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Abstract

Metagenomic methods are an important tool in the life sciences, as they enable simultaneous
characterisation of all microbes in a community without time-consuming and bias-inducing culturing.
Metagenome-assembled genome (MAG) binning methods have emerged as a promising approach to
recover individual genomes from metagenomic data. However, MAG binning has not been well
assessed for its ability to recover mobile genetic elements (MGEs), such as plasmids and genomic
islands (GIs), that have very high clinical/agricultural/environmental importance. Certain antimicrobial
resistance (AMR) genes and virulence factor (VF) genes are noted to be disproportionately associated
with MGEs, making studying their transmission a public health priority. However, the variable copy
number and sequence composition of MGEs relative to the majority of the host genome makes them
potentially problematic for MAG binning methods. To systematically investigate this, we simulated a
low-complexity metagenome comprising 30 GI-rich and plasmid-containing bacterial genomes. MAGs
were then recovered using 12 current prediction pipelines and evaluated for recovery of MGE-
associated AMR/VF genes. Here we show that while 82-94% of chromosomes could be correctly
recovered and binned, only 38-44% of GIs were recovered and, even more notably, only 1-29% of
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plasmid sequences were found. Most strikingly, no plasmid-borne VF or AMR genes were recovered
and within GIs, only between 0-45% of AMR or VF genes were identi�ed. We conclude that short-read
MAGs are largely ine�ective for the analysis of mobile genes, including those of public-health
importance like AMR and VF genes. We propose that microbiome researchers should instead
primarily utilise unassembled short reads and/or long-read approaches to more accurately analyse
metagenomic data

Main

Metagenomics, the sequencing of DNA from within an environmental sample, is widely used to
characterise the functional potential and identity of microbial communities [1,2]. These approaches
have been instrumental in developing our understanding of the distribution and evolutionary history
of AMR genes [3,4,5], as well as tracking pathogen outbreaks [6]. Although long-read DNA
technologies (e.g., Oxford Nanopore [7], PacBio [8]) are now being used for metagenomic sequencing
[9,10], high-throughput sequencing of relatively short reads (150-250bp) in platforms such as the
Illumina MiSeq still dominates metagenomics. These reads can be directly analysed using reference
databases and a variety of homology search tools (e.g., [11,12,13,14]). Since these reads are shorter
than most genes, however, read-based methods provide very little information about their genomic
organisation. This lack of contextual information is particularly problematic in the study of AMR genes
and VFs as the genomic context plays a role in function [15], selective pressures [16], and likelihood of
lateral gene transfer (LGT) [17].

Sequence assembly using specialised metagenomic de Bruijn graph assemblers (e.g., metaSPAdes
[18], IDBA-UD [19], and megahit [20]) is often used to try to recover information about genomic
context [21]. To disentangle the resulting mix of assembled fragments, there has been a move to
group these contigs based on the idea that those from the same source genome will have similar
relative abundance and sequence composition [22]. These resulting groups or “bins” are known as
metagenome-assembled genomes (MAGs). A range of tools have been released to perform this
binning including CONCOCT [23], MetaBAT 2 [24], MaxBin 2 [25], and a tool which combines their
predictions: DAS Tool [26]. These MAG binning methods have been used in unveiling previously
uncharacterised genomic diversity [27,28,29], but metagenomic assembly and binning results in the
loss of some information. This compounded data loss means as little as 24.2-36.4% of reads [30,31]
and ~23% of genomes [31] are successfully assembled and binned in some metagenomic analyses.
The Critical Assessment of Metagenome Interpretation (CAMI) challenge’s (https://data.cami-
challenge.org/) Assessment of Metagenome BinnERs (AMBER) [32] benchmarks di�erent MAG
recovery methods in terms of global completeness and bin purity. However, to the best of our
knowledge, there has not been a speci�c assessment of MAG-based recovery of mobile genetic
elements (MGEs) like genomic islands (GIs) and plasmids, despite their health and research
importance.

Genomic islands (GIs) are clusters of genes that are known or predicted to have been acquired
through LGT events. GIs can arise following the integration of MGEs, such as integrons, transposons,
integrative and conjugative elements (ICEs) and prophages (integrated phages) [33,34]. They are of
high interest since VFs are disproportionately associated with mobile sequences [35] as well as certain
AMR genes [36,37]. GIs often have di�ering nucleotide composition compared to the rest of the
genome [33], a trait exploited by GI prediction tools such as SIGI-HMM [38], IslandPath-DIMOB [39],
and integrative tools like IslandViewer [40]. GIs may also exist as multiple copies within a genome [41]
leading to potential assembly di�culties and biases in the calculation of coverage statistics.

Plasmids are circular or linear extrachromosomal self-replicating pieces of DNA with variable copy
numbers and repetitive sequences [42,43]. Similar to GIs, the sequence composition of plasmids are
often markedly di�erent from the genome with which they are associated [44,45]. Plasmids are also
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of high interest as a major source of the lateral dissemination of AMR genes throughout microbial
ecosystems [36,46].

These varying composition and relative abundance features mean that GIs and plasmids pose
signi�cant challenges in MAG recovery. As these MGEs are key to the function and spread of
pathogenic traits such as AMR and virulence, and with MAG approaches becoming increasingly
popular within microbial and public-health research, it is both timely and vital that we assess the
impact of metagenome assembly and binning on the recovery of these elements. Therefore, to
address this issue we performed an analysis of GI and plasmid (and associated AMR/VF genes)
recovery accuracy across a set of 12 state-of-the-art methods for short-read metagenome assemblies.
We show that short-read MAG-based analyses are not suitable for the study of mobile sequences.

Results

Recovery of Genomic Elements

Chromosomes

The overall ability of MAG methods to recover the original chromosomal source genomes varied
widely. We considered the “identity” of a given MAG bin to be that of the genome that comprises the
largest proportion of sequence within that bin. In other words if a bin is identi�ably 70% species A and
30% species B we consider that to be a bin of species A. Ideally, we wish to generate a single bin for
each source genome consisting of the entire genome and no contigs from other genomes. Some
genomes are cleanly and accurately binned regardless of the assembler and binning method used
(see Fig. 1). Speci�cally, greater than 90% of Streptomyces parvulus (minimum 91.8%) and Clostridium
baratii (minimum 96.4%) chromosomes are represented in individual bins across all methods.
However, no other genomes were consistently recovered at >30% chromosomal coverage across
methods. The three Streptococcus genomes were particularly problematic with the best recovery for
each ranging from 1.7% to 47.49%. Contrary to what might be expected, the number of close relatives
to a given genome in the metagenome did not clearly a�ect the MAG coverage (Fig. S1).

Figure 1:  Top genome coverage for input genomes across MAG binners. Each dot represents the coverage of a
speci�ed genome when it comprised the plurality of the sequences in a bin. If a genome did not form the plurality of
any bin for a speci�c binner-assembler pair no dot was plotted for that genome and binner-assembler. The binning tool
is indicated by the colour of the dot as per the legend. Genomes such as Clostridium baratti were accurately recovered
across all binner-assembler combinations whereas genomes such as Streptococcus macedonicus were systematically
poorly recovered.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.03.31.997171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.997171
http://creativecommons.org/licenses/by-nc/4.0/


In terms of the impact of di�erent metagenome assemblers, megahit resulted in the highest median
chromosomal coverage across all binners (81.9%) with metaSPAdes performing worst (76.8%) (Fig. 2
A). In terms of binning tools, CONCOCT performed very poorly with a median 26% coverage for top hit
per bin, followed by maxbin2 (83.1%), and MetaBAT2 (88.5%). It is perhaps unsurprising that the best-
performing binner in terms of bin top hit coverage was the metabinner DASTool that combines
predictions from the other 3 binners (94.3% median top hit chromosome coverage per bin; (Fig. 2 A)).

Figure 2:  Overall binning performance for every combination of metagenome assembler (as indicated by pane titles)
and MAG binning tool (x-axis and legend colours). Diamonds in the plots represent outliers (greater or lower than the
interquartile range marked by the error bars) and the boxes represent the lower quartile, median, and upper quartile
respectively. (A) Chromosomal coverage of the most prevalent genome in each bin across binners and metagenome
assemblies. Of the 3 assemblers, megahit resulted in the highest median chromosomal coverage (y-axis) across all
binners (colored bars) at 81.9% with metaSPAdes performing the worst (76.8%). Of the 4 binners, CONCOCT (red)
performed poorly with a median coverage, followed by maxbin2 (blue), MetaBAT2 (purple) and DASTool (green)
performing the best. (B) Distribution of bin purity across assemblers and binners. The total number of genomes present
in a bin at >5% coverage (y-axis) was largely equivalent across assemblers (x-axis). For the binning tools, maxbin2 (blue)
produced nearly twice as many bins containing multiple species compared to CONCOCT (red), MetaBAT2 (purple) and
DASTool (green), which all produced chimeric bins at roughly the same rate.

Bin purity, i.e. the number of genomes present in a bin at >5% coverage, was largely equivalent across
assemblers, with a very marginally higher purity for IDBA. Across binning tools maxbin2 proved an
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exception with nearly twice as many bins containing multiple species as the next binner (Fig. 2 B). The
remaining binning tools were largely equivalent, producing chimeric bins at approximately the same
rates. Unlike coverage, purity was strongly a�ected by the number of close relatives in the
metagenome to a given input genome. Speci�cally, the closer the nearest relative the less pure the bin
(Fig. S2).

Plasmids

Regardless of method, a very small proportion of plasmids were correctly grouped in the bin that was
principally composed of chromosomal contigs from the same source genome. Speci�cally, between
1.5% (IDBA-UD assembly with DASTool bins) and 29.2% (metaSPAdes with CONCOCT bins) were
correctly binned at over 50% coverage. In terms of metagenome assembly, metaSPAdes was by far
the most successful assembler at assembling plasmids with 66.2% of plasmids identi�able at greater
than 50% coverage. IDBA-UD performed worst with 17.1% of plasmids recovered, and megahit
recovered 36.9%. If the plasmid was successfully assembled, it was, with one exception, placed in a
MAG bin by maxbin2 and CONCOCT, although a much smaller fraction were correctly binned (typically
less than 1/3rd). Interestingly, the MetaBAT2 and DASTool binners were more conservative in
assigning plasmid contigs to bins; of those assigned to bins, nearly all were correctly binned (Fig. 3).

Figure 3:  The performance of metagenomic assembly and binning to recover plasmid sequences. Each plot represents
a di�erent metagenome assembler, with the groups of bars along the x-axes showing the plasmid recovery
performance of each binning tool when applied to the assemblies produced by that tool. For each of these 12
assembler-binner-pair-produced MAGs the grouped bars from left to right show the percentage of plasmids assembled,
assigned to any bin, and binned with the correct chromosomes. These stages of the evaluation are indicated by the bar
colours as per the legend. Across all tools the assembly process resulted in the largest loss of plasmid sequences and
only a small proportion of the assembled plasmids were correctly binned.

Genomic Islands

GIs displayed a similar pattern of assembly and correct binning performance as plasmids (Fig. 4).
Assembly of GIs with >50% coverage was consistently poor (37.8-44.1%) with metaSPAdes
outperforming the other two assembly approaches. For the CONCOCT and maxbin2 binning tools, all
GIs that were assembled were assigned to a bin, although the proportion of binned GIs that were
correctly binned was lower than for DASTool and MetaBAT2. DASTool, MetaBAT2 and CONCOCT did
not display the same precipitous drop between those assembled and those correctly binned as was
observed for plasmids. In terms of overall correct binning with the chromosomes from the same
genome the metaSPAdes assembly with CONCOCT (44.1%) and maxbin2 (43.3%) binners performed
best.
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Figure 4:  Impact of metagenomic assembly and MAG binning on recovery of GIs. GIs were recovered in a similarly poor
fashion to plasmids. Generally, <40% were correctly assigned to the same bin majorly comprised of chromosomal
contigs from the same source genome regardless of binning (x-axis) and assembly (panel) methods at >50% coverage.
metaSPAdes performed the best at assembling GIs (blue). Maxbin2 and CONCOCT placed GIs in a bin majority of the
time (orange) however a very small fraction was correctly binned (green). Generally, GIs were correctly binned better
than plasmids with DASTool, MetaBAT2 and CONCOCT.

AMR Genes

The recovery of AMR genes in MAGs was poor with only ~49-55% of all AMR genes predicted in our
reference genomes regardless of the assembly tool used, and metaSPAdes performing marginally
better than other assemblers (Fig. 5 A). Binning the contigs resulted in a ~1-15% loss in AMR gene
recovery with the CONCOCT-metaSPAdes pair performing best at only 1% loss and DASTool-megahit
performing the worst at 15% reduction of AMR genes recovered. Overall, only 24% - 40% of all AMR
genes were correctly binned. This was lowest with the maxbin2-IDBA-UDA pair (24%) and highest in
the CONCOCT-metaSPAdes pipe (40%).
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Figure 5:  Recovery of AMR genes across assemblers, binners, and genomic context. (A) The proportion of reference
AMR genes recovered (y-axis) was largely similar across assembly tools (panels as indicated by title) at roughly 50% with
metaSPAdes performing marginally better overall. Binning tools (x-axis) resulted in a small reduction in AMR genes
recovered (orange), however only 24-40% of all AMR genes were correctly binned (green). metaSPAdes-CONCOCT was
the best performing MAG binning pipeline. (B) Percent of correctly binned AMR genes recovered by genomic context.
MAG methods were best at recovering chromosomally located AMR genes (light blue) regardless of metagenomic
assembler or binning tool used. Recovery of AMR genes in GIs showed a bigger variation between tools (light green).
None of the 12 evaluated MAG recovery methods were able to recover plasmid located AMR genes.

Moreover, focusing on only the AMR genes that were correctly binned (Fig. 5 B) we can evaluate the
impact of di�erent genomic contexts (i.e. chromosomal, plasmid, GI). Across all methods only
30%-53% of all chromosomally located AMR genes (n=120), 0-45% of GI located AMR genes (n=11) and
none of the plasmid-localised AMR genes (n=20) were correctly binned.

Virulence Factor Genes

We also examined the impact of MAG approaches on recovery of virulence factor (VF) genes as
identi�ed using the Virulence Factor Database (VFDB). We saw a similar trend as AMR genes (Fig. 6 A).
Between 56% and 64% of VFs were identi�able in the metagenomic assemblies (with megahit
recovering the greatest proportion). The binning process further reduced the number of recovered
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VFs by 4-26% with DASTool-megahit performing the worst (26% reduction) and CONCOCT-
metaSPAdes performing the best (4% reduction). Unlike AMR genes, the majority of VF genes assigned
to a bin were assigned to the correct bin (i.e. that bin largely made up of contigs from the same input
genome). Overall, CONCOCT-metaSPAdes again performed best with 43% of all VFs correctly assigned.

Figure 6:  Recovery of VF genes across assemblers, binners, and genomic context. (A) Percent of reference virulence
factor (VF) genes recovered across assemblers and binners. The proportion of reference VF genes recovered (y-axis)
exhibited a similar trend as AMR genes. Recovery was greatest after the assembling stage (blue), with megahit
performing best. Binning tools resulted in a larger reduction in VF genes recovered (orange) compared to AMR genes.
However, in the majority of cases, VF genes that are binned are correctly binned (green). metaSPAdes-CONCOCT was
again the best performing pair. (B) Percent of correctly binned VF genes recovered in each genomic region.
Metagenome assembled genomes (MAGs) were again best at recovering chromosomally located VF genes (light blue),
able to correctly bin majority of chromosomally located VFs. GIs recovered again performed very poorly (light green) and
again none of the plasmid located AMR genes (orange) was correctly binned.

As with AMR genes, the genomic context (chromosome, plasmid, GI) of a given VF largely determined
how well it was binned (Fig. 6 B). The majority (73%-98%) of all chromosomally located VF genes
(n=757) were correctly binned. However, 0-16% of GI-localised VF genes (n=809) and again none of the
plasmid-associated VF genes (n=3) were recovered across all 12 MAG pipelines.
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Comparisons of Rates of Loss

We combined the performance metrics for Figs. 3, 4, 5, and 6 to compare the rates of loss of
di�erent components (see Fig. S4). This highlighted that genomic components (GIs and plasmids) and
plasmids in particular are lost at a disproportionately higher rate than individual gene types during
MAG recovery.

Discussion

In this paper, we evaluated the ability of metagenome-assembled genome (MAG) binning methods to
correctly recover mobile genetic elements (MGEs; i.e. GIs and plasmids) from metagenomic samples.
Overall, chromosomal sequences were binned well (up to 94.3% coverage, with perfect bin purity
using megahit-DASTool) however closely related genomes were consistently cross-contaminated with
other sequences (e.g. Streptococcus species in Fig. S1, S2). Given the importance of MGEs in the
function and spread of pathogenic traits, it is particularly noteworthy that regardless of MAG binning
method, plasmids and GIs were disproportionately lost compared to core chromosomal regions. At
best (with metaSPAdes and CONCOCT) 29.2% of plasmids and 44.1% of GIs were identi�able at >50%
coverage in the correct bin (i.e. grouped with a bin that was mostly made up of contigs from the same
genome). While some MGEs were likely recovered in more partial forms (<50% coverage), use of these
by researchers interested in selective pressures and lateral gene transfer could lead to inaccurate
inferences. This poor result is congruent with the intuition that the divergent compositional features
and repetitive nature of these MGEs is problematic for MAG methods. The particularly poor plasmid
binning performance is likely attributable to the known di�culties in assembly of plasmids from
short-read data [47]. Therefore, binning e�ciency might improve with use of long-read sequencing or
assembly methods optimised for recovering plasmids [47] (such as SCAPP [48]). Despite its lower
e�ective sequencing depth and higher error rates, incorporating long-read sequencing has been
shown to improve overall MAG binning [49] and facilitate metagenomic characterisation of plasmids
[50]. Further research is needed to fully characterise the performance of di�erent long-read protocols
on the accuracy of recovering MGEs in metagenomic samples.

With the growing use of MAG methods in infectious disease research (e.g., [51,52,53,54,55]) and the
public-health importance of the LGT of AMR and VF genes, we also speci�cally evaluated the binning
of these gene classes. The majority of these genes were correctly assembled across assemblers but
were either not assigned or incorrectly assigned to MAG bins during binning. At best across all
binners, 40% of all AMR genes and ~63% of VF genes (CONCOCT-metaSPAdes) present in the
reference genomes were assigned to the correct MAG. While a majority of chromosomally located VF
genes (73-98%) and AMR genes (53%) were binned correctly, only 16% of GI VFs (n=809), 45% of GI
AMR genes (n=11), and not a single plasmid associated VF (n=3) or AMR gene (n=20) were correctly
binned. This included critical high-threat MGE-associated AMR genes such as the KPC and OXA
carbapenemases. One potential caveat of this is that some AMR genes and VFs may no longer be
detectable in MAGs due to issues with ORF prediction (see suppl. discussion & Fig. S3). Previous
studies have observed that ORF predictions in draft genomes are more fragmented, which can lead to
downstream over- or under-annotation with functional labels depending on the approach used [56].
Although not yet developed, methods that combine the assembly/binning pipelines tested here with
read-based inference would give a better sense of which functions are potentially being missed by the
MAG reconstructions.

Our simulated metagenomic community comprised 30 distinct bacterial genomes with varying
degrees of relatedness. While this diversity can be representative of certain clinical samples
[57,58,59], other environments with relevance to public health such as the human gut, soil, and
livestock can have 100-1000s of species [60,61,62,63]. Consequently our analysis likely over-
represents the e�ectiveness of the methods tested in a public-health setting. Metagenomic simulation
is also unlikely to perfectly represent the noise and biases in real metagenomic sequencing but it does

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.03.31.997171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.997171
http://creativecommons.org/licenses/by-nc/4.0/


provide the ground-truth necessary for evaluation [32,64]. This simulation approach, combined with
the development of an MGE/AMR-focused mock metagenome (similarly to the mockrobiota initiative
[65]), could provide a key resource to develop and validate new binning approaches and di�erent
sequencing strategies.

Conclusions

This study has shown that MAG-based approaches provide a useful tool to study a bacterial species’
core chromosomal elements, but have severe limitations in the recovery of MGEs. The majority of
these MGEs will either fail to be assembled or be incorrectly binned. The consequence of this is the
disproportionate loss of key public-health MGE-associated VFs and AMR genes. As many of these
clinically relevant genes have a high propensity for lateral gene transfer between unrelated bacteria
[35,36] it is critical to highlight that MAG approaches alone are insu�cient to thoroughly pro�le them.
Within public-health metagenomic research it is vital we utilise MAGs in conjunction with other
methods (e.g. targeted AMR [66], long-read sequencing, plasmid specialised assembly approaches
[48], and read-based sequence homology search [11]) before drawing biological or epidemiological
conclusions.

Methods

In keeping with FAIR principles (Findable, Accessible, Interoperable, Reusable data), all analyses
presented in this paper can be reproduced and inspected with the associated github repository
github.com/fmaguire/MAG_gi_plasmid_analysis and data repository osf.io/nrejs/.

Metagenome Simulation

Thirty RefSeq genomes were selected using IslandPath-DIMOB [39] GI prediction data collated into
the IslandViewer database www.pathogenomics.sfu.ca/islandviewer [40] (Supplemental Table 1). The
selected genomes and associated plasmids (listed in Supplemental Table 2 and deposited at
osf.io/nrejs/ under “data/sequences”) were manually selected to satisfy the following criteria:

1. 10 genomes with 1-10 plasmids.

2. 10 genomes with >10% of chromosomal DNA predicted to reside in GIs.

3. 10 genomes with <1% of chromosomal DNA predicted to reside in GIs.

In accordance with the recommendation in the CAMI challenge [67] the genomes were randomly
assigned a relative abundance following a log-normal distribution (μ = 1, σ = 2). Plasmid copy number
estimates could not be accurately found for all organisms. Therefore, plasmids were randomly
assigned a copy number regime: low (1-20), medium (20-100), or high (500-1000) at a 2:1:1 rate. Within
each regime, the exact copy number was selected using an appropriately scaled gamma distribution
(α = 4, β = 1) truncated to the regime range.

Finally, the e�ective plasmid relative abundance was determined by multiplying the plasmid copy
number with the genome relative abundance. The full set of randomly assigned relative abundances
and copy numbers can be found in Supplemental Table 3. Sequences were then concatenated into a
single FASTA �le with the appropriate relative abundance. MiSeq v3 250bp paired-end reads with a
mean fragment length of 1000bp (standard deviation of 50bp) were then simulated using art_illumina
(v2016.06.05) [68] resulting in a simulated metagenome of 31,174,411 read pairs. The selection of
relative abundance and metagenome simulation itself was performed using the
“data_simluation/simulate_metagenome.py” script.
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MAG Recovery

Reads were trimmed using sickle (v1.33) [69] resulting in 25,682,644 surviving read pairs. The trimmed
reads were then assembled using 3 di�erent metagenomic assemblers: metaSPAdes (v3.13.0) [18],
IDBA-UD (v1.1.3) [19], and megahit (v1.1.3) [20]). The resulting assemblies were summarised using
metaQUAST (v5.0.2) [70]. The assemblies were then indexed and reads mapped back using Bowtie 2
(v2.3.4.3) [12].

Samtools (v1.9) was used to sort the read mappings, and the read coverage was calculated using the
MetaBAT2 accessory script (jgi_summarize_bam_contig_depths). The three metagenome assemblies
were then separately binned using MetaBAT2 (v2.13) [24], and MaxBin 2 (v2.2.6) [25]. MAGs were also
recovered using CONCOCT (v0.4.2) [23] following the recommended protocol in the user manual.
Brie�y, the supplied CONCOCT accessory scripts were used to cut contigs into 10 kilobase fragments
(cut_up_fasta.py) and read coverage calculated for the fragments (CONCOCT_coverage_table.py).
These fragment coverages were then used to bin the 10kb fragments before the clustered fragments
were merged (merge_cutup_clustering.py) to create the �nal CONCOCT MAG bins
(extra_fasta_bins.py). Finally, for each metagenome assembly the predicted bins from these three
binners (Maxbin2, MetaBAT 2, and CONCOCT) were combined using the DAS Tool (v1.1.1) meta-binner
[26]. This resulted in 12 separate sets of MAGs (one set for each assembler and binner pair).

MAG assessment

Chromosomal Coverage

The MAG assessment for chromosomal coverage was performed by creating a BLASTN 2.9.0+ [71]
database consisting of all the chromosomes of the input reference genomes. Each MAG contig was
then used as a query against this database and the coverage of the underlying chromosomes tallied
by merging the overlapping aligning regions and summing the total length of aligned MAG contigs.
The most represented genome in each MAG was assigned as the “identity” of that MAG for further
analyses. Coverage values of less than 5% were �ltered out and the number of di�erent genomes that
contigs from a given MAG aligned to were tallied. Finally, the overall proportion of chromosomes that
were not present in any MAG was tallied for each binner and assembler.

In order to investigate the impact of close relatives in the metagenome on ability to bin chromosomes
we generated a phylogenetic tree for all the input genomes. Speci�cally, single copy universal
bacterial proteins were identi�ed in the reference genomes using BUSCO v4.0.2 with the Bacteria
Odb10 data [72]. The 86 of these proteins that were found in every reference genome were
concatenated and aligned using MAFFT v7.427 [73] and masked with trimal v1.4.1-3 [74]. A maximum-
likelihood phylogeny was then inferred with IQ-Tree v1.6.12 [75] with the in-built ModelFinder
determined partitioning [76]. Pairwise branch distances were then extracted from the resulting tree
using ETE3 v3.1.1 [77] and regressed using a linear model against coverage and contamination in
seaborn v0.10.0 [78].

Plasmid and GI Coverage

Plasmid and GI coverage were assessed in the same way. Firstly, a BLASTN database was generated
for each set of MAG contigs. Then each MAG database was searched for plasmid and GI sequences
with greater than 50% coverage. All plasmids or GIs which could be found in the unbinned contigs or
MAGs were recorded as having been successfully assembled. The subset of these that were found in
the binned MAGs was then separately tallied. Finally, we evaluated the proportion of plasmids or GIs
that were correctly assigned to the bin that was maximally composed of chromosomes from the same
source genome.

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.03.31.997171doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.31.997171
http://creativecommons.org/licenses/by-nc/4.0/


Antimicrobial Resistance and Virulence Factors Assessment

Detection of AMR/VF Genes

For the reference genomes, as well as 12 sets of MAGs, prodigal [79] was used to predict open
reading frames (ORFs) using the default parameters. AMR genes were predicted using Resistance
Gene Identi�er (RGI v5.0.0; default parameters) and the Comprehensive Antibiotic Resistance
Database (CARD v3.0.3) [80]. Virulence factors were predicted using the predicted ORFs and BLASTX
2.9.0+ [71] against the Virulence Factor Database (VFDB; obtained on Aug 26, 2019) with an e-value
cut-o� of 0.001 and a minimum identity of 90% [81]. Each MAG was then assigned to a reference
chromosome using the above mentioned mapping criteria for downstream analysis.

AMR/VF Gene Recovery

For each MAG set, we counted the total number of AMR/VF genes recovered in each metagenomic
assembly and each MAG and compared this to the number predicted in their assigned reference
chromosome and plasmids. We then assessed the ability for MAGs to correctly bin AMR/VF genes of
chromosomal, plasmid, and GI origin by mapping the location of the reference replicon’s predicted
genes to the location of the same genes in the MAGs.

Protein subcellular localisation predictions

We then sought to assess what the impact of a protein’s predicted subcellular localisation was on its
recovery and binning in MAGs. The MAG bins from megahit-DAS Tool assembler-binner combination
were selected (as generally best performing) and ORFs predicted using prodigal [79] as above.
Subcellular localisation of these proteins were then predicted using PSORTb v3.0 with default
parameters and the appropriate Gram setting for that bin’s assigned taxa [82].

Data availability

All datasets used or generated in this study are available at osf.io/nrejs

Code availability

All analysis and plotting code used is available at github.com/fmaguire/MAG_gi_plasmid_analysis
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Supplementary Information

Impact of Related Genomes on MAG

By generating a phylogeny of universal single copy genes in our input genomes we analysed the
relationship between the presence of closely related genomes and the ability of the di�erent MAG-
recovery methods to bin chromosomal sequences. Speci�cally, we regressed phylogenetic distance on
this phylogeny with per-bin chromosomal coverage (Fig. S1) and bin purity (Fig. S2). This identi�ed no
clear relationship between chromosomal coverage and the phylogenetic distance to the nearest
relative in the metagenome (Fig. S1), however, there did seem to be a negative correlation between
phylogenetic distance to closest relative and the purity of a MAG bin (Fig. S2). In other words, across
all methods, a MAG bin was more likely to have multiple genomes present if there were close
relatives.
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Figure S1:  Relationship between phylogenetic distance to closest neighbour input genome on genomic coverage in
MAG majority comprised of that taxa. Each dot represents the genomic coverage of a particular taxa and the branch
distance on an 86-protein concatenated phylogeny between that taxa and its nearest neighbour. Rows indicate the
binning software and columns the metagenomic assembler. Regression line is a simple linear model �tted in seaborn.
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Figure S2:  Relationship between phylogenetic distance to closest neighbour input genome on bin purity. Each dot
shows the number of other input genomes detectable in a given MAG bin in relation to the branch distance on an 86-
protein concatenated phylogeny between the majority taxa in that bin and its nearest neighbour.

Recovery of Speci�c Gene Content
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We explored the ability of di�erent approaches to �nd open reading frames (ORFs) within MAGs.
Overall, the total number of predicted ORFs in MAGs followed a similar trend (Fig. S3) as the
chromosomal coverage and purity (Fig. 2). Of the four binning tools, CONCOCT performed the worst,
�nding <30% of the number of ORFs in our reference genomes used to construct the synthetic data.
MetaBAT2 performed second worst at ~80%. DASTool recovered a similar number to our reference
and Maxbin2 detected 7-46% more genes. The Assembler method did not signi�cantly impact the
number of genes predicted with the exception of Maxbin2, in which IDBA_UD was the closest to
reference and metaSPAdes predicted 46% more ORFs. Given that there is reason to suspect that there
are some issues with the ORF calling in the MAGs. i.e. some tools produced more predicted ORFs than
reference, it could be the case that some of these sequences are present in the assemblies (with
errors/gaps), but are not being identi�ed as ORFs, or are broken into multiple ORFs, leading to issues
downstream labeling them correctly as AMR/VF genes. Regardless of di�erent tools producing a
di�erent number of ORFs, the recovery of AMR/VF is pretty consistent regardless of how many ORFs
are predicted.

Figure S3:  Predicted Gene Content. The total number of open reading frames (ORF) predicted followed the same trend
as chromosomal coverage and purity. The assemblers (colored bars) did not contribute to variability in the number of
ORFs detected. Of the 4 binners, CONCOCT recovered <30% of our reference genome ORFs. DASTool and MetaBAT2
predicted a similar number as our reference genomes.

Comparisons of Rates of Loss

Combining the performance metrics for Figs. 3, 4, 5, and 6 to compare the rates of loss of di�erent
components emphasises some of the observed patterns (see Fig. S4). This highlights that genomic
components (GIs and plasmids) and plasmids in particular are lost at a higher rate than individual
gene types during MAG recovery.
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Figure S4:  Comparison of rates of loss for di�erent genomic components and gene types across assemblers and
binning tools. Each line represents a di�erent component as indicated by the legend with assemblers indicated by row
and binning tool by column. This shows that regardless of approach genomic components (GIs and plasmids) are lost at
a higher rate than individual VF or AMR genes.
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