, EUR, AMR) present in 1000GP3. This is to correct for potential 285 

sub-population bias due to differing linkage and MAF frequency of SNPs across different populations. 286 

Using PLINK218, we pruned SNPs meeting these criteria in order to create an independent set of 287 

“anchor'' SNPs, between which no pairwise 𝑟2 correlation exceeded a threshold of 0.10.  A window size 288 

of 10 kilobases(kb) and a slide of 5 SNPs was used for pruning. By creating this set of independent SNPs, 289 

we ensure that individual haplotype blocks are independent from each other. Next, we greedily added 290 

SNPs to the blocks represented by the anchor SNPs. Adding was done in order of LDScore19 of the 291 

anchor SNPs, with the highest LDScoring anchor SNP first( LDScore is the sum for the 𝑟2 correlations of 292 

each SNP with all other SNPs within a 1 centimorgan window on either side).  Recombination maps 293 

containing mappings between genomic coordinates and recombination rates for both the hg19 and 294 

GRCh38 assemblies were obtained from http://bochet.gcc.biostat.washington.edu/beagle/ 295 

genetic_maps/ and http://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3/.  We only added SNPs if 296 

their correlation with the anchor SNP has 𝑟2 ≥ 0.85 and they were located within a genomic window of 297 

10,000 kb.  In this way, we prioritize the creation of larger, more genetically informative blocks that span 298 

several kb regions. The haplotype maps used for the ENCODE database analysis and benchmarking, 299 

along with the python code used to generate them, are available at: https://github.com/naumanjaved/ 300 

fingerprint_maps. 301 

Constructing maps only containing LD blocks or single SNPs 302 

The map containing only single SNP blocks was constructed by aggregating all SNPs in the full haplotype 303 

map not in strong linkage(𝑟2 ≥ 0.85) to other SNPs, resulting in 20792 SNPs. To construct the map 304 

containing only blocks with size ≥ 2 used to quantify the benefits of accounting for linkage, we sub-305 

sampled the full haplotype map. Starting with the largest blocks by number of SNPs, blocks were 306 

successively added to this map until the total number of SNPs approximately reached the number of 307 

SNPs in the map containing only independent SNPs (20801). 308 

Testing set construction 309 

279 ChIP-seq, RNA-seq, and DNase-seq datasets with ground-truth annotation 310 

To create a testing set of files to evaluate our method’s performance and benchmark it against other 311 

tools, we downloaded 279 hg19 bams from RNA-seq, DNase-seq, and ChIP-seq (targeting histone 312 

modifications, CTCF, or POL2) from the ENCODE Tissue Expression (ENTEX) project. The ENTEX project 313 

contains datasets from experiments on samples derived from four different tissue donors, each of which 314 

has whole genome sequencing (WGS) data available. The WGS data for each donor can be used to verify 315 

the nominal donor of each dataset comprising the testing set. For each dataset, the corresponding hg38 316 

alignments were compared to the hg38 WGS alignments for its nominal donor. Only datasets which 317 

yielded a positive LOD score > 5 using  CrosscheckFingerprints (with the full hg38 version of haplotype 318 
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map) and a "match" result from NGSCheckMate were included in the testing set. The final testing set of 319 

files and accompanying metadata are included in supplementary table S1.   320 

98 transcription factor and chromatin modifier (CM) ChIP-seq datasets without ground-truth annotation 321 

To test Crosscheck and other methods on transcription factor and chromatin modifier datasets, we 322 

downloaded 98 hg19 ChIP-seq datasets from the ENCODE project. For these datasets, there was no 323 

ground-truth donor sequencing data available for the nominal donor as there was for the ENTEX 324 

datasets.  In this case, the false-mismatch rate (incorrect genotyping call for a donor-matched pair) 325 

cannot be assessed, since there is a non-negligible probability that one of the two datasets with the 326 

same nominal donor annotation is incorrectly annotated. However, the false-match rate can still be 327 

assessed, since we estimate that the probability that two datasets with different donor annotations may 328 

actually share the same true donor is very low. Therefore, we only characterized the ability of 329 

NGSCheckmate and Crosscheckfingerprint’s to accurate classify donor-unmatched pairs for this testing 330 

set. In the context of detecting sample swaps, this performance measure is also more relevant than the 331 

accurate detection of donor-matched datasets. All datasets and accompanying metadata is available in 332 

supplementary table S2. 333 

BAM pre-processing and down-sampling for benchmarking experiments 334 

Datasets were sorted using Samtools20 and processed using Picard’s MarkDuplicates tool with default 335 

settings to remove duplicates. We noted that collapsing duplicates was especially important for RNA-seq 336 

datasets since PCR bias can alter allele fractions and lead to incorrect sample classification. 337 

Downsampling was conducted on the duplicate marked, sorted files using the command samtools view –338 

s seed.F with a seed value of 5.  339 

Benchmarking with NGSC and Crosscheck 340 

To speed up analysis of a large number of bams with NGSCheckmate, we followed the author 341 

recommendations10 and created VCFs for each input file using the default provided SNP panel from the 342 

NGSCheckMate github and the command samtools mpileup-I -uf hg19.fasta -l 343 

SNP_GRCh37_hg19_woChr.bed sample.bam | bcftools call -c - > ./sample.vcf. NGSC was then run in 344 

batch mode using default settings with the hg19 reference SNP panel. For Crosscheck, we first used 345 

Picard’s ExtractFingerprint utility with default settings and the standard hg19 haplotype map to pre-346 

compute VCFs for each input bam. Comparisons were then conducted using Crosscheck’s batch mode 347 

with default settings and the standard hg19 map. 348 

Evaluation of other methods that assess genetic similarity between samples  349 

We considered the following methods: 350 

 HYSIS is intended for tumor-normal concordance verification with a priori knowledge of 351 
homozygous germline mutations in the normal tissue6. Without considerable modifications, HYSIS is 352 
therefore not suitable to handle the general use case that Crosscheck is intended for. 353 

 Bam-matcher is a tool intended for verifying genotype concordance for whole-genome sequencing, 354 
whole exome sequencing, and RNA-sequencing data7. Bam-matcher calls programs such as GATK21 355 
to call variants for each input BAM. Though the resulting variants can be cached to speed up future 356 
comparisons, we did not find a way to easily call and store variants for each input bam in the testing 357 
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set, and without that, performing the hundreds of thousands of benchmarking comparisons 358 
becomes unfeasible.  359 

 We did apply the tools Conpair and BAMixChecker to the testing set. Conpair was run with default 360 
settings using the standard hg19 SNP panel and the –min-cov parameter set to 1. Pileups were pre-361 
generated using GATK 4.1.7.0 with the recommended settings8. BAMixChecker was run with 362 
standard settings for hg199 and using GATK 4.1.6.0 for variant calling. Conpair outputs a genotype 363 
concordance percentage, which should be <50% for different donor and above 80% for same donor 364 
datasets. Any genotype concordance between 50 and 80% is considered inconclusive. 365 
BAMixChecker outputs a concordance score between 0 and 1 with no explicit inconclusive range. 366 
However, we found that BAMixChecker outputs a concordance score of exactly 0 when there is no 367 
overlap between the SNP reference panel that the program uses and the input dataset. Therefore, 368 
we labeled any result from BAMixChecker with a concordance score of 0 as an inconclusive 369 
genotype call. We found that both methods were unable to yield a conclusive result for more than 370 
25% of the comparisons even when the full datasets are considered, and the inconclusive rates 371 
became even higher at the lower subsampling rates (Supplementary Fig. 1d). We reasoned that this 372 
was likely due to poor overlap between the input datasets and the predefined reference panel of 373 
SNPs that both methods use.  374 

 375 

Familial dataset acquisition and processing 376 

Paired fastqs for RNA-seq data from CEPH/Utah Pedigree 1463 were downloaded from the Gene 377 

Expression Omnibus22 (accession GSE56961). Datasets for the following accessions were downloaded: 378 

SRR8505344, SRR8505340, SRR8505343, SRR1258219, SRR1258220, SRR1258218, and SRR8505347. 379 

Fastqs were aligned to the hg38 reference using STAR23 2.6.0c with default parameters. Before analysis, 380 

bams were sorted using samtools and duplicate marked/collapsed using Picard’s MarkDuplicates. All 381 

comparisons were conducted using the default settings and SNP panels for each method.  382 

ENCODE data acquisition  383 

ENCODE metadata was downloaded from https://www.encodeproject.org/. Metadata was filtered to 384 

yield accessions for hg19 ChIP-, RNA-, and DNase-seq ENCODE bams from donors with at-least four 385 

datasets. These bams were downloaded from a Broad google bucket and processed(see below)with a 386 

custom Workflow Description Language24(WDL) script. All dataset accessions and associated metadata 387 

are available in supplementary table S3.  388 

ENCODE data processing 389 

Files were first sorted using samtools sort, and filtered using BEDTools25 in order to only keep reads 390 

overlapping SNPs in the haplotype map. This facilitated efficient storage of files, resulting in 391 

approximate 10-fold reduction in file size. Finally, duplicates were marked and removed for each file 392 

using Picard’s MarkDuplicates function with default settings. All comparisons were conducted using the 393 

version of CrosscheckFingerprints available in commit #078b0ba of Picard.  394 

ENCODE genotyping strategy 395 

Construction of reference set 396 

To detect mislabeled samples, each dataset is compared against a reference set of 3 samples that 397 

provide a high quality representation of the “true'' genotype for each ENCODE tissue donor. To 398 
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construct this reference set of samples, a self-LOD score is calculated for each sample by “comparing” 399 

each file to itself. This score correlates with the dataset's overlap with the haplotype map, and the 400 

highest self-LOD samples are those containing the most genetic information relevant for genotyping.  To 401 

ensure that the reference set of samples for each tissue donor does not contain any swapped samples, 402 

all reference samples are compared against one another to ensure self-consistency, which is defined as 403 

an LOD score greater than 5 for all three pairwise comparisons between the three samples. In the case 404 

of one swapped sample in this reference set, two negative LOD scores and one positive LOD score will 405 

be obtained.  In this case, the next highest self-LOD scoring bam replaces the putative swap, and 406 

representative concordance is re-assessed. This is repeated until a concordant set is found. More 407 

complex patterns of swaps in the representative set are assessed on a case-by-case basis. Finally, all 408 

reference samples across all nominal donors are compared against one another in order to identify 409 

larger cross-donor swaps and preclude the possibility that all reference samples for a nominal donor are 410 

actually swaps from the same true donor.  411 

Comparisons of samples with reference set 412 

Each sample not in the reference set is compared against the top 3 representative samples for its 413 

nominal donor. Samples yielding an LOD ≤ -5 against any of the top 3 representatives are flagged as 414 

swaps for review, while those yielding an LOD score between -5 and 5 are flagged as inconclusively 415 

genotyped.  416 

Contamination tests 417 

Varying numbers of randomly sampled reads from two unrelated ENCODE ChIP-seq datasets, 418 
ENCFF005HON ENCFF007DFB, were mixed together to create simulated contaminated datasets. Each 419 
mixed sample consisted of ~ 5 million reads and contained varying proportions of the original datasets 420 
(at intervals of 10%). Mixed samples were then compared to ENCFF007NTA and ENCFF029GAR, which 421 
are ChIP-seq datasets from the same donor as ENCFF005HON. Comparisons were conducted on VCF files 422 
generated using Picard’s ExtractFingerprint utility using Crosscheck’s VCF mode with default settings.  423 
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Data availability  435 
All data used for benchmarking and ENCODE analysis are available online at https://encodedcc.org/. 436 
Specific accessions and relevant metadata for each of the benchmarking experiments are available in 437 
tables S1 and S2. Accession IDs and metadata for all datasets from ENCODE analysis are available in table 438 
S3. Haplotype maps used for benchmarking and ENCODE analysis are available at 439 
https://github.com/naumanjaved/fingerprint_maps). RNA-seq data from CEPH/Utah Pedigree 1463 were 440 
downloaded from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/, accession 441 
GSE56961).   442 
 443 

Code availability 444 

Crosscheck code and documentation is available at https://github.com/broadinstitute/picard. 445 

Fingerprint map generation code, along with pre-compiled maps and documentation are available at 446 

https://github.com/naumanjaved/fingerprint_maps.  447 
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Figure 1: Incorporating Linkage Information allows robust comparison of sequencing datasets   
a) Sample swaps and mis-annotations, where a sample is incorrectly attributed to the wrong donor, 

are a high stakes issue for large consortium projects and clinical science.  
b) Our method compares reads from two datasets across a genome-wide set of linkage 

disequilibrium LD blocks (haplotype map). The SNPs in each block are highly correlated with each 
other and have low correlation with SNPs in other blocks. Reads overlapping any of the SNPs in a 
given block inform the relatedness of the datasets, even when reads from the two datasets do 
not overlap one another.  

c) Haplotype maps contain many large LD blocks. LD blocks are created using common, ancestry 
independent SNPs from 1000 Genomes. Most SNPs lie within blocks of size > 2, which boosts the 
chances of reads to be informative.    

d) Distribution of LOD scores for 34336 donor-mismatched (red) and 9767 donor-matched pairs 
(green) of public ChIP-, RNA-, and DNase-seq datasets from the ENCODE project.  

e) LD-based method can correctly determine sample relatedness even at low sequencing coverage. 
Pairwise comparisons of reference dataset pairs at different sub-sampling percentages using two 
equally sized SNP panels – one panel contained only independent single SNPs, while the other 
contained only LD blocks. Donor-mismatched dataset pairs are colored red while donor-matched 
dataset pairs are green.  

f) Comparison of NGSC and Crosscheck’s classification of 34336 donor-mismatched and 9767 donor-
matched dataset pairs. Performance was measured in terms of the false flag rate (FFR), the 
fraction of donor-matched pairs incorrectly flagged as donor-mismatches, and the false match 
rate (FMR), the fraction of donor-mismatched pairs incorrectly identified as donor-matches. 
Comparisons are classified as same-assay if the two datasets are from the same assay type, and 
have the same target epitope in the case of ChIP-seq datasets. All other comparisons are classified 
as cross-assay.   
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Figure 2: Overview of ENCODE database swap detection 
a) Overview of 8851 genotyped datasets from ENCODE, partitioned by cell type (top left), assay type 

(top right), and by target for ChIP-seq (bottom). Cell types that had less than 100 datasets derived 
from them were pooled – so all the datasets from them are grouped into one of two categories. 
All hg19 aligned reads from total RNA-, polyA RNA-, ChIP-, and DNase-seq experiments performed 
on samples belonging to donors with at-least four datasets in total were included in the analysis. 
All ChIP-seq targets, including histone modifications(HM), transcription factors (TF), chromatin 
modifiers (CM), CTCF, and control experiments were included.  

b) Distribution of LOD scores from ENCODE genotyping. Each dataset was compared to three 
representative datasets from its nominal donor. Any dataset scoring negatively against any of the 
three representatives was flagged for further review. A comparison resulting in an LOD score 
between -5 and 5 was deemed inconclusive (insufficient evidence to indicate shared or distinct 
genetic origin).  

c) Each flagged sample was compared to all other samples from its nominal donor, as well as the 
representatives for all other donors in our database to nominate true donor identity and identify 
genetically consistent sub-clusters. Comparisons of flagged samples between two HUVEC donors 
reveals 5 genetically distinct clusters. 
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Supplementary Figure 1 
(A) Distribution of number of reads in sub-sampled datasets used for benchmarking, broken down by 

assay type. ChIP datasets were divided into two classes – those which targeted transcription factor 
(TF) and chromatin modifier (CM), and those which targeted broad histone modifications (HM), 
POL2/POL2RA (P), or CTCF.  

(B) Comparison of percentage false match (FM) and false flag (FF) rates for 9767 same-donor and 
29573 different donor pairwise comparisons using CrosscheckFingerprints with either linkage 
blocks, or single SNPs only. Across different (left) and same (right) assay comparisons, 
incorporation of linkage information (orange line) decreases the FF and FM percentage, 
particularly at sub-sampling percentages. Comparisons are classified as same-assay if the two 
datasets are from the same assay type, and have the same target epitope in the case of ChIP-seq 
datasets. All other comparisons are classified as cross-assay.   

(C) Distribution of LOD scores from false flags and false matches from benchmarking experiments. 
The distribution of the majority (99%) of LOD scores from these misclassifications is used to create 
an “inconclusive” range of LOD scores, in which donor-match or mismatch cannot be confidently 
called.  

(D) Percent inconclusive genotype concordance calls for 9767 same-donor and 29573 different donor 
pairwise comparisons using Conpair and BAMixChecker. “Inconclusive” is defined as pairwise 
comparisons resulting in genotype concordances between 50 and 80% for Conpair, and a score of 
0 for BAMixChecker. 

(E) FMR and FFR for NGSC at 5% subsampling for pairwise comparisons between ChIP-seq datasets 
targeting the non-overlapping histone modifications H3K27ac and H3K27me3. NGSC performs 
worse for comparisons between H3K27ac and H3K27me3 datasets (n=41 donor-matched, n=85 
donor-mismatched) than for comparisons between two H3K27ac (n=24 donor-matched, n=67) or 
two H3K27me3 datasets (n=11 donor-matched, n=25 donor-mismatched). In contrast, Crosscheck 
classifies all pairs correctly. 
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Supplementary Figure 2 
 
Performance of NGSC, Crosscheck, BAMixChecker, and Conpair when classifying 21 pairwise comparisons 
between RNA-seq datasets from 7 related individuals (indicated in red) from CEPH/Utah pedigree 1463. 
“Inconclusive” is defined as pairwise comparisons resulting in genotype concordance between 50 and 80% 
for Conpair, a score of 0 for BAMixChecker, and an LOD score between -5 and 5 for Crosscheck. NGSC 
incorrectly classifies 43% of pairs, while Conpair and BAMixChecker are inconclusive for 76 and 100% of 
pairs respectively. In contrast, Crosscheck correctly classifies all dataset pairs as mismatches.  
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Supplementary Figure 3 
 
Demonstration of Crosscheck’s performance for contaminated datasets. Simulated contaminated 
datasets were created by combining various proportions of two ENCODE ChIP-seq datasets derived from 
two different donors: ENCFF005HON and ENCFF007DFB. Proportions of reads deriving from 
ENCFF005HON and ENCFF007DFB respectively are indicated in parentheses for each mixture. Each 
mixture was compared to two datasets derived from the same donor as ENCFF005HON, ENCFF007NTA 
(𝑅 ) and ENCFF029GAR (𝑅 ). The star indicates a region where a contaminated sample can score as a 
donor match against one dataset (𝑅 ), but score as a donor mismatch against a different dataset from the 
same donor (𝑅 ). 
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