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ABSTRACT   

Major Depressive disorder (MDD) is a chronic and recurrent brain disorder characterized by 

episode and remission phases, and poor therapeutic responses. The molecular correlates of MDD 

have been investigated in case-control settings, but the biological changes associated with trait 

(regardless of episode/remission) or state (illness phases) remains largely unknown, hence 

preventing therapeutic opportunities. To address this gap, we generated transcriptome profiles in 

the subgenual anterior cingulate cortex of MDD subjects who died during a single or recurrent 

episode or when in remission. We show that biological changes associated with MDD trait 

(inflammation, immune activation, reduced bioenergetics) are distinct from those associated with 

MDD phases or state (neuronal structure and function, neurotransmission). On the cell-type 

level, gene variability in subsets of GABAergic interneurons positive for corticotropin-releasing 

hormone, somatostatin or vasoactive-intestinal peptide was associated with MDD phases. 

Applying a probabilistic Bayesian network approach, we next show that gene modules enriched 

for immune system activation, cytokine response and oxidative stress, may exert causal roles 

across MDD phases. Finally, using a database of drug-induced transcriptome perturbations, we 

show that MDD-induced changes in putative causal pathways are antagonized by families of 

drugs associated with clinical response, including dopaminergic and monoaminergic ligands, and 

uncover potential novel therapeutic targets. Collectively, these integrative transcriptome analyses 

provide novel insight into cellular and molecular pathologies associated with trait and state 

MDD, and a method of drug discovery focused on disease-causing pathways.  
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INTRODUCTION 

Major depressive disorder (MDD) is the world leading cause of years lost due to disability, with 

an annual and lifetime prevalence of 6% and 18%, respectively (1). Episodic phases of MDD are 

characterized by heterogeneous symptoms, including low mood, anhedonia, cognitive 

impairments, and physiological symptoms (i.e. activity, weight) (2). For the majority of subjects, 

MDD follows a periodic trajectory of recurring depressive episodes of increasing severity, 

duration, and of progressive resistance to antidepressants, separated by gradually shortening and 

incomplete remission phases, leading to treatment-resistance and deteriorating functional fitness 

(fig.1A) (3). This clinical trajectory suggests the presence of an underlying trait-like and/or 

progressive neuropathology, which might differ from that of episode or remission “states” of 

MDD.  

The subgenual anterior cingulate cortex (sgACC) lies at the intersection of bottom-up 

sensory input and top-down cortical control and is involved in integrated processing of emotions, 

including mood and reward. The activity of sgACC is increased in subjects with MDD, as well 

as in individuals with high neuroticism, fear of peer rejection and healthy humans during 

experimentally induced sadness (4–6). An effective antidepressant therapy reverses the 

hyperactivity of the sgACC, making it the target and suggested mediator for therapeutic effect of 

deep brain stimulation (7, 8). Magnetic resonance spectroscopy and transcranial magnetic 

stimulation studies suggest reduced gamma-aminobutyric acid (GABA) levels and cortical 

inhibition as a mechanism of sgACC dysregulation in MDD, which too appear to normalize after 

successful treatment (9–12). Large-scale transcriptomic studies in MDD postmortem sgACC 

samples demonstrate dysregulation in cytoskeleton, rearrangement of neuronal processes, 
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synaptic function and presynaptic neurotransmission (13, 14) associated with GABA and 

glutamate receptor signaling. At the cellular level, reduced glial and increased neuronal densities 

were reported, associated with reduction in axon and dendrites (15, 16). Reduced expression of 

markers for GABAergic interneurons targeting either the dendritic (e.g. somatostatin) or 

perisomatic (parvalbumin) compartments of pyramidal cells were reported, associated with 

reduced neurotrophic support (17–19).   

To go beyond case-control studies and investigate molecular correlates of disease trait or 

state, we recently performed a large-scale proteomic study in a postmortem cohort of subjects in 

first or recurrent phase of episodes or remission, and in healthy controls (20). In addition to state-

specific results, this study highlighted robust MDD trait-associated changes (i.e., regardless of 

episode or remission state), suggesting a continuous underlying pathology (20). However, 

limitations in detection and sensitivity of the proteomic approach precluded a full molecular 

characterization of the illness phases and putative progression. In contrast, RNAseq-based 

transcriptome analysis provides a broader snapshot of functional state and transcriptome-based 

systems biology analysis have proven appropriate for investigating complex diseases and 

putative causal pathways (21–23). 

Here we hypothesize that RNAseq-based transcriptome profiling of human postmortem 

sgACC samples from patients in depressive or remission phases of MDD and in controls, 

combined with ontological, systems biology, Bayesian network and perturbagen-induced 

transcriptome analyses, would enable the molecular characterization of disease trait, state and 

chronicity, as well as putative causal biological changes and therapeutic targets.  
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RESULTS 

MDD trait and state are characterized by distinct biological changes in sgACC  

RNAseq-based expression profiles from sgACC samples were obtained from one control (C) and 

four cohorts of MDD subjects during a first episode (E1), remission after first episode (R1), 

recurrent episode (ER) or remission after recurrent episodes (RR) (fig.1A, table S1). Differential 

expression and biological pathway analyses were performed along the following group contrasts 

(fig.1A and Methods): 1)MDD-all: all MDD cohorts versus Controls, 2) MDD-episode: two 

MDD episode cohorts versus Controls, 3) MDD-remission: two remission cohorts versus 

controls, 4) Episode/Remission: two MDD episode cohorts versus two remission cohorts, 5) 

MDD Progressive Episode: monotonic increase or decrease across control and episode groups, 

6) MDD Progressive Remission: monotonic increase or decrease across controls and remission 

groups; 7) MDD-phasic: capturing gene expression patterns coupled to the phasic changes 

across groups.  

The differential expression analysis revealed distinct gene sets with expression changes 

matching the illness trait and state with the following features: Overall, upregulated genes were 

more common than downregulated genes across contrasts (fig.1B, table S2); The MDD-all 

contrast, representing trait, showed consistent up- or down-regulation patterns of gene expression 

regardless of episodes or remission phases compared to controls (fig.1C, top two panels); The 

MDD-phasic contrast revealed robust patterns of gene expression that oscillated with episodes 

and remission phases (see “waves” in bottom two panels in fig.1C). The MDD-phasic gene set 

overlapped substantially with the direct Episode/Remission contrasts (fig.1D), which captured 

the range of the “wave” pattern; Minimal overlap was observed between gene sets identified in 
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the MDD-episode and MDD-remission contrasts (fig.1D) representing MDD states, or between 

the Progressive-episode and Progressive-remission contrasts (less than 1%).  

To summarize the vast data, gene expression changes across different contrasts were next 

analyzed at the level of biological pathways (p-value <0.01; FDR<0.25) and functional themes. 

Consistent with gene expression findings, upregulated pathways were more common than down-

regulated pathways (fig.2, Table S3). For the MDD-all contrast defining the illness trait, multiple 

pathways associated with inflammation, immune system, angiogenesis and vascular growth 

factors were found to be upregulated. Other upregulated pathways included transcription 

associated with stress response and multiple aspects of protein modification processes (e.g., 

involving JNK cascade, MAPK activity, auto-ubiquitination; table S3). Few down-regulated 

pathways were observed and were associated with cellular bioenergetics (Mitochondrial 

translation associated process, mitochondrial activity, ATP metabolic process) and with 

neuropeptide signalling, including signalling and cell-type gene markers.  

Results for the MDD-episode contrast were highly similar to MDD-all contrast (fig.2, 

Columns 1-2), including upregulated immune and inflammation-related pathways, upregulated 

translation related to stress response and aspect of protein modifications, as well as 

downregulated pathways related to mitochondrial bioenergetic functions. For neurotransmission, 

pathways associated with Voltage gated potassium channels and transporter activities were 

downregulated, in addition to the same prior neuropeptide signaling pathways. The Progressive-

episode contrast was more selectively associated with upregulated pathways related to 

transcription, protein modifications, angiogenesis and immune system, suggesting increasing 

pathological changes related to these pathways with successive MDD episodes. Interestingly, 

several pathways related to cellular responses to hormones were selectively upregulated in this 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 27, 2020. ; https://doi.org/10.1101/2020.04.24.058610doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.058610


contrast.  

The MDD-Remission contrast, similar to the MDD-all and MDD-episode contrasts, was 

associated with upregulated inflammation- and immune-related pathways, although immune-

related pathways were limited to innate versus both adaptive and innate immunity in the Episode 

contrast (fig.2, Columns 1-3). Notably, changes more specific to the MDD-Remission contrast 

included multiple upregulated pathways related to cytoskeleton, axonal and extracellular matrix, 

suggesting a structural cellular reorganization during remission phases of the illness. Changes 

associated with the Progressive remission contrast were associated with upregulated 

bioenergetic and cellular respiration pathways, upregulated cellular organelle activity 

(Endoplasmic reticulum, Golgi bodies, Lysosomes Vacuoles and lumen, secretion) (Fig.2), and 

with few pathways associated with inflammation and the immune system. 

Finally, the direct Episode/Remission contrast was associated with downregulated 

bioenergetic-related pathways (ATP, cellular respiration, and Mitochondrion-related pathways), 

consistent with findings form the Episode- or Remission-contrasts. Surprisingly, we observed an 

additional massive downregulation of multiple pathways related to the structure and function of 

all neuronal compartments (cytoskeleton, organelles, matrix, axon, dendrites synapse, channel, 

receptor/transmission dendrite, vesicle secretion, extracellular matrix). These changes included 

pathways associated with multiple aspects of synaptic function and neurotransmission, such as 

downregulated neurotransmission mediated by glutamate, GABA, dopamine, catecholamines 

potassium and calcium voltage-gated channels, and multiple membrane transporter functions. 

This suggests the presence of multiple moderate state-dependent changes along different phases 

of episode and remission, affecting multiple aspects neuronal signaling, which are only 

detectable by direct comparison across opposite phases, and that are missed here when 
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comparing MDD subjects to control groups. Indeed, an analysis for changes matching the 

oscillatory nature of the disease trajectory (MDD-phasic) identified most functional themes of 

the Episode/Remission contrast (fig.2, Column 6), although to lower degrees than separate 

contrasts. 

Together the results of the various group contrasts demonstrate the presence of two parallel 

pathological entities, one corresponding to a depressive trait, generally associated with 

inflammation, immune system activation and decreased bioenergetics, and a second state-

dependent pathological entity matching the clinical phases of the illness, and associated with 

changes in the structure and function of cells, and with multiple aspects of neurotransmission, 

both generally negatively impacted during depressive states.  

 

Validation of altered gene expression and pathway profiles 

Results were validated using three approaches. First, a comparison to results obtained in a similar 

study performed by Pantazatos et al (24), using RNAseq in dorsolateral prefrontal cortex of 

MDD and control samples, revealed significant similarities in gene expression changes in that 

study with the MDD-episode (p-value=0.05), MDD-phasic (p-value=0.046) and Progressive 

episode (p-value=0.043) contrasts, and trend-level overlap of MDD-all (p-value=0.062). Second, 

we compared the current RNAseq results with previous mass spectrometry-based proteomics 

results in the same cohort (20). Gene and protein expression significantly correlated (n=3000 

genes/proteins; R=0.34; p=9.34x10-94), and significant overlaps between protein and gene 

changes were observed for the MDD-episode (p-value=0.02), Episode/Remission (p-

value=0.043), and trend-level overlap for the MDD-remission (p-value=0.062) contrasts. Third, 

technical validation was performed by qPCR for selected genes among affected pathways within 
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different contrasts (fig.3A). qPCR and RNAseq results were highly concordant (fig.3B). 

 

RNA-seq data deconvolution identified a subpopulation of interneurons affected by phasic 

state changes in MDD  

Our present data was derived from gray matter samples where relative cell proportions and 

associated biological signals are masked. To address this limitation, we used existing layer-

specific single nucleus RNAseq data from ACC (from Allen brain atlas) and statistical methods 

to deconvolute the data. We identified 19 cell-type clusters (fig.4A), which we characterized in 

two stages: First, globally, based on known markers associated with pyramidal neurons 

(SLC17A4), interneurons (GAD1 or GAD2), astrocytes (GFAP), oligodendrocytes (OPALIN), 

microglia (CX3CR1) and neuroglia (PDGFRA) (fig.3B), and second, locally, based on the genes 

most enriched in each clusters (fig.4C). For instance, the GABAergic interneuron markers 

PVALB, SST, VIP and CRH were amongst the most enriched genes in cluster 5, 4, 7 and 8 

respectively. Next, we identified sets of genes that clearly discriminated each of the 19 cell-type 

clusters (fig.4D, table S4). These discriminative gene sets were then used to estimate the relative 

proportion of each cell type in the MDD datasets obtained from each cohort, using a support 

vector machine (SVM) approach (25). Results show that cluster 8 displayed lower expression of 

its gene markers in episode compared to remission phases (p<0.042, fig.4E, right panel), and that 

these changes followed a phasic trajectory between single and recurrent phases of the illness 

(p<0.016, fig.4E, left panel). Cluster 8 corresponds to GABAergic interneurons expressing the 

SST, VIP and CRH gene markers (fig.4C). Notably, these markers correspond to the 

neuropeptide signaling GO group previously identified in the biological pathway analysis of the 

MDD-All, MDD-episode and MDD-Phasic contrasts (Fig.2). An analysis with layer-specific 
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single cell data further showed an enrichment of cluster 8 gene sets in in cortical layers 1 and 2/3 

(fig.3F).  

We next sought to validate these findings using gene expression datasets obtained in 

independent cohorts. We used a list of 566 genes obtained in a meta-analysis of altered gene 

expression in MDD across corticolimbic regions, including the sgACC (26) (table S5) and 

performed a hypergeometric overlap analysis in all 19 gene clusters (table S4). Within the 

interneuron clusters (Yellow in Fig 4B), the meta-analysis gene set overlapped significantly with 

the previously identified cluster 8 (q-value < 0.03), corresponding to interneurons expressing 

CRH, VIP and SST, hence validating the current results.  

Next, we investigated the putative impact of altered Cluster 8 cell types (fig.4A-C) on overall 

biological changes. For this we focused on the most significant contrast (Episode/Remission) 

and compared gene expression differences with or without regressing out the variability 

associated with the putative cell-type proportions differences of cluster 8 (See Discussion). 721 

(Up: 419, Down: 302 with respect to Remission) genes showed lower p-values after regression 

(table. S6). These combined gene changes corresponded to the following downregulated  

biological pathways in episode: voltage-gated potassium channel complex (q<1.06x10-2), 

postsynaptic membrane (q<2.7x10-3), asymmetric synapse (q<3.88x10-3), axon-ensheathment 

(q<4.8x10-3) and regulation of cell morphogenesis (q<2.21x10-2), and no upregulated pathways 

(table. S6), consistent with the analysis of biological pathways associated with the 

Episode/Remission contrast (Fig. 2A, insert). Finally, to assess cluster 8 specific differential 

expression, we included the interaction between cluster 8 cell proportion and variables (i.e. 

Episode and remission state) of Episode/Remission contrast in a statistical linear model (27) we 

identified 75 upregulated and 175 downregulated (table. S7, p-value<0.01), corresponding to 
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upregulated chemokine binding (q-value < 0.04) and downregulated nf-KappaB (q-value < 0.01) 

pathways.  

Taken together, inferring cell-type origin of gene expression revealed state-dependent phasic 

biological changes affecting upper layers GABAergic interneurons identified by the SST, VIP 

and CRH cell-type markers. Moreover, the data suggest that these cell type-dependent changes 

occur in synchrony with the broader reduced neuronal signaling phenotype observed in the MDD 

Episode/Remission contrast and may be directly affected by inflammation/immune-related 

events. 

 

Investigating causality using Bayesian gene network analysis 

Whereas the previous group contrasts and cell-based analyses provide biological and cellular 

insight into MDD state and phases, they do not inform on causal links. To identify putative 

causal pathways, we summarized the expression profiles across all five cohorts into modules of 

co-expressed genes using consensus weighted gene co-expression network analysis. This 

analysis reduces expression profiles across all five cohorts into common, more stable, and 

coherent functional modules of co-expressed genes that are comparable across all cohorts. The 

first principal component summarizing omnibus gene expression in each module (i.e. eigengene) 

was used to construct a Bayesian network. A Bayesian network models the probabilistic 

dependencies between gene modules and with the disease node, and is represented as a directed 

acyclic graph (DAG)(28–30), where edges represent the probabilistic dependencies between 

gene modules, organized from early to later module (referred as parent to child).  

22 consensus modules were identified, containing from 31 to 4494 genes. 18 of these 

modules were significantly enriched for at least one gene ontology (GO) functional category at 
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q-value < 0.05 (fig.5A, table. S8) and were used to create the DAG (fig.5B). The direction of the 

edges and probabilistic dependencies between modules were first inspected for biological and 

theoretical consistency. For instance, module M05, the initial source of all modules, is enriched 

in pathways associated with system development (q-value<1.52x10-9) and connected to module 

M02 and M011, enriched in pathways associated with nervous system development (q-

value<4.03x10-11) and anatomical structure morphogenesis (q-value<6.5x10-3), respectively. 

Similarly, the known relationship between the immune system and cytokine (31) is captured by 

the high probability parent-child association between module M21, enriched with immune 

response (q-value<8.67x10-3), and module M10, enriched with pathways associated with 

cytokine response (q-value<4.79x10-27).  

The MDD node is linked to three DAG modules: module M13, enriched with innate immune 

response (q-value<1.60X10-17), module M10, enriched with cytokine response (q-value< 

1.31x10-21), and response to stress (q-value<1.72X10-17), and module M21, associated with 

defense response (q-value<1.04X10-2) and stress response (q-value<4.63X10-3) mostly 

associated with oxidative stress, as suggested by the child module M17, enriched with response 

to oxidative stress (q-value<4.6X10-3) and cellular response to stress (q-value<2.05x10-3, table. 

S8). Among the 3 MDD-associated modules, M10 had the highest probabilistic association to the 

disease module and is a child to disease-associated M13 and M21, making it the endpoint of the 

graph and the most disease-associated module. This is supported by the enrichment of M10 with 

upregulated pathways in all seven contrasts outlined above (fig.5A).   

We next investigated the hypergeometric overlap of discriminant markers of the 19 cell-types 

clusters (fig.4D) with the MDD-associated modules. Module M10 was enriched in astrocyte 

(cluster 10, p < 0.02) and microglia (cluster 14, p < 5.3 x 10-9); module M13, in SST neurons 
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(cluster 04, p < 0.03) and microglia (cluster 14, p < 5.55 x 10-127) and module M21 was enriched 

in none of the cell markers. As an independent validation, we looked for hypergeometric overlap 

with cell specific gene set available from a previous study (32). Module M10 was enriched in 

microglia (p < 0.01), module M13 in microglia (p < 2.23 x 10-27) and module M21 in endothelial 

(p < 0.03). Overlap of module with lamina-specific gene sets (33) suggest the enrichment of all 

three modules in layer 1 (M10: p < 1.2 x 10-14; M13: p < 2.29 x 10-27; M21: p < 0.03)  which also 

coincides with the significant enrichment of disease associated cluster 8 cells in superficial layer 

1 (Figure 4F).   

Together, the Bayesian network analysis organized the biological variability observed across 

the control and MDD cohorts (as measured by gene coexpression) into a coherent and directional 

graph. While these biological events occur in the context of the various clinical phases of MDD, 

the direct association of the disease module with three DAG modules suggests that immune and 

cellular stress functions associated with these modules are more proximal, and potentially causal, 

to the trajectory and clinical manifestation of the illness. Moreover, cell-enrichment analyses 

implicate superficial layer inhibitory neurons, glial and immune cells as potential mediators of 

putative causal biological events in MDD. 

 

The MDD gene module identified in the Bayesian network is associated with known 

antidepressant drugs related pathways and novel drug targets 

Based on the assumption that the MDD-associated DAG end-module M10 may have a causal 

role in the illness, we next investigated whether the M10 gene expression profile could be 

mimicked or antagonized by drugs. For this we probed the M10 associated gene-set against the 

connectivity map (cmap) database, a catalog of transcriptomic responses to multiple molecules in 
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diverse cell types. Despite many limitations of the interventions (simplified cell systems, single 

doses, acute drug exposure, few neuronal cell lines), the use of the cmap database has been 

instrumental in identifying novel therapeutic modalities in complex diseases (34), including in 

neurology and neuropsychiatry (35) .    

33 and 50 molecules were identified as antagonizing (fig.6) or mimicking (fig.7) the M10 

gene expression profiles in neuronal cell lines, which, based on the signature reversion principal 

(34), may reflect therapeutic or MDD-inducing effects, respectively. Among the 33 M10-

antagonizing molecules, three were either dopamine, its precursor (glutamyl-dopamine) or its 

structural variant (6-nitrodopamine), 15 (45.45%) have G coupled protein receptors (GPCRs) as 

their target class, of those 5 were dopaminergic, 4 were serotonergic receptors, and two targeted 

the serotonin and/or dopamine transporters. The other major class of the drug target includes 

enzyme (6/33), electrochemical transporter (4/33) and nuclear receptors (3/33). Notably, 7 of the 

identified drugs are either clinically used to treat neuropsychiatric disorders or identified as a 

potential drug in human postmortem studies (spermidine) (36). 

Among the 50 MDD-mimicking molecules (fig. 7), 12 (24%) were of GPCRs target class, of 

those 6 were serotonin and 3 were dopamine receptors (mostly with opposing effects than 

compounds antagonizing the M10 expression profile), and one each for opioid, melatonin and 

adrenergic receptors. The other major class (> 10% of total) includes eraser (9/50, i.e. HDAC 

inhibitors) and protease (5/50). 

In contrast, using the M16 gene module, which is part of the DAG, but not enriched in any of 

the MDD contrasts (fig.5A), only 7 and 9 molecules were identified with antagonizing and 

mimicking effects, respectively and the target class associated antagonizing molecules belonged 

to Eraser (3/7), nuclear receptor (2/7), kinase (1/7) and voltage gated channel (1/7).  
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DISCUSSION:  

Unraveling the complex biological disturbances occurring in heterogeneous brain disorders, such 

as MDD, is a major challenge that is further complicated by the frequent trajectory of recurrent 

episode and remission phases of the illness. This symptomatic profile suggests that 

pathophysiological disturbances underlying MDD may wax and wane, however this contradicts 

the other clinical observation of progressive development of treatment-resistance and 

deteriorating functional fitness, suggesting a continuous and progressive pathophysiology. Here, 

using RNAseq-based transcriptome profiles from human postmortem sgACC samples obtained 

from MDD patients who died during depressive or remission phases, and from control subjects, 

we show the presence of two parallel pathological entities (fig. 1B). The first pathology 

corresponds to a stable MDD state, regardless of episode and remission and is associated with 

inflammation, immune activation, and reduced bioenergetics. The second is a state-dependent 

pathology, which consists of dynamic biological changes that match the clinical phases of the 

illness and that are mostly detected when directly comparing the transcriptomes of episode 

versus remission subjects. This state-related pathology is associated with neuronal structure and 

function, affecting both fast neurotransmitter (GABA, Glutamate) and neuromodulator 

(catecholamines, neuropeptides) systems, sets of changes that are downregulated during episodes 

and not observed or reversed during remission phases. Although these studies were performed 

using combined cortical gray matter and in cross-sectional cohorts, two additional in silico 

analyses provide perspective on cellular specificity and putative causal processes. First, cellular 

deconvolution approaches showed that variability in gene sets associated with GABAergic 

interneurons positive for corticotropin-releasing hormone, somatostatin or vasoactive-intestinal 
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peptide was associated with MDD phases. Second, a probabilistic Bayesian network approach 

showed that gene modules enriched for immune system activation, cytokine response and 

oxidative stress, may exert causal roles across MDD phases. Finally, using a database of drug-

induced transcriptome perturbations, we show that MDD-induced changes in putative causal 

pathways are antagonized by families of drugs associated with clinical response, including 

dopaminergic and monoaminergic ligands, and suggest an innovative approach to uncover 

potential new therapeutic targets. Collectively, these integrative transcriptome analyses provide 

novel insight into cellular and molecular pathologies associated with trait and state MDD, and a 

method of drug discovery focused on disease-causing pathways.  

 

Dissociating trait and state pathologies of MDD  

The identification of two parallel pathological entities corresponding to trait and state MDD is 

graphically represented in the Figure 2 cluster graph, and supported by coherent results from the 

analysis of biological pathways associated with these patterns. Starting with the MDD trait 

pathology, the results show a robust link to inflammation and immune activation, consistent with 

prior reports (41). These events often recruit extensive signal transduction pathway protein 

modifications, such as phosphorylation of proteins in the MAPK pathway (ref), and increased 

demand on local blood supply, mediated by increased angiogenesis, which are both also 

associated here with MDD trait pathology. These findings are consistent with a large body of 

literature on MDD for inflammation (39), immune system activation (40), MAPK activation 

(ref), but less so for angiogenesis, as increasing angiogenesis has been proposed as a therapeutic 

avenue (ref).  

Note that “trait” is defined based on statistical association with the MDD-All contrast, i.e. 
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subjects in episode or remission phases of the illness compared to controls, but some of the 

identified trait phenotypes displayed various degrees of significance in the separate contrasts. For 

instance, pathways related to innate immunity were consistently upregulated in all three 

contrasts, but changes in adaptive immunity and inflammatory response were limited to the 

MDD-All and MDD-episode, but not in the remission state, suggesting additional phasic state-

dependent immune features. Reduced bioenergetics was identified as trait pathology, represented 

by decreased expression of genes implicated in mitochondrial structure and function, and in 

cellular energy production (i.e. ATP). This was observed in the MDD-All and MDD-Episode 

contrasts, but not the MDD-remission, suggesting a partial reversal of the phenotype during 

remission, as supported by significant results in the direct Episode/remission and phasic contrast 

analyses. 

The MDD state pathology (as identified in group contrasts, but not the MDD-all contrast) 

was associated with classical neurotransmission changes often reported in depression (REFS), 

negatively affecting excitatory glutamatergic (NMDA and AMPA receptors), inhibitory 

GABAergic systems, multiple aspects of voltage-gated channel activities, and with reduced 

structural elements of neurotransmission (axons, dendrites, vesicle machinery, etc), consistent 

with anatomical studies showing reduced pyramidal neurons dendrites and sizes (Refs). The fact 

that these results are only observed when comparing opposite groups (i.e. Episode/Remission 

contrast) suggests moderate state-dependent changes affecting neuronal signaling that are more 

difficult to identify in traditional case-control studies and that would be more sensitive to cohort 

composition and sizes, potentially explaining past discrepancies across studies (refs). In contrast, 

neuronal structural components (cytoskeleton, matrix, axons) were restored during remission 

phases (i.e. significant in the MDD-Remission contrast), and a progressive upregulation of 
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intracellular vesicles associated with trafficking, and lysosomal and autophagy activities, was 

observed with successive episodes (i.e. Progressive-Remission contrast). These results show that 

the often-reported neurotransmission-related pathology of MDD is state-related and mostly 

resolved during remission of MDD, and that remission is further associated with restructuring of 

intracellular components, structural elements and extracellular cell to cell contacts.  

 

CRH-, SST- and VIP-positive GABAergic cellular changes across MDD episodes and 

remission 

The deconvolution of cell-type origin of gene expression obtained from gray matter samples 

(using independent sgACC single cell expression data) showed that a subpopulation of 

GABAergic inhibitory interneurons that express the CRH, SST and/or VIP neuropeptides are 

dynamically affected in synchrony with the episode and remission phases of MDD. Reduced 

CRH expression has been previously reported in subcortical brain regions, consistent with 

dysregulation of the hypothalamus pituitary adrenal stress axis in MDD, and we have previously 

reported reduced CRH expression in cortical layers as well (ref). Reduced SST expression has 

been reported by our group and others in several independent cohorts (refs). Reports on altered 

VIP expression in MDD are sparser (ref). Importantly, VIP, CRH and SST are markers of 

GABAergic interneuron subtypes that display overlapping patterns of expression, and that 

directly or indirectly inhibit pyramidal cell dendrites. These results are therefore consistent with 

a state-dependent MDD-related pathology that affects the regulation of excitatory input onto 

pyramidal cells, suggesting altered information processing in MDD (ref). At the sgACC regional 

level, reduced dendritic inhibition may alter the excitation inhibition balance and contribute to 

the elevated activity of this brain region during MDD episodes (refs). 
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The cellular deconvolution approach suggests variable proportions of a specific cell type 

between MDD episodes and remissions (Fig.3 D-E), but one could question how this can occur 

for interneurons, post-mitotic cells that seldom divide in the adult brain. Deconvolution analysis 

assumes that the gene expression of each cell type is linearly additive, making its contribution 

proportional to its fraction in bulk. Gene expression however, largely dependents on other cell-

level covariate, particularly cell size and function. For instance, we previously showed a reduced 

SST expression per cell in the sgACC of MDD subjects, rather than reduced SST-positive cell 

numbers (Refs). The association of change in cell size or of expression per cell for CRH, SST 

and VIP positive interneurons is also supported by facts that normalizing for putative cell-type 

differences overall enhanced the MDD-related significance of cell-to-cell signaling and 

neurotransmission, and that multiple genes implicated in cell structure (hence volume and 

function) are affected here in phase with MDD episode and remission states.   

 

A putative causal role for immune function and inflammation in upper cortical layer cells 

in MDD 

Bayesian network analysis is an approach that uses changes in association probabilities between 

gene modules across multiple network iterations to deduct potential causal flow. Applied to the 

dataset across control and MDD cohorts, this analysis suggests that activation of immune 

function, inflammation and oxidative stress originating from or affecting inhibitory neurons, 

glial, endothelial and immune cells in upper cortical layers may have causal role in MDD across 

episode and remission phases. The collective results may point to sustained immune activation, 

combined with other cellular stressors (oxidative stress, inflammation), whether of intrinsic or 

external origin, and implicating glial and endothelial cells, in turn affecting inhibitory neurons 
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located in upper cortical layers and regulating processing of cortical information. This collective 

pathology is maintained throughout the disease trajectory but appears to wax and wane with 

episodes and remission, as suggested by phasic changes in CRH-/VIP-/SST-neurons, reversal of 

neuronal structure during remission, shift from innate and adaptive immune activation during 

episodes receding to innate immunity only during remission, and paralleled by bioenergetics and 

cellular structure phase-dependent changes. In this way, the model suggests that the trait 

pathology associated with immune/inflammation increases the biological vulnerability of the 

sgACC, setting it up for relapse into episode state-like pathology, together demonstrating a novel 

type of plasticity associated with MDD.  

It is intriguing that the gene expression profile of the Bayesian network gene module most 

associated with MDD can be antagonized or mimicked in cell lines by drugs and ligands that 

target the dopamine or monoamine systems, consistent with the clinic roles of these 

neurotransmitter systems in diseases and therapeutics. It is surprising that this information can be 

obtained from acute drug exposure in simple cell-based systems that lack the complexity of the 

brain and the timeframe of disease trajectory. This may reflect the fact that the complex 

interplays of multiple biological events across time and cell systems in MDD may recruit a 

unique combination of cellular processes, as identified by correlated gene coexpression patterns 

between complex modules obtained in combined gray matter tissue across disease states and 

those induced by specific compounds on simplified cell systems. This is also consistent with 

novel therapeutic or pro-disease targets suggested by this approach, which belong to complex 

biological regulators, such as epigenetic, nuclear receptors and protein modification regulators, 

rather than single target molecules. Importantly, these findings provide an independent 

confirmation of the validity of the causal gene modules and biological pathways identified in this 
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study. Moreover, the integrated approach applied in this study provides a framework and 

putative temporal sequence to assemble known hypotheses of MDD, namely suggesting 

immune- and cellular stress-related phenomenon as causal and upstream in series of event 

contributing to the state-dependent plasticity affecting excitatory and inhibitory neuron and 

transmission, as well as serotonin, glutamate and GABA dysfunction.   

 

Limitations 

These studies were performed in cross-sectional cohorts, and results suggesting causal links and 

sequence of events should be interpreted as hypothesis generating, to be tested in future studies. 

These studies were aimed at identifying broad biological events rather than specificities 

associated with demographic (sex, age) or clinical (antidepressant use, suicide). Finally, the 

unique feature of the current cohorts (remission and episodes) and availability of samples 

precluded the validation of the state-dependent aspects of the current results in independent 

cohort. Instead we have used available genomic datasets to provide complementary or additional 

supporting evidence for aspects of the current results.  
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MATERIAL AND METHODS: 

 

Human postmortem brain samples. Postmortem brain samples were collected during routine 

autopsies performed at the Allegheny County Medical Examiner’s Office with procedures 

approved by the University of Pittsburgh committee for oversight of study and clinical training 

involving the dead. Consensus DSM-IV diagnoses were made by an independent committee of 

experienced clinicians using information from structured interviews with family members, 

clinical records, toxicology results, and standardized psychological autopsies. A similar approach 

was employed to confirm the absence of a psychiatric diagnosis in comparison subjects. The 

MDD cohorts were carefully matched with controls to ensure that they did not differ in mean 

age, postmortem interval (PMI), brain pH or RNA integrity number (RIN). Ninety samples 

including 20 control subjects, 20 subjects in first MDD episode, 15 in remission after a single 

episode, 20 in recurrent episode and 15 in remission after recurring episodes (fig.1, table S1). 

Samples comprising all six cortical layers were collected from coronal sections, as previously 

described (42). Samples from the same cohort had been previously used in a large-scale 

proteomic study (20).  

RNA extraction and sequencing library preparation. Total RNA was extracted from the 

sample homogenates using RNeasy Mini kit (Qiagen, Cat.No.74104) with in-column DNAse 

treatment using RNAase-Free DNase (Qiagen, Cat.No.79254). Sequencing libraries were 

prepared using SMARTer Stranded Total RNA-seq kit (Clontech Laboratories, Cat. No. 

634876). All steps involved were performed according to manufacturer’s protocol.  

Sequencing and data generation. Pooled libraries were sequenced in illumina HiSeq2500 to 

generate 2 x 100 paired end reads, which were aligned to human reference genome GRCh38 
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provided by Ensembl using HISAT2 aligner. Count data were then generated for the reads 

aligned to exons and transcripts using the GenomicFeature and GenomicAlignments packages in 

R and gene model (GTF file) provided by Ensembl. 9.7 million reads were obtained per sample, 

aligning to 21,684 genes. 

Experimental contrasts and differential expression analysis. After removing low expressed 

genes (mean row sum <= 5 counts across all 90 samples), 21,684 genes were included in 

differential expression analysis. The experimental design allowed the following contrasts to be 

examined using the DESeq2 R package: 1) MDD-all: all MDD cohorts versus Controls, 2) 

MDD-episode: two MDD episode cohorts versus Controls (En|C), 3) MDD-remission: two 

remission cohorts versus controls, 4) Episode/Remission: two MDD episode cohorts versus two 

remission cohorts (En|Rn), 5) Progressive Episode: monotonic increase or decrease across 

control and episode groups; C→E1→RR, 6) Progressive Remission: monotonic increase or 

decrease across controls and remission groups; C→R1→RR) and 7) MDD-phasic: capturing 

gene expression patterns coupled to the phasic changes across groups. The curve fitting for 

MDD-phasic was performed in two steps in R. For the first step. pData$MDD-Phasic = sin (-pi/2 

+ 2 * pi/2 * pData$group) adds the column named MDD-phasic to the sample phenotype data 

used to model the sinusoidal nature of the cohort. Here -pi/2 and pi/2 captures the down and up 

phase respectively. 2 denotes the step ensuring the model searches for alternate down and up 

pattern. “pData” denotes phenotype data table and group denotes the cohort where the order is 

preserved as C→ E1→R1→ER→RR. The second step involved using the MDD-phasic column in 

the phenotype data as contrast (similar to other contrast) for finding genes associated with it. For 

all contrasts, Likelihood ratio test was employed with a full design of ~Age+Sex+PMI+Contrast 

and a reduced design of ~Age+Sex+PMI to remove the effect of age, sex and postmortem 
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interval (PMI). A p-value threshold of 0.05 was used. 

Pathway enrichment analysis. Biological pathways affected in different contrasts were 

determined using gene set enrichment analysis (GSEA) (43). The 21,684 genes ranked by Wald 

statistic were tested against the three Gene Ontologies (GO): Biological Process (GOBP), 

Molecular Function (GOMF) and Cellular Component (GOCC). Updated gene set (pathway) 

lists were obtained from the Bader lab (http://download.baderlab.org/EM_Genesets/). To 

compare the effect of MDD pathology across different contrasts, the normalized enrichment 

score of significant pathways (P-value<0.05, q-value<0.25) was used to generate heatmaps.   

A focused analysis of a priori functional themes was performed to better identify the 

character of the biological changes in the enrichment results. Specifically, we selected 

significantly enriched pathways which either 1) contained the name of the functional theme 

based on a text-based query or 2) were identified as child terms (nested pathways) of pre-

selected parent terms which represent the theme.  

Hypergeometric analysis. To look for significant overlap between gene sets we performed 

hypergeometric overlap using Geneoverlap package in R. Background of 21196 genes and 

significance cutoff of p-value < 0.05 was used for all the analysis. 

Quantitative polymerase chain reaction (qPCR): Differentially expressed (DE) genes 

belonging to a leading-edge subset (core set of transcripts that accounts for the enrichment 

signal) in our enrichment analysis were used to validate the differential expression results using 

qPCR. Top 5 samples representing either control or diseased state were selected based on their 

expression profile. Total RNA (same as used for generating the sequencing libraries) were 

reverse transcribed to cDNA using PrimeScript RT Master Mix (TaKaRa). cDNA, primers, and 

TB Green Premix ExTaq (Tli RNaseH Plus) (TaKaRa) were mixed in 96-well PCR plate, and 
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qPCR was performed in triplicate using CFX96 Real-Time System (Bio-Rad). Results were 

normalized to GAPDH internal control. Primers used are described in Supplementary Table 2. 

Cellular Deconvolution analysis: To estimate the cell type proportion and identify putative 

disease-associated cellular differences, we adapted the deconvolution analysis described by 

Baron et. al. (44) and implemented in bscqsc package in R. The analysis consists of five steps. 

A) Identifying cell-type-specific marker-genes: Using the single nucleus data set for Anterior 

cingulate cortex available form Allen brain atlas, we first identified cluster of cell types (fig.3A) 

and markers specific to each cluster (table. S9) using SEURAT package in R for single cell 

analysis (45). In order to segregate cell clusters based on subtle differences in expression, the 

resolution parameter was set to 1.2   B) Building the reference basis matrix of marker-genes 

(fig.3D): This matrix contains the highly discriminatory marker-gene expression of each cell-

type cluster averaged across all the cells of a given cell type cluster. For a given cluster, we 

considered a gene specific to a cluster only when it showed >= 3-fold difference in expression 

when compared to its expression in other cell clusters.   C) Estimating proportions: The resulting 

reference matrix (fig.3D) was used to estimate cell proportion in different cohorts and contrast 

(fig.3E) using Support Vector Regression implemented by CIBERSORT package in R (46). D) 

Adjusting the bulk tissue gene expression differences for proportion: We statistically regress out 

the effect of a cell types cluster (cluster 8) which showed the significant change in proportion in 

Episode/Remission contrast. This was implemented by expanding the design-model used for 

finding differential expression between episode and remission cohort by incorporating the 

estimated cell-type proportion (from step C) in the design matrix. Note that this step allows for 

differential expression analysis independent of variation introduced by cell proportion. 

Comparing the differentially expressed gene with and without the adjusted cell-type proportion 
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can be used to identify genes which show increased statistical significance (i.e. further reduced 

p-value) after removing the effect of cells showing highest change in proportion for a given 

contrast.  These set of genes and the pathways associated with them can be considered as those 

influenced (thus consequential). E) Finding cell-type specific differential expression: As 

described previously (47) and implemented in the csSAM (a package in R) we use the two 

separate differential expression analyses, (i.e. with and without regressing the cell proportion) to 

fit a linear model that estimates interaction term between cell proportion and contrast to find cell 

type cluster specific differential expression 

Bayesian Network analysis. To find probabilistic causal associations of disease states with gene 

co-expression modules representing different biological themes we used weighted gene 

coexpression network analysis (WGCNA) and Pigengene package in R. First, we used consensus 

WGCNA to generate co-expression modules common across samples and compared them 

between control and disease states. For each cohort, count data normalized based on size factor 

(using DESeq2 package in R) was used to create a matrix of pairwise Pearson correlations 

between genes, which was then transformed to a signed adjacency matrix using power β=12.  To 

calculate the interconnectedness between genes, which defines “modules”, we derived the 

topological overlap, which gives biologically meaningful measurement of similarity between two 

genes, based on their co-expression relationship with all other genes. We then identified 

consensus modules between the control and the diseased cohorts using 

blockwiseConsensusModules function with consensusQuantile setting set to 0.50. We obtained 

22-consensus modules with numeric label 1 to 22 and color labels for all.  Label 0 and color grey 

was assigned to genes not assigned to any module and was removed from further analysis. The 

identified modules were functionally characterized using all three Gene Ontologies and top 
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pathways with Bonferroni corrected p-value < 0.05 were used to label the modules.  

The first principal component (the eigengene) summarizes a given module by accounting for 

the maximum variability of all its constituent genes. It is used as a proxy for the overall gene 

expression of this module and to identify mechanisms associated with disease states.  

Using the Pigengene R package, module eigengenes were used as random variables to train a 

Bayesian network that modeled the probabilistic dependencies between all modules. 

Additionally, experimental group was included as a categorical variable (disease) to simplify the 

inference. The disease node works as a source and has no parent terms above it. This is 

implemented by blacklisting all the incoming edges to the disease node. To search for an optimal 

Bayesian network fitting our data, we performed 1000 permutations (i.e. 1000 networks) with 

default parameters in the Pigengen package. Edges that appeared in greater than equal to 30% of 

the networks were used to construct the network. 

Connectivity map (Cmap) analysis. Cmap contains expression profiles induced by ~19,000 

different small molecules (perturbagens) in ~77 different cell lines (48).Genes in module 10 were 

submitted as query in the Cmap API (https://clue.io/query). The output file (cs_nlx476251.gct) 

containing the raw weighted connectivity scores for all molecules, or perturbagens, tested in 

different experimental conditions and cell types was used for further analysis. A connectivity 

scores summarizes the similarity between the query and signature profile of a perturbagen based 

on Kolmogorov-Smirnov enrichment statistics. To compare an observed connectivity score to all 

others in the database we calculate the percentile score, referred as “tau”. The weighted 

connectivity score ranges from -1 to +1 and accordingly the tau ranged from -100 to +100. 

Negative and positive scores indicate dissimilarity and similarity between query and perturbagen 

signatures, respectively. In this study we restricted our search space to all perturbagen tested in 9 
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hallmark cancer cell lines (A375, A549, HA1E, HCC515, HEPG2, HT29, MCF7, PC3, VACP) 

frequently used in drug repositioning studies and three neuronal cell lines (NEU, NEC.KCL, 

NPC) available in the Cmap database. We summarized the multiple experimental conditions 

under which a given perturbagen was tested in a given cell line separately for each cancer and 

neuronal cell lines based on the largest effect size magnitude between 33rd and 67th percentile.  

To select the top perturbagen candidate, we used the rank ordered row sum of tau score, 

separately for cancer and neuronal cell lines. 

Drug target identification:  Using the available two-dimensional (2D) structures 

(http://lincsportal.ccs.miami.edu/SmallMolecules/catalog)  for top drugs associated with Module 

M10 and M16 molecules we searched for protein target and target class (protein family to which 

the target belongs) using SwissTargetPrediction, a web tool based working on structure function 

relationship of drugs and biomolecule. The frequency of different target class associated with the 

top 20 therapeutic drugs predicted based on neuronal cell lines was used to estimate the 

difference between drugs associated with M10 and M16 using chi-square test of independence. A 

drug can potentially dock to many protein targets of different target class and can hinder the 

calculation target class frequency. To avoid this issue we estimated the frequency based on the 

first predicted class target class for all the drugs. 
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FIGURE LEGENDS  

Fig.1: RNAseq-based identification of state-dependent and phasic molecular changes in 

MDD. A) Clinical evidence frequently shows recurrent episodes of MDD (valleys) of increasing 

severity, reduced therapeutic response and shorter remission periods (crests), suggesting the 

presence of a progressive underlying pathology across phases (black arrow). B) Numbers of 

differentially expressed genes associated with different MDD phase contrasts (p < 0.05). The text 

(top) and graphics (bottom) describe the contrasts used in the text and figures. MDD-all: all 

MDD cohorts versus Controls. MDD-episode: two MDD episode cohorts versus Controls 

(En|C). MDD-remission: two remission cohorts versus controls. Episode/Remission: two MDD 

episode cohorts versus two remission cohorts (En|Rn). MDD-phasic: capturing the phasic up- and 

downregulated gene expression changes correlated with episode and remission phases. 

Progressive Episode: monotonic increase or decrease across control and episode groups; 

C→E1→RR. Progressive Remission: monotonic increase or decrease across controls and 

remission groups; C→R1→RR).  C) Heatmap of gene expression changes corresponding to the 

MDD-all (top 2 panels) and MDD-phasic (bottom two panels) contrasts. The colored bars at the 

bottom of each panel are visual summaries of gene effects within the section above. The MDD-

all contrast shows consistent up or downregulation of genes across the various phases of MDD, 

compared to controls. The MDD-phasic contrast shows “waves” of gene changes that coincide 

with the episode and remission phases of MDD. D) Venn Diagram showing intersection of up- 

and down-regulated genes associated with MDD-all, MDD-episode, MDD-remission, 

Episode|remission and Phasic contrast. Note the highest intersection between Episode|Remission 

and Phasic contrasts. 
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Fig.2: Profiles of biological pathway affected in the MDD group contrast and validation 

studies. Altered pathways associated with different biological themes (left) per contrast. The 

blue and yellow colors represent up and down regulated pathways scaled by enrichment scores, 

ranging from +1 (Blue) to -1 (Orange).  

Fig.3: qPCR validation of differentially expressed genes and representative of affected 

pathways in each contrast. In each image (from A1-A7) left white box plots represent RNAseq 

data. Right grey box plots represent qPCR data (n=5/group) A1) RHOB: belonging to GO group 

‘angiogenesis’ and up regulated in all MDD subjects compared to control in MDD-all contrast. 

A2) CRYM: belonging to GO group ‘mitochondria’ and ‘oxidation-reduction process’ and 

down-regulated in Episodic subjects compared to control in MDD-episode contrast. A3) 

ARID5B: belonging to GO group ‘regulation of transcription, DNA-templated’ and 

progressively Up-regulated in episodic states. A4) CNTN2: belonging to GO group ‘microtubule 

cytoskeleton organization’ and Up-regulated in Remission subjects compared to control in 

MDD-remission contrast. A5) DDX25: belonging to GO group ‘regulation of translation’ and 

progressively Upregulated in remission states. A6) STX1A: belonging to GO group ‘presynaptic 

membrane’ and Upregulated in Remission subjects compared to episodic subject in 

Episode|Remission contrast.   A7) VEGFA: belonging to GO group ‘angiogenesis’ and coupled 

with phasic changes involved in depression. P-values < 0.05 for all independent RNAseq and 

qPCR group comparisons. B) Correlation between RNAseq and qPCR was calculated for all the 

genes selected for validation (A1-A7). Data from all the gene were pooled and each point in the 

correlation plot represents one subject.    
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Fig.4:  Cell-type deconvolution of gray matter RNAseq reveals gene expression changes in 

synchrony with MDD phases for CRH-, SST- and VIP-positive GABAergic interneurons. 

A) Clustering of human anterior cingulate cortex single nuclei RNAseq data from Allen Brain 

Atlas. B) Clusters were characterized globally using known markers of Pyramidal neurons, 

interneurons, astrocytes, Oligodendrocytes, microglia and polydendrocytes (see results section 

for markers). C) Clusters were characterizing locally using the top enriched expressed genes 

(upregulated) by cluster. C1) Cluster 5 enriched with PVALB. C2) Cluster 4 enriched with SST 

marker. C3) Cluster 7 enriched with VIP. C4) Cluster 8 enriched with CRH. Note that some 

clusters have overlapping expression of different markers. For instance, cluster 8 (CRH) is also 

enriched in SST and VIP. D) Heatmap of highly discriminative gene, i.e. markers used as 

reference for estimating relative cell proportions in (E). Rows represent genes and columns 

represent the cluster identified in (A). Only representative clusters are shown here. For a heatmap 

of all the clusters see supplementary fig.X. E) Proportion differences of cluster 8 cell types in 

Episode/remission contrast (top) and phasic contrast (bottom). The y-axis shows the relative 

proportion of cluster 8 cell types while the x-axis represents different cohort used in the study F) 

Layer specific distribution of cluster 8 neurons (yellow). Note the high enrichment of cluster 8 

neurons in supragranular layer 1 and 2/3.  

 

Fig.5: Prioritizing putative causal gene modules in MDD using Bayesian network: A) 

Consensus gene modules were identified using the combined RNAseq data across diseases 

phases and characterized using GO enrichment. GO terms highly enriched for each module are 

shown on the left, and -log10 p-values (fdr <0.05) of enrichment tests for the GO term are shown 

on the right. The middle panels show the enrichment of modules in the MDD contrasts (From 
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Fig.1B). The blue and yellow circle shown enrichment in up- and down- regulated genes for each 

module. The size of circles is proportional to the -log10 of p-value associated the enrichment. 

Note that module ME03, ME08, ME19 and ME22 were not associated with any GO terms and 

were removed from further analysis. B) Directed acyclic graph (DAG) obtained after fitting 

Bayesian network to the eigengenes of characterized consensus modules, shown as nodes. The 

thickness of the edges connecting the nodes is proportional to the number of times, in percent, 

the edge was detected in 1000 permutation used to fit the Bayesian network.  The connection of 

“Disease” node (methods) to its child nodes are shown in red. 

 

Fig.6: Connectivity mapping of antagonizing molecules: Dissimilarity (antagonizing effect), 

represented by tau (see methods), of drug-induced transcriptomic profiles and module 10 gene 

sets is shown. Drug-induced profiles are derived neuronal cell lines. Significant Tau values of <-

90 are shown in increasing shades of blue. Molecules in red are associated with either 

monoamine or catecholamine transmitter while those in green with other known 

neurotransmitter. The target class column represents predicted protein targets using 

SwissTargetPrediction. Mode of action and notes taken from pubchem  

 

Fig.7: Connectivity mapping of disease mimicking molecules: Similarity (disease mimicking 

effect), represented by tau (see methods), of drug-induced transcriptomic profiles and module 10 

gene sets is shown. Drug-induced profiles are derived neuronal cell lines. Significant Tau values 

of >90 are shown in increasing shades of orange. The target class column represents predicted 

protein targets using SwissTargetPrediction. Mode of action and notes taken from pubchem. 
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Target Target Class Mode of action Notes
Chlorpromazine DRD2/DRD4/HTR2A Family A GPCR Antagonist Antipsychotic

YM-09151-2 DRD2/DRD4/HTR2A/ADRA1A/DRD3 Family A GPCR Antagonist Atypical antIypsychotic; Same as Nemenopride 
Cycloheximide FKBP1A Isomerase Blocks translation _

Clonidine ADRA2A/ADRA2C/ADRA2B Family A GPCR Agonist (presynaptic) Used for blood pressure; ADHD
Valproxan CA2/CA1 (GABA/Glu/Nach) Lyase Affects GABA; Blocking voltage-gated Na-Ch; inhibits histone deacetylases Valproate; Used in epilepsy and BPD

Nemonapride DRD2/DRD3/DRD4/HTR2A/ADRA1A Family A GPCR Antagonist Atypical antipsychotic
EHPG-piperazine ADRA2A/ADRA2B/ADRA2C Family A GPCR Affects adrenergic signalling _

Zonisamide CA2 (Ca ch./GABA/Glu) Lyase Sulfonamide; Antagonist Used in epilepsy, bipolar, Parkinson's
BRD-A09053961 FYN/EGFR/LCK Kinase _ _
Allantoxanamide # ADORA1/ADORA2A Family A GPCR Uricase inhibitor Increase uric acid
BRD-K99554241 MTNR1A/MTNR1B Family A GPCR Melatonin Rec antagonist _
BRD-K97591839 SLC6A3 (DAT) Electrochemical transporter DAT inhibitor _

Enevalproate FNTA/FNTB/SRD5A2 Enzyme/Enzyme/Oxidoreductase _ Valproate metabolite; Used in epilepsy and BPD
BRD-K72015216 # SLC6A3 (DAT)/SLC6A4 (SERT) Electrochemical transporter Blocks DAT and SERT Increase 5HT/DA (5HT2AR)
BRD-K27237442 # DRD1 Family A GPCR 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists D1 PET tracer

Lithocholic-acid VDR/NR1H4/GPBAR1/AKR1B10 Nuclear receptor/Family A GPCR/Enzyme Fat solubilization for absorption Bile acid; Acts as detergent
Troglitazone PPARG/HTR2B/TBXAS1/MAOB Nuclear receptor/Family A GPCR/Cytochrome P450/Oxidoreductase PPARG agonist Used in Type 2 diabetes 

Tetrabenazine SLC18A2 (VMAT2)/ADRA1A/ADRA2A Electrochemical transporter/Family A GPCR Monoamine vesicle storage inhibitor _
Clofibric-acid PPARA Nuclear receptor PPAR alpha agonist _

FK-866 NAMPT Enzyme Inhibitor of nicotinamide phosphoribosyltransferase _
Dopamine # KDM4E/DRD5/MTNR1A/SLC6A2 Eraser/Family A GPCR/Electrochemical transporter Multiple actions DA/NE agonist

BRD-K84252391 # RCOR1/KDM1A/SIGMAR1/DRD2 Eraser/Membrane receptor/Family A GPCR Multiple actions Binds Sigma, DA and 5HT receptors
Ellagic-acid # ERBB2/AKR1B1/CCND1 Kinase/Enzyme/Kinase Free-radical inhibiting antioxidant _

Pyridine-2,4-dicarboxylic-acid KDM4E/EGLN2/FTO/EGLN1 Eraser/Enzyme/Oxidoreductase Hypoxia-inducible transcription factors (HIFs) inhibitor _
Glutamyldopamine # SELL Adhesion Dopamine precursor _

BRD-K23628492 # BCHE Hydrolase Non-specific choline esterase Similar to AChE
Beta-alanine # KDM4E Eraser Epigenetic regulators, increase GABA levels _

Mevalonic-acid # PGD/MVD Enzyme _ Related for statin effects
Spermidine # CA2 Lyase Regulate membrane potential, NOS inhibition Identified in postmortem studies

BRD-K98336812 # TRPV1 Voltage-gated ion channel _ Chlorpromazine metabolite
BRD-A27924917 # # GABBR2/GABBR1 Family C GPCR GABA-B Receptor Antagonists _

Rosiglitazone # TBXAS1/MAOB/CA2/AGTR1 Cytochrome P450/Oxidoreductase/Lyase/Family A GPCR Antihyperglycemic and anti-inflammatory activities Antidiabetic agents
6-nitrodopamine # SNCA Unclassified Nitrosylated DA _
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Target Target class Mode of Action Notes
Tacedinaline HDAC3/ HDAC2/ HDAC1 Eraser HDAC inhibitor Epigenetic regulator

BG-1010 HTR2B/ HTR2A Family A GPCR _ _
BML-210 HDAC3/ HDAC2/ HDAC1 Eraser HDAC inhibitor Epigenetic regulator

BRD-A70541707 SLC6A3 Electrochemical transporter _ _
BG-1024 ABL1/ HDAC/ Mapk14 Kinase/ Nuclear receptor/ kinase _ _

Oxyphenbutazone PTGS1 Oxidoreductase Blocks prostaglandin synthesis _
BRD-K99636700 _ _ _ _

NSC-3852 METAP2 Protease HDAC inhibitor Epigenetic regulator
BRD-K31344914 OPRM1 Family A GPCR _ _

BG-1032 ATR Kinase _ _
Geldanamycin TRAP1/ HSP90AA1/ HSP90AB1 Other cytosolic protein Inhibits cytosolic chaperone (HSP90) _

NO-ASA PDE3A Phosphodiesterase Platelet aggregation Inhibitors _
CCT036477 VDR Nuclear receptor Targets Wnt pathway _

BRD-K39096267 MMP2 Protease _ _
BG-1001 KCNMA1 Voltage-gated ion channel _ _

BRD-K75971499 KCNH2 Voltage-gated ion channel _ _
HDAC3-selective _ _ _ _

Amiodarone CHRM4/ ERBB2/ HTR2B/ FYN/ THRA GPCR/ Nuclear reeptor/ kinase/ electrochemical transporter HERG blocker _
Wortmannin PRKDC/ PIK3CA/ PIK3R1/ MYLK Kinase/ Enzyme Immunosuppressants act by inhibiting DNA synthesis _
Fenretinide RBP4 Secreted protein Activates retinoic acid receptors inducing apoptosis _

Trichostatin-a SF3B3/ HDAC3/ NCOR2 Eraser HDAC inhibitor Epigenetic regulator
KCl _ _ Maintains intracellular tonicity _

LY-294002 # PDE5A/PIM1 Phosphodiesterase/Kinase Prevent the normal catalytic reaction _
MG-132 # CAPN2/CTSK/PSMB2/NFKBIA Protease../Other cytosolic protein Inhibits cysteine endopeptidases _

BRD-A11009626 # DRD2/DRD1 Family A GPCR _ _
BRD-K88575585 # MTNR1A Family A GPCR Appetite suppressants _

BL003-049-HDAC3 # HDAC1 Eraser HDAC inhibitor Epigenetic regulator
BRD-K59915259 HTR7 Family A GPCR _ _

Etoposide # MMP2 Protease Inhibits DNA synthesis _
Plumbagin # EP300 Writer Augments immune response _
Vorinostat HDAC3 Eraser HDAC inhibitor Epigenetic regulator
BG-1009 # HDAC1 Eraser HDAC inhibitor Epigenetic regulator

p-Azido-PE-TFMPP # HTR1A Family A GPCR _ 5HT1A receptor labeling
Pyrvinium # AR Nuclear receptor Anthelmintic agent which acts to kill pinworms _

SKF-83959 # DRD1/DRD2 Family A GPCR Acts as an agonist at the D1-D2 dopamine receptor _
Ionomycin # CES2 Enzyme Increases calcium ion permeability of cell membrane _

Niguldipine # ADRA2C Family A GPCR Inhibits calcium influx through cellular membranes _
BG-1016 # HDAC1/HDAC2/HDAC3 Eraser HDAC inhibitor Epigenetic regulator

BRD-A78236793 # DRD2 Family A GPCR _ _
Spiperone # HTR2B Family A GPCR Blocks dopamine action _
Mevastatin # HMGCR Oxidoreductase Inhibit the growth of bacteria _

JS-K # FNTA/FNTB Enzyme Nitric oxide donor, induces autophagy _
Ac-Leu-Leu-Nle-CHO # CAPN1/CAPNS1/CTSB Protease Inhibits cysteine endopeptidases _

BRD-K61894884 # # _ _ _ _
BRD-K47535255 # CNR1/CNR2 Family A GPCR Cannabinoir receptor _

Terreic-acid-(-) # CYP19A1 Cytochrome P450 Inactivates MurA by covalently attaching to Cys115 _
BRD-K32307229 # HDAC2/HDAC6/HDAC8 Eraser HDAC inhibitor Epigenetic regulator
BRD-K06209536 # IDO1 Enzyme Aminophenol urease inhibitors _

Rotenone # # MT-ND4/HTR6/CYP2C19 Oxidoreductase/Family A GPCR/Cytochrome P450 Mitochondrial NADH:ubiquinone reductase inhibitor _
Suramin # # HDAC3 Eraser Blocks binding of growth factors _
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