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Abstract 

 

Personalized medicine relies on successful identification of genome-wide variations that governs 

inter-individual differences in phenotypes and system level outcomes.  In Ayurveda, assessment 

of composite constitution types “Prakriti” forms the basis for risk stratification, predicting health 

and disease trajectories and personalized recommendations.  Here, we report a novel method for 

identifying pleiotropic genes and variants that associate with healthy individuals of three extreme 

and contrasting “Prakriti” constitutions through exome sequencing and state-of-the-art 

computational methods. Exome Seq of three extreme Prakriti types from 108 healthy individuals 

54 each from genetically homogeneous populations of North India (NI, Discovery cohort) and 

Western India (VADU, Replication cohort) were evaluated. Fisher’s Exact Test was applied 

between Prakriti types in both cohorts and further permutation based p-value was used for 

selection of exonic variants. To investigate the effect of sample size per genetic association test, 

we performed power analysis. Functional impact of differentiating genes and variations were 

inferred using diverse resources -Toppfun, GTEx, GWAS, PheWAS, UK Biobank and mouse 

knockdown/knockout phenotype (MGI). We also applied supervised machine learning approach 

to evaluate the association of exonic variants with multisystem phenotypes of Prakriti. Our 

targeted investigation into exome sequencing from NI (discovery)  and VADU (validation) 

cohorts datasets provide  ~7,000 differentiating SNPs. Closer inspection further identified a 

subset of SNPs (2407 (NI) and 2393 (VADU)), that mapped to an overlapping set of 1181 

genes. This set can robustly stratify the Prakriti groups into three distinct clusters with distinct 

gene ontological (GO) enrichments. Functional analysis further strengthens the potential 

pleiotropic effects of these differentiating genes/variants and multisystem phenotypic 

consequences. Replicated SNPs map to some very prominent genes like FIG4, EDNRA, 

ANKLE1, BCKDHA, ATP5SL, EXOCS5, IFIT5, ZNF502, PNPLA3 and IL6R.  Lastly, 

multivariate analysis using random forest uncovered rs7244213 within urea 

transporter SLC14A2, that associate with an ensemble of features linked to distinct constitutions. 

Our results reinforce the concept of integration of Prakriti based deep phenotypes for risk 

stratification of healthy individuals and provides markers for early actionable interventions.  
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Background 

 

Precision medicine aims to stratify individuals based on endo-phenotypes and risk profiles, for 

early actionable interventions [1]. Methods are being evolved to identify biomarkers 

corresponding to phenotypes that could enable screening of target populations, predict 

progression and prognosis of illness, as well as enable differential therapeutic managements [1–

5]. Successful mapping of an individual’s genotype to phenotype and health trajectories in order 

to predict systemic outcomes is a challenge, as our understanding of the human phenomic 

architecture from genomic profiles is still in its infancy. Most of the Genome-Wide Association 

Studies (GWAS) for delineation of the genetic basis of common and complex diseases have been 

conducted on discernible traits; in the absence of comprehensive deeper phenotypes of 

multisystem attributes, much of the phenotype to genotype associations still remains to be 

uncovered [6]. Widespread overlap of GWAS SNP's association with seemingly unrelated 

diseases and phenotypes [7,8] have prompted Phenome Wide Association Studies (PheWAS) in 

Biobanks, Electronic Health Records (EHR) as well as longitudinal cohorts [9–13]. PheWAS has 

uncovered many variants that exhibit pleiotropic effects and offers to identify disease gene 

networks, novel phenotypic associations of drugs side effects and leads for drug repurposing 

[14–17] . The success in uncovering phenotype-phenotype connectivity in PheWAS depends on 

the extent and diversity of captured features, as well as, the co-occurrence of the phenotypes in 

the EHRs and cohorts [18]. Thus even if the cohort size in PheWAS might be in millions with 

significant GWAS associations, the subsequent genotype-phenotype associations of the variants 

are in relatively smaller sample sizes. It is being felt that extending the GWAS to systems’ level 

with deeper phenotypes and composite traits can accelerate predictive marker discoveries [6,19]. 

Exome sequencing of extreme phenotypes in smaller sample sizes (i.e. hundreds) is also being 

used as another approach to identify variants with larger phenotypic effects in single attributes or 

for variable outcomes [20–24]. 

 

Ayurveda, the oldest documented system of personalized medicine, provides a rich repertoire of 

phenotypic descriptions for a comprehensive assessment of an individual’s constitution Prakriti 

types [25,26].We have previously organized these descriptions into a questionnaire of ~150 

attributes to predict an individual Prakriti type [27,28]. Knowledge of Prakriti is fundamental in 

Ayurveda for the prediction of an individual health and disease trajectory [25], as well as for 

personalized management and therapy [27,28]. The three basic Prakriti types are Vata (V), Pitta 

(P) and Kapha (K), which give rise to seven constitution types (V, P, K, VP, VK, KP, VKP). The 

three basic Prakriti types (V, P or K only) comprise nearly 10% of the population [25]. 

 

They display extreme phenotypic variations, with highly contrasting drug responses and disease 

susceptibilities [25,27]. Unsupervised machine learning and advanced statistical approaches on 

phenotypes of healthy individuals of extreme Prakriti types have been used to validate the 

existence of Prakriti specific phenotype-phenotype connectivity [29]. Studies have also provided 
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evidence for differences at different hierarchies of genetic, epigenetic, biochemical and 

microbiome between Prakriti types [28–33]. Using this approach, we have previously identified 

predictive markers in EGLN1, a gene linked to high altitude adaptation [32,34]. Allelic 

association of   EGLN1 to the hemostasis related platelet glycoprotein, von Willebrand factor 

(VWF) could explain thrombotic outcomes in high altitude hypoxic conditions for specific 

Prakriti types [32,34]. These studies effectively support the application of using the Prakriti 

phenotype scaffolds to identify key genetic features that govern systemic outcomes. Eventually, 

these leads serve as important biomarkers for pre-screening individuals prior to exposure, and 

also for targeted interventions. 

 

We hypothesize that exome sequencing of healthy individuals of basic Prakriti types could 

enable discovery of variants with pleiotropic and penetrant effects. Here, we report the results 

from an in-depth exome sequencing analysis of 108 healthy individuals of basic constitution 

types across two genetically homogenous cohorts. Our analysis reveal significant exome-wide 

genetic differences between the Prakriti types, which are largely in line with the earlier reports. 

Importantly, we identified a set of 1181 overlapping genes that can robustly segregate the 

Prakriti types into three distinct clusters, in both the cohorts. Notably, a larger proportion of 

these differentiating variants are already reported in GWAS and PheWAS including the UK 

Biobank. Lastly, by multivariate analysis using random forest, we also demonstrate how some of 

the differentiating genotypes can predict an ensemble of phenotypes that distinguish Prakriti. 

This study provides a unique framework for enriching genetic markers associated with composite 

phenotypes that may be utilized for effective risk stratification of healthy individuals. 

 

Results 

 

Similar patterns of exonic differences amongst Prakriti types with significant overlap of 

genes between the cohorts 

 

Recent reports suggest the utilization of exome sequencing in extreme phenotypes with unique 

attributes, as an alternative approach for the identification of highly penetrant genetic variants. 

We utilized this approach to comprehensively understand the underlying distribution of genetic 

variants in individuals with extreme composite and contrasting Prakriti types, from  two 

genetically homogeneous cohorts (NI and VADU). A thorough investigation of this exome 

sequencing datasets revealed a total of 2,14,844 and 2,20,598 variants in NI and VADU cohorts, 

respectively (refer to the material and methods section). Comparative analysis assessing the 

distribution of the differentiating variants across the genic region revealed near similar 

distributions across both cohorts ruling out any bias in sequencing (Supplementary Fig.1, 

Additional File 2). Interestingly, about 50% of the differentiating variations map to exonic 

regions with a significant fraction in 3'UTRs (Supplementary Fig.1, Additional File 2). Further 

investigation of the variants that differ amongst Prakriti groups (V vs P, V vs K, and P vs K) led 
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to the identification of 6534 unique variations (3749 genes) in NI and 7050 (3941 genes) in 

VADU (Supplementary Table 1, Additional File 1). Noteworthy, a total of 1181 genes with 472 

identical SNPs were observed to be replicated between Prakriti groups across both cohorts 

(Supplementary Table 2, Additional File 1). Amongst these, 110 identical SNPs from 87 genes 

have similar profiles of frequency differences between Prakriti types e.g. in a V vs K 

comparison, a profile of V+K- represents higher alternate allele frequency in Vata compared to 

Kapha in both cohorts, despite the significant differences in frequency in the background 

population between the cohorts (Supplementary Table 1, Additional File 1).  

Population sub-stratification based on Prakriti differentiating SNPs 

 

To evaluate if the identified Prakriti differentiating SNPs alone can sub-classify the population 

we first performed a Principal Component Analysis (PCA) with 2407 (NI) & 2393 (VADU) 

significant SNPs from 1181 replicated genes. The analysis revealed three distinct clusters for 

Vata, Pitta, and Kapha in both cohorts. Retaining the tag SNPs within the cohorts  based on 

linkage disequilibrium (LD) still provided three distinct, albeit highly segregated clusters with a 

minimal set of 1605 (NI) SNPs and 1456 (VADU) SNPs. Importantly, Principal Component 

Analysis with the overlapping 472 SNPs or the 110 SNPs with identical profiles did not provide  

such clear demarcation (Supplementary Fig. 3, Additional File 2). 

Functional analysis revealed distinct biological processes in Prakriti groups across the 

cohorts 

Next we asked whether there were any shared patterns of functional enrichments that 

differentiate the Prakriti types. Functional analysis using Gene Ontologies (GO) with the genes 

harboring differentiating SNPs in the three Prakriti groups comparisons revealed significant 

enrichments (p-value<10-2 without correction) (Fig. 2C) of biological processes in both the 

cohorts. For instance in (a) P vs K comparison we observed significant enrichment for specific 

ontologies such as Type I interferon and interferon-gamma mediated signaling pathways, cell 

movement  or subcellular compartment and biological adhesion; (b) in the case of V vs K 

comparison significant enrichments for GO categories related to the regulation of synapse 

activity, regulation of cell development and anatomical structure formation, and (c) lastly, 

comparison of V vsP revealed specific enrichment for the processes like neurogenesis, positive 

regulation of nucleocytoplasmic transport, processes related to cAMP and carbohydrate 

derivative biosynthesis. These results are largely in line with the previous reports utilizing the 

gene expression profiles of NI Indian cohort [28,35].  

Prakriti associated variants in common and complex diseases 

Next, we investigated whether the differentiating SNPs are reported to be associated with 

complex traits in the GWAS catalog. We observe 119 and 166 SNPs that differ significantly  

between healthy individuals in the NI and VADU cohorts in the GWAS catalog (Supplementary 
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Table 6, Additional File 1). Among these, six GWAS SNPs; rs8100241 (ANKLE1), rs2228145 

(IL6R), rs2645294 (WARS2), rs1129555 (GPAM), rs2236293 (TMEM8B) and rs11084300 

(NLRP12) were replicated in both the cohorts (Supplementary Table 6, Additional File 1). 

Besides, exact GWAS SNPs, we also observe ~11% of the differentiating SNPs in NI and 

VADU cohorts to be in strong LD (r 2>0.8) with GWAS SNPs. In many cases, different SNPs 

from the cohorts would tag the same GWAS SNPs or vice versa (Supplementary Table 7, 

Additional File 1). 

 The majority of these GWAS SNPs are also cis-eQTLs in GTEx data which allowed us to 

anchor the associated variants with expression across tissues and different Prakriti types. The 

differentiating variants between the Prakriti types that are reported in GWAS are also associated 

with multiple anthropometric traits of obesity, waist-to-hip Ratio (WHR), BMI and biochemical 

parameters that are measured in routine diagnostics for common diseases. This includes variants 

associated with BMI and WHR ratio adjusted for smoking behavior that differentiates  Vata from 

Kapha; obesity-related  traits and bone mineral density (TB-LM or TBLH-BMD) in Pitta and 

Kapha comparisons; and hand-grip strength, nose size, and hair morphology that differ between 

Vata and Pitta in both cohorts (Supplementary Table 6, Additional File 1). Variants associated 

with hematocrit parameters that are informative for health conditions related to anemia, infection 

and macrophage migration inhibitory factor levels are mostly seen in Vata comparisons 

(Supplementary Table 6, Additional File 1). SNPs were observed in genes associated with traits 

that are distinguishing features of the Prakriti types such as skin pigmentation, circadian rhythm, 

sleep functions, and sensory perceptions [27]. We also observe variants associated with disease 

susceptibilities which include allergy and infection prominently in VvsK and VvsP comparisons, 

inflammation in PvsK and VvsP and neuropsychiatric conditions in VvsK. Variants associated 

with a cerebrospinal fluid biomarker (rs2228145, IL6R )[36] differentiate Vata and Kapha in 

both cohorts. rs2228145 polymorphism in IL6R also influences the function of IL6- a pro and 

anti-inflammatory cytokine. Alternate allele -C- carriers of this SNP have decreased 

inflammatory response as well as the decreased prevalence of metabolic syndrome, diabetes, and 

atrial fibrillation.  

Amongst the replicated SNPs, NLRP12 variants share the same profiles in Prakriti comparisons. 

NLRP12 gene regulates the immune system's response to injury, toxins or invasion by 

microorganisms. This gene, unlike most NLR proteins, inhibits the release of certain molecules 

during inflammation. The replicated variant rs11084300 in NLRP12 is associated with 

macrophage migration inhibitory factor levels [37] and differentiates Vata from Pitta. Taken 

together this suggests that integration of Prakriti based methods in healthy individuals could 

complement genomics-based risk stratification for complex diseases for early interventions.  

Prakriti differentiating variants in PheWAS studies 
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Prakriti differentiating genes and SNPs that map to PheWAS catalog suggest plausible 

pleiotropic effects. We observe nine SNPs in NI and 12 in the VADU cohort that associate with 

multi-system phenotypes in the PheWAS catalog (Table 1). Also, 83 and 66 Prakriti 

differentiating SNPs are in strong LD with 45 and 43 PheWAS SNPs in NI and VADU cohort 

respectively (Supplementary Table 8, Additional File 1). The replicated GWAS SNP rs8100241 

in ANKLE1 that is associated with ovarian & breast cancer is in strong LD with rs2363956 from 

the PheWAS Catalog. This SNP associate with multiple phenotypes in the PheWAS catalog 

(Supplementary Fig. 4, Additional File 2). Five replicated SNPs from ATP5SL locus associated 

with height in the GWAS catalog are in strong LD with the PheWAS SNP rs17318596. The 

associated multi-system phenotypes include intestinal infection, viral infection, obesity, and 

other disorders of metabolic, endocrine and immune systems.  

Potential pleiotropic outcomes of differentiating variants on gene expression and 

developmental phenotypes 

 

The Mouse Genome Informatics  (MGI) database has earlier been used to study the multisystem 

effect (physiology and phenotype) of mutations in orthologous genes reported in GWAS [38]. 

We infer the potential consequence of the genotypic states of the variants through mining 

information vis-a-vis association with expression across diverse tissues in GTEx [39] and/or 

phenotypic consequence in orthologous gene knockdown/knockout in mouse [40]. More than 

80% of differentiating variations from both cohorts are eQTLs in GTEx data (Supplementary 

Table 10, Additional File 1) of which 30% to 70% map to multiple tissues, suggesting their 

potential effect at the system-wide level (Supplementary Fig. 5, Additional File 2). The 

differentiating SNPs are most enriched in nerve tibial, skin sun-exposed  lower leg, testis, thyroid 

and subcutaneous adipose tissue. A substantial fraction of the SNPs also affects adjacent genes. 

The proportion of eQTLs observed in each Prakriti comparison group is correlated (r2>0.98) 

between the cohorts.  

91 out of 110 replicated SNPs are eQTLs with 39 having effect size less than -0.4 or greater than 

0.4 and p-value<10-7(Supplementary Table 9, Additional File 1). We demonstrate examples of 

two replicated SNPs from IFIT5 and ZNF502 genes that map to anti-viral response 

(Supplementary Table 3, Additional File 1). IFIT5, a member of IFN-induced protein with 

tetratricopeptide repeats which enhances innate immune response during RNA virus infection 

differs significantly between Pitta and Kapha. Both the SNPs are eQTLs in GTEx with 

prominent effect sizes in diverse tissues like salivary gland, spleen and colonic tissue (Fig. 3A; 

Supplementary Fig. 6A, Additional File 2). The alternate allele -C- of rs304447 that associates 

with lower expression are significantly depleted in Pitta compared to Kapha. A similar pattern 

with respect to the immune response is observed in another replicated SNP rs56084453 that 

maps to ZNF502. The alternate allele of rs56084453 that associates with significant 

downregulation  of   ZNF502 have a prominent effect size in the spleen, salivary gland and ileum 

(Fig. 3B); Supplementary Fig. 6B, Additional File 2). This allelic state is fixed in Pitta in both 
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cohorts and differs from Kapha significantly. Both these observations suggest that variations 

associated with Pitta could be involved in enhanced anti-viral response. 

 

We had an important observation wherein region spanning 54 kbps with four replicated SNPs in 

overlapping genes; BCKDHA, TMEM91, EXOSC5 and ATP5SL that differ in a Prakriti specific 

manner. The frequency of the alternate alleles of rs4674 (BCKDHA), rs12602 (TMEM91) and 

rs10853751 (EXOSC5) and reference allele of rs2231940 (ATP5SL) are lower in Vata compared 

to Kapha in both the cohorts (Supplementary Table 3, Additional File 1). All these SNPs are 

eQTLs and exert effects on each other as well as adjacent genes across a large number of tissues 

(Fig. 3C-E)). Noteworthy, the Vata associated allelic state has a significant positive effect (p<10-

10 with effect size 0.89) on an interspersed gene (B3GNT8) in the brain cerebellum 

(Supplementary Table 9, Additional File 1). 

 

Out of the 87 genes with replicated SNPs and similar patterns of difference between the two 

cohorts, mouse knockdown/knockout phenotypes exist for 40 genes (Supplementary Table 12, 

Additional File 1). We used information on mouse phenotypes coupled with functional 

annotations of these genes in Toppfun to infer their involvement in biological and cellular 

processes and potential to affect different phenotypes in mouse orthologs. As seen in alluvial 

plots for the 40 genes (Fig. 4A), most of these genes could potentially impact processes at 

different functional hierarchies as well as multiple human phenotypes that are captured during 

Prakriti assessments. We further illustrate in detail the EDNRA gene, which encodes the receptor 

for endothelin-1, a peptide that plays a role in potent and long-lasting vasoconstriction. 

Variability in this gene is likely to impact a large number of cellular and physiological processes 

and affect functioning of different organs and systems.  These could manifest as syndromic 

features in healthy individuals that differentiate the Prakriti types (Fig. 4B). Similar to EDNRA, 

the other genes with large effect, SIX1, CHD5, FIG4 and HNRNPD are involved in number of 

cellular and biological processes and affect multisystem phenotypes (Fig. 4A). These include 

many anatomical features such as body frame, body build, skin texture, physiological attributes 

like metabolic patterns, voluntary and involuntary movements (Fig. 4B; Supplementary Fig. 7, 

Additional File 2). 

 

Extreme Prakriti types could identify variants with pleiotropic effects 

 

Next, we wanted to infer whether Prakriti associated GWAS variants could have pleiotropic 

effects like in PHEWAS studies. We inferred this through analysis of variant effects on 

expression in GTEx [39], phenotypes in mouse knockout/knockdown [40] and PheWAS catalog 

[12]. SNPs in ANKLE1 (rs8100241 & rs8108174) and ABHD8 that differ between Vata and 

Kapha are in LD with each other and maps to a modifier pleiotropic locus implicated in estrogen 

negative breast cancer in BRCA1 carriers and progression in ovarian cancer [41]. 

ANKLE1variations have been shown to have a negative effect on ABHD8 expression which in 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.24.059006doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059006


9 
 

turn enhances invasiveness [41]. In GTEx the differentiating SNPs in ANKLE1 is observed to 

lower the expression of ABHD8 significantly in breast mammary tissue, tibial artery and nerve, 

esophagus mucosa, skeletal muscle, subcutaneous adipose, skin in sun exposed lower leg and 

testis. The allelic variant in ANKLE1 linked to lower ABHD8 expression is over-represented in 

Vata. This suggests a more invasive molecular phenotype could be associated with Vata Prakriti. 

Further, ABHD8 knockdown phenotypes in mouse exhibit features such as decreased body 

length, bone mineral content and density, short tibia, lean body mass, hyperactivity and increased 

exploration in new environment. These features resonate with Vata phenotypes. The replicated 

SNP in ANKLE1 (rs8100241 & rs8108174) are also reported to be in LD with a PheWAS SNP 

(rs2363956) and besides neoplasms has been associated with phenotypic attributes such as mood 

disorders, loose joints, involuntary movements and Atrioventricular (AV) block (Supplementary 

Fig. 4, Additional File 2). 

 

A recent study conducted in four large cohorts with extensive health records (700,000) from 23 

& Me, UK Biobank, FINRISK, CHOP identified novel phenotypic association of 19 existing 

drug targets identified in GWAS[16]. A validated variant from this large scale study in PNPLA3 

(rs738409) was also observed to differ between Prakriti types in VADU cohort. The -G- allele of   

PNPLA3 is a potential drug target for alcohol-related cirrhosis, Non-Alcoholic Fatty Liver 

Disease (NAFLD) and hepatic steatosis. GWAS studies also associate with severe acne, high 

cholesterol, anti-cholesterol medication, gout and gallstones. The -G- allele is significantly over-

represented in Kapha and -C- allele in Pitta Prakriti. The traits that have been associated with the 

allelic states resonate with the phenotypic and susceptibility differences between Pitta and 

Kapha. Noteworthy, amongst them is severe acne that is a distinguishing feature of Pitta  Prakriti 

[28,35]. Recently, WES of NAFLD patients with extreme phenotypes reconfirmed the 

involvement of this variation in progression to fibrosis [42]. 

 

Another striking example was of the SNP rs2228145 in IL6R gene. Clinical trials of IL6 receptor 

blockade using antibodies, tocilizumab and sarilumab, have revealed aortic aneurysm and atopic 

dermatitis as notable side-effects [14]. Functional studies of this natural variant of IL6R  receptor 

have revealed that carriers (-A- allele, Asp328Ala) have lower expression of IL6R [43,44]. The -

A- allele of the IL6R variant has been associated with the risk of rheumatoid arthritis and the -C- 

allele with atopic dermatitis and allergic diseases in GWAS. A PheWAS study conducted on a 

million veterans program and replicated in UK Biobank and Vanderbilt biobank (800K) have 

reported new associations of aortic aneurysms as well as arthritis with the -A- allele and atopic 

dermatitis with the -C- allele [14]. We find that the -A- allele differentiates Vata from Pitta and 

Kapha in NI and VADU cohort respectively. Analysis in these genes, ANKLE1, ABHD8, 

PNPLA3, and IL6R suggests that Prakriti stratification could help segregate individuals with 

different disease outcomes and susceptibility. Thus, holds potential to identify individuals with 

minimal risk associated with IL6R antibody treatment for several chronic inflammatory 

conditions. 
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Genotypes to composite Prakriti types through phenotype feature space 

 

As Prakriti exhibits phenotype-phenotype connectivity, we investigated the plausible linkage of 

the differentiating SNPs with minimal features; and the power of minimal features to predict 

Prakriti types. We carried out a multivariate analysis using random forest [45] to infer potential 

interactions. This experiment allows us to decipher the likely dependency of SNPs through 

features on Prakriti types. With an error class rate set at 30% and despite our limited cohort set, 

we could identify important interactions with 84 (7.7%) and 99 (6.8%) SNPs in NI and VADU 

cohort, respectively, have linkage from genotype to Prakriti through features space 

(Supplementary Table 10, Additional File 1). Most SNPs 965 (88.6%; NI) and 1256 (86.7%; 

VADU) were not found to have direct association with features that can predict Prakriti types. 

Interestingly, 40 (3.7%) and 94 (6.5%) SNPs could be predicted using some features, but these 

features were inadequate in predicting Prakriti types. The complete list of SNPs with their 

predictive power with features (G2F) and corresponding features to Prakriti types (F2P) is 

provided (Supplementary Table 10, Additional File 1). 

 

One noteworthy observation was SNP rs7244213 in the urea transporter gene SLC14A2. The 

homozygous reference allele, and the heterozygous clearly distinguished attributes for 17 

features related to anatomical, physiological and physical activities (Fig. 5; Supplementary Fig. 

8, Additional File 2). This ensemble of features also differentiated Kapha from Pitta and Vata in 

the heterozygous state. These sets of features are the most distinguishing features of Kapha from 

Pitta and Vata groups as described in Ayurveda text (Supplementary Information). 

 

Discussion 

 

It is anticipated that identification of genetic variants with pleiotropic effects that can contribute 

to heterogeneity in health and disease outcomes will strengthen personalized medicine. 

Phenome-wide association studies (PheWAS), which analyze multiple phenotypes in relation to 

the genotype from genome-wide association studies have been successful in identifying such 

genetic variants. Here we outline a novel alternative to PheWAS approach: the identification of 

pleiotropic variants through analysis of multi-system composite phenotypes classified by 

Ayurveda as extreme constitution types, through exome sequencing. 

We wanted to explore whether this approach could help identify common variations that 

determine health and disease outcomes and link to composite phenotypes. Strength of our study 

includes use of in-depth composite and extreme phenotypes  and  small sample sizes. Since 

Ayurveda describes Prakriti on the basis of underlying biological variability, we investigated 

whether the genetic differences provide meaningful insights. We therefore studied the overall 

patterns of differences with respect to functional outcomes and links to biological descriptions of 
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Prakriti. A core set of differentiating SNPs from 1181 replicated genes could clearly distinguish 

the three groups in both the cohorts with 110 SNPs from 87 replicated genes having similar 

profiles in Prakriti comparisons. These genes govern different biological processes and are 

associated with multisystem attributes in mouse knockdowns/knockouts, few noteworthy ones 

being EDNRA, SIX1, FIG4 and KIF11. Many of these features overlap with phenotypic attributes 

that differentiate Prakriti types (Supplementary note; Supplementary Fig. 9, Additional File 2) 

that suggest inherent variability in these genes could confer phenotypic differences amongst 

Prakriti types. 

It is noteworthy that the three distinct Prakriti types cluster on the basis of 1181 replicated genes 

despite limited overlap in the SNPs. The Prakriti differentiating genes map to distinct biological 

processes of immune response, cell adhesion, motility, anatomical structure development, 

signaling and chemosensory perceptions across cohorts. This corroborates with our earlier 

observations on genome-wide expression differences amongst the Prakriti groups [28]. It also 

highlights the utility of such a phenotyping approach for sub-stratification in genetically diverse 

populations. When we anchor the likely effects of allelic variants on expression in GTEx we find 

80% of them to have substantial effects in multiple tissues. The patterns of tissue-specific 

enrichment of eQTLs are also similar between the cohorts. Taking a few examples of genes from 

enriched pathways we show how these differences could be meaningful for Prakriti specific 

outcomes. For instance, eQTL in genes from innate immune response pathways  such as IFIT5, 

ZNF502 suggests Pitta Prakriti individual might counter viral infections more efficiently [28]. In 

a recent study it has been shown that knockdown of ZNF502, limits replication of the human 

respiratory syncytial virus (RSV) [46]. The natural variation rs56084453 associated with lower 

expression of ZNF502 that is fixed in Pitta in both cohorts might, therefore, confer protection 

from recurrent viral infections (Supplementary Table 10, Additional File 1). 

 

Another noteworthy observation was a 54 Kbps region encompassing the replicated SNPs 

covering four genes, BCKDHA, TMEM91, EXOSC5 and ATP5SL that appears to have evolved 

for a functional requirement. This is retained as a haplotype in Prakriti groups and directions of 

expression of all the variants are also constitution specific (Fig. 3C, Supplementary Table 11, 

Additional File 1). All the eQTL variants from Vata  are associated with higher expression of   

B3GNT8 in the brain cerebellum, elevated levels of which govern the metastatic potential of 

many cancers most prominently glioma [47]. 

 

We make similar observations with respect to the other modifier locus harboring ANKLE1 and 

ABDH8  that is reported to be a pleiotropic locus governing variability in the progression of 

breast and ovarian cancer [41]. These observations suggest that sub-stratification in disease 

conditions using Prakriti methods might help identify endophenotypes for stratified 

interventions. 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.24.059006doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059006


12 
 

In our exome analysis we also observed a large number of SNPs amongst healthy individuals 

stratified into extreme Prakriti groups that had exact matches or were in LD with the GWAS and 

PheWAS associated variants. Our results suggests that estimation of genomic risk scores in 

Biobanks and prospective cohorts if carried out in conjunction with phenotypic stratification of 

Prakriti could enable identification of endo-phenotypes with different health and wellness 

management needs. Conditioning genetic association with Prakriti information in rheumatoid 

arthritis and pharmacogenetics have earlier highlighted the merit of such an approach [48]. 

 

Inferences of systemic effects of Prakriti differentiating variations from reported literature 

prompted us to further explore the interaction of genotypes using the wealth of phenotypic 

attributes and its connectivity that characterizes the Prakriti type. Random forest analysis using 

SNPs from replicated genes with the individual’s phenotypic features revealed cryptic genotype 

to phenotype links. An interesting observation was the variant in the urea transporter SLC14A2  

which is an important component of the hypothalamic-neurohypophyseal-renal axis that is 

involved in the maintenance of water balance during variations in water intake as well as in-utero 

during fetal development [49]. Amongst the osmoregulation related genes, SLC14A2 has been 

shown to be under adaptive evolution in cetaceans during evolutionary transition from a 

terrestrial to a hyperosmotic environment [50]. Further, the differentiating variation rs7244213 

has also been associated with hypertension in East Asians [51]. Genotypic states of this SNP in   

SLC14A2 associate with an ensemble of 17 features that distinguishes the three Prakriti types 

(Fig. 5; Supplementary Fig. 8, Additional File 2). Some of these phenotypes can also be 

attributed to the water balance function of this gene inclusive of amount of perspiration and body 

frame. This observation is important for biological understanding of Vata and Kapha functions 

reflected in Prakriti features governed by their dry and humid nature respectively. There are 

specific therapeutic strategies described in Ayurveda for restoring Vata-Kapha balance through 

the management of fluid balance [28,29]. This genotype-phenotypic association though 

extremely preliminary, provides a novel window to explore water balance disorders. Small-

molecule inhibitors against these urea channels are being proposed as a new class of aquaretics 

with potential for their usefulness in hyponatremic disorders [52]. Our observations suggest that 

such inhibitors might have variable requirements and outcomes amongst individuals of different 

Prakriti types. 

 

A limitation of the study may be the low sample size. However since this is a pilot study, we also 

estimated the power of study based on the allele frequencies as well as sample requirements for 

future adequately powered study designs (Supplementary Table 4, Additional File 1; 

Supplementary Fig. 2A-B, Additional File 2). Using different p-value cutoffs, simulation studies 

based on the frequency differences of the differentiating SNPs, we estimate substantial power if 

the studies are conducted even in 50 samples of each group (alpha=0.05) in both the cohorts. 

Given the composite nature and phenotypic architecture of Prakriti, we might need to evolve 

new methods for estimation of power and our observations though preliminary, would be useful 
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for such calculations. Noteworthy, power estimation methods are still not the state-of-the-art for 

PheWAS [12].  

 

Conclusion 

 

Sequencing of healthy individuals of extreme phenotypes of Prakriti has provided (a) a set of 

genes that can cluster Prakriti groups and have the potential to predict differences in disease 

progression, response to environmental triggers and therapeutic interventions (b) composite traits 

in constitution specific manner that could enable deep-phenotyping for stratification of healthy 

and diseased individuals. Further the genotype-phenotype connectivity in a Prakriti specific 

manner can be formalized through machine learning approaches. We anticipate that integration 

of this framework in existing case-control studies, Biobanks and prospective cohorts could 

increase the yield of genes with pleiotropic effects and provide an ensemble of features that 

enable identification of target populations for precision interventions. 

 

 

 

Materials and methods 

 

Sample description 

 

Exome study was carried out on healthy subjects of predominant Prakriti types identified from 

our two earlier studied cohorts. This include 108 (18 x 3 x 2) individuals with 18 each Vata (V),   

Pitta (P) and Kapha (K) in each cohort. An extensive protocol was followed for recruitment of 

subjects, clinical phenotyping, classification into predominant groups as well as establishment of 

genetic homogeneity as previously published [28,29]. 

 

These Prakriti types comprise 10% of the studied population, belong to the age group of 18-40 

years, exhibit differences with respect to 150 multisystem features that include anatomical and 

physical attributes as well as physiological and psychological responses [35]. Genetic 

homogeneity of the study cohorts and its relatedness to diverse Indian population was affirmed 

by principal component analysis using a set of 17675 SNPs that overlaps with the Indian 

Genome Variation Consortium (IGVC) diversity panel [53]. The study has been carried out as 

per protocols approved by institutional human ethics committee at CSIR-Institute of Genomics 

and Integrative Biology, Delhi and KEM Hospital Research Centre, Pune, India. 

 

Whole Exome Sequencing (WES) and Variant Calling 

 

Exome sequencing of 108 healthy subjects was carried out on Illumina HiSeq2000 platform 

using standard methods. GATK Best Practices Workflow was followed for processing 
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sequencing reads and calling variations. Variants with less than 50% genotyping call rates or 

quality scores less than 30 were removed prior to analysis. We used Vcftools 0.1.12 to convert 

genotypes in VCF format to Plink format for statistical analysis. Variants were annotated using 

Annovar [54] with novel variants indicated by their chromosomal position in version GRCh37. 

We carried out three pair-wise comparisons; Vata vs Pitta (V vs P), Pitta vs Kapha (P vs K) and 

Vata vs Kapha (V vs K) to identify differentiating variants. We used Fisher’s exact test (p-

value<0.05) implemented in PLINK (v 1.7). To assess whether the differences were Prakriti 

specific, we carried out permutation analysis by randomly shuffling the Prakriti labels ~50,000 

and ~80,000 times per SNP for NI and Vadu cohort respectively. The numbers of iterations were 

based on the number of significant SNPs in pair-wise comparison at FDR of 5%. The SNPs that 

were present in lower 5% distribution of p-values of the permuted set were retained. Profiles are 

indicated on the basis of alternate allele frequencies, for example, V-K+ indicate the lower 

frequency in Vata in V vs K comparison. 

 

As the study involves extreme and composite phenotypes that comprise 10% of the population, 

we anticipated adequate power in smaller sample sizes. However, no estimates of sample sizes, 

for an adequately powered study on extreme and composite types, that too involving only 

healthy individuals are available. We therefore estimated the power of the study based on the 

allele frequencies observed from our data on two cohorts from each comparison group (e.g.,Vata 

vs Kapha). We quantified power using a power.fisher.test function of statmod [55] R-package. 

Power estimations were done using simulations performed with increasing sample sizes; original 

sample numbers used for frequency estimation, 18, 50, 100, 500, 1000, 10,000, 50,000 

and100,000 with alpha of 0.05. Additionally, we estimated power with constant sample size 

(N=500) and varying alpha ranging from 10-2 to 10-12 for each SNP with their corresponding 

allele frequencies. 

 

Replication Analysis of Prakriti differentiating SNPs 

 

The extent  of replication was assessed at three different levels of genes (1) with identical and/or 

different SNPs as well as profiles (2) with identical SNPs having similar and/or different profiles 

(3) identical SNPs with exactly matching profiles in both cohorts. Principal component analysis 

(PCA) using EIGENSTRAT [56] was carried out to assess the extent of differentiation between 

the Prakriti on the basis of significant SNPs from only the replicated genes. Top 20 principal 

components were identified for variance estimation. 

 

Functional Annotation of differentiating variants 

 

Gene Ontology (GO) annotation of differentiating SNPs from each Prakriti group comparison 

was carried out using Toppfun[57] . The allele-specific  consequences were assessed using the 

Genotype-Tissue Expression (GTEx) [39]  Project v7 data. We queried for tissue-specific  cis-
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eQTLs (p-value<10-7& effect size < or >0.4). We also queried the SNPs for disease associations 

using (https://www.ebi.ac.uk/gwas/) GWAS catalog v1.0.2 (associations\_e93\_r2018-08-14). 

We used liftover to convert the exome coordinates (GRCh37) to GRCh38 coordinates. The South 

Asian (SAS) population in the 1000 genomes database was used for mapping GWAS SNPs in 

LD (r^2>0.8) with our variants using SNIPA [58]. The GWAS exact as well as proxy SNPs from 

the exome data were used to query PheWAS (p-value<0.05, uncorrected) catalog. Literature 

resources were also used for identifying variants with pleiotropic effects. 

 

To explore the links between variability in replicated gene with functions and   multisystem 

phenotypes, we curated the information from ToppGene Suite [57] and The Mouse Genome 

Database (MGD; http://www.informatics.jax.org) [40]. We categorized the processes into major 

groups of development & morphogenesis, physiological process, metabolic process, 

homeostasis, cellular process (nuclear activity and cytoplasmic activity), cellular phenotypes, 

transport and signaling , immune response, response to the stimulus, mechanotransduction, 

hemostasis, and circadian rhythm. The mouse phenotypes were grouped on the basis of 

anatomical, physiological, activity and behavior , and also the organs and tissues in which these 

were observed. Alluvial maps were generated using alluvial package [59]. 

 

Multivariate Analysis for exploring genotype to Prakriti links through phenotype feature 

space 

 

We carried out a multivariate analysis to assess whether the links to the differentiating SNPs to 

Prakriti are through the composite set of features that are used during assessment. We carried 

this analysis on 1181 replicated genes in both cohorts. After removing genotypes with missing 

values we used 1084 and 1449 SNPs from NI and VADU cohorts respectively. In the first step, 

we identified genotypes that could be explained through a composite set of minimal features 

(model genotype, predict genotype with features) with the least accuracy of 70% or more. These 

minimal set of features for a given SNP were used to predict the Prakriti types (model Prakriti, 

use minimal features to predict Prakriti) in the next step. The data were binned into following 

three plausible groups of SNPs which show: 

i) Complete linkage from genotype to minimal features and minimal features to 

Prakriti. 

ii) Partial linkage, where genotype could not be predicted by features, but feature to 

Prakriti linkage exist. 

iii) Partial linkage, where genotype could be predicted by minimal features, but these 

features could not predict Prakriti. 

 

We built classification models with random forest (RF) algorithm [45] to predict SNPs using the 

questionnaire and genotype data of both cohorts. The model building was performed 

independently for both cohorts. For a given SNP, genotype states (2 or 3) such as (A/A and T/T; 
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or A/A, A/T and T/T) were used as class (Y) and questionnaire data were used as features (X). 

We performed feature selection using the Boruta algorithm with 500 iterations [60]. For each 

model, we used 20000 decision trees and the number of variables to be sampled at each node 

(mtry), was set as default (square root of the total number of variables). Based on the class-error 

rate less than 30% in minimum of two classes, we filtered the SNPs and extracted their 

corresponding best features from the RF model. To understand the power of these features for 

Prakriti prediction apart from the genotype we built random forest models without feature 

selection with 20000 decision trees. 
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Main Figure Legends 

 

Fig. 1: Schematic of the overall study. (a) Extreme Prakriti individuals were identified from 

two cohorts that belong to Indo-European linguistic lineage from Delhi (NI) and Pune, 

Maharashtra (VADU). These populations are members of a genetic cluster of Indo-European 

populations in the Indian Genome Variation Consortium (IGV). (b) Stratification of healthy 

individuals within a population using deep Ayurvedic phenotyping. Prakriti classification is 

based on a comprehensive assessment of ∼150 attributes that include anatomical, physiological, 

physical and psychological features. The three contrasting Vata, Pitta and Kapha Prakriti groups 

exhibit different phenomic architecture. (c) Workflow of exome sequencing and analysis is 

depicted. (i) The numbers of healthy individuals of each Prakriti groups from each cohort along 

with background populations included in the exome study is given in parenthesis. (ii) & (iii) 

Functional annotations of differentiating variants were carried using; Toppfun for Biological 

process annotation and enrichment analysis; GWAS for disease associations, GTEx for 

identifying cis-eQTLs, anchored expression of allelic states and effects on different tissues; 

PheWAS catalog for association with multisystem phenotypes and MGI mouse 

knockdown/knockout resource (MGI) for links to multisystem developmental phenotypes. (d) 

Multivariate analysis using random forest was used for inferring links from genotypes to Prakriti 

phenotype through the feature space using genotypes of replicated SNPs. 

 

Fig. 2: Differentiation of Prakriti groups based on SNPs and biological processes in both 

cohorts. (a) Principal Component Analysis (PCA) plot depicts segregation of Prakriti groups 

into three distinct clusters on the basis of SNPs from replicated set of 1181 genes in (i) NI and 

(ii) Vadu cohort. (b) Bubble plot depicts enriched (p-value<0.001) biological processes that are 

shared between the cohorts in each pair-wise Prakriti comparison P vs K, V vs K and V vs P; 

size of the bubbles indicate the number of genes in each process. 

 

Fig. 3: Tissue-wise effect of replicated SNPs (with same profiles in both cohorts) on gene 

expression in GTEx v7 data. Violin plots of normalized expression across representative tissues 

are depicted. Effect size and bubble plots of expression across all GTEX tissues are provided in 

(Table S9 and Fig. S6). (a) Violin plots of rs56084453 genotypes of ZNF502. The alternate A 

allele is associated with downregulated transcripts. (b) Violin plot of rs304447 in IFIT5. The 

alternate allele C of rs304447 in IFIT5 is associated with its lower expression. Frequency of 
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alternate allele is significantly lower in Pitta group than Kapha. (c) (i) Schematic representation 

of a 54kb region in chromosome 19 harbouring multiple Vata and Kapha differentiating SNPs 

rs12602 (TMEM91), rs10853751 (EXOSC5), rs4674 (BCKDHA), rs2231940 (ATP5SL) in GTEx 

tissue that are replicated in both cohorts. (ii) Bubble heatmap depicts the significance and effect 

size of each of the eQTLs on multiple genes in the same locus. All the eQTLs have maximum 

effect on B3GNT8 across different tissues. Elevated levels of B3GNT8 have been shown to be 

associated with glioma. (iii) Violin plot depicts the effect of all the above SNPs on B3GNT8 

expression in cerebellum. 

 

Fig. 4:Alluvial plot representing potential impact of Prakriti associated genes on biological 

processes and mouse developmental phenotypes. (a) Alluvial map of 40 genes that have 

replicated SNPs with identical profiles in both cohorts. (b) Alluvial plot of EDNRA gene and its 

connectivity to various biological processes and mouse phenotypes suggests inherent variability 

in this key vascular endothelial receptor gene could have a multisystem impact. 

 

Fig. 5: Random forest (RF) analysis to probe the connectivity of genotype to Prakriti 

through features (deep phenotypes) captured in questionnaire. (a) Schematic of possible 

associations of genotype links to (i) features, (ii) Prakriti through features space or (iii) Prakriti 

that can be derived from existing data. (b) Schematic of the RF analysis. This was carried out for 

each genotypes (replicated SNPs) using∼150 features captured during Prakriti assessment. 

Based on the model performance of 70% overall accuracy, we selected our best models. (c) (i) 

Confusion matrix for the genotypes of rs7244213 based on RF model with17 best features. This 

SNP maps to a urea transporter SLC14A2 involved in osmoregulation. Feature importance plot of 

17 predictors of (ii) rs7244213 (SLC14A2) and (iii) Prakriti. Order of features is based on 

importance from the genotype model and serial number depicts the rank of these features in the 

Prakriti. (iv) Multi-Dimensional Scaling (MDS) plot derived from RF model using 17 predictors 

of rs7244213, to classify Prakriti. 
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Additional Files 1 

 

Supplementary Tables 

 

All the supplementary tables were uploaded at zenodo because of its large file size. 

 

1. Table S1:Prakriti differentiating significant SNPs annotation.xlsx. 

 

List of Prakriti differentiating significant (p<0.05) SNPs in NI and Vadu cohorts. 

 

URL: https://doi.org/10.5281/zenodo.3379895. 

 

2. Table S2: Replication NI and Vadu Cohorts.xlsx. 

 

List of Prakriti differentiating significant Genes (with or without replicated SNP) & SNPs (with 

or without replicated profiles) between NI and Vadu cohorts. 

 

URL: https://doi.org/10.5281/zenodo.3381026. 

 

3. Table-S3: Replicated 110 SNPs.xlsx. 

 

List of replicated 110 SNPs (with exact profiles) between NI and Vadu cohorts. 

 

URL: https://doi.org/10.5281/zenodo.3381048. 

 

4. Table S4: Power Analysis.xlsx. 

 

Power estimation for each significant SNPs from NI and Vadu cohorts. 

 

URL: https://doi.org/10.5281/zenodo.3381054. 

 

5. Table S5: Biological Process Summary (shared genes).xlsx. 

 

Compiled data for Gene Ontology analysis done using TOPPFUN for significant genes from 

pair-wise Prakriti comparisons (P vs K,V vs K and V vs P). 

 

URL: https://doi.org/10.5281/zenodo.3402359. 

 

6. Table S6: GWAS Exact SNPs.xlsx. 
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List of Prakriti differentiating SNPs from NI and Vadu cohorts associated with disease/traits in 

GWAS catalog v1.0.2. 

 

URL: https://doi.org/10.5281/zenodo.3383131. 

 

7. Table S7: GWAS LD SNPs.xlsx. 

 

List of SNPs associated with disease/traits in GWAS catalog1.0.2 in strong LD (r2>0.8) with 

Prakriti differentiating SNPs in NI and Vadu cohorts. 

 

URL: https://doi.org/10.5281/zenodo.3383142. 

 

8.  Table S8: PheWAS LD SNPs.xlsx. 

 

List of SNPs associated with multiple phenotypes in PheWAS catalog in strong LD (r2>0.8) with 

Prakriti differentiating SNPs in NI and Vadu cohorts. 

 

URL: https://doi.org/10.5281/zenodo.3383150. 

 

9.  Table S9: eQTL’s in Prakriti replicated SNPs.xlsx. 

 

List of Prakriti replicated SNPs acting as cis-eQTL in GTEx tissues. 

 

URL: https://doi.org/10.5281/zenodo.3402269. 

 

10. Table S10: Random Forest Ranks.xlsx. 

 

Details of random forest model results based on (i) genotype to feature and (ii) feature to 

Prakriti. 

 

URL: https://doi.org/10.5281/zenodo.3402273. 

 

11. Table S11: Discussion SNPs.xlsx. 

 

Details of replicated SNPs mentioned in discussion section. 

 

URL: https://doi.org/10.5281/zenodo.3402279. 

 

12. Table S12: Mouse Knockdown/knockout Phenotypes of Replicated 40 genes.xlsx. 
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Mouse Knockdown/knockout Phenotypes of Replicated 40 genes. 

 

URL: https://doi.org/10.5281/zenodo.3565519. 

 

Additional Files 2 

 

Supplementary figures 

 

1. Fig. S1: Distribution of significant SNPs across genomic regions from NI and Vadu cohorts in 

each pair-wise Prakriti comparison. Exonic and 3’UTR have maximum number of 

differentiating SNPs. The number above the bars indicates the number of differentiating SNPs 

obtained in each region. 

 

2. Fig. S2: Box plot showing estimated power for each genotype with varying sample size in 

each pair-wise Prakriti comparison (A) NI and (B) Vadu cohort. 

 

3. Fig. S3: PCA plot of (A) replicated 472 significant SNPs (372 genes) and (B) replicated 110 

SNPs (with exact profiles) in NI and Vadu cohort using EGIENSTRAT. 

 

4. Fig. S4:ANKLE1 locus that is a pleiotropic modifier locus for breast and ovarian cancer 

exhibits differences between the Prakriti types in both cohorts. (a) Alleles of ANKLE1 SNPs 

(rs8100241 and rs8108174) exhibit differences between Vata and Kapha in NI and Vadu cohorts.   

Vata associated ANKLE1 SNPs are associated correlated with lower expression of ABHD8 in 

GTEx data. (b) Schematic from Figure 3(b) of Lawreson K et. al. (PMID: 27601076) showing 

the physical map of 13 risk-associated SNPs (red color), the ABHD8 promoter fragment (green) 

and the position of the interacting NcoI fragment (purple bar); which was demonstrated by 3C 

interaction. (c) ABHD8 knockdown phenotypes in mouse retrieved from MGI database; the 

phenotypes are associated with anatomical and behavioral phenotypes some of which resonate 

with Prakriti attributes. (d) rs8100241 is in strong LD with PheWAS SNP (rs2363956); bubble 

plot of  PheWAS associations show multiple seemingly unrelated phenotypes associated with 

rs2363956 of ANKLE1  gene. 

 

5. Fig. S5: Cumulative frequency plots of percentage of significant SNPs in GTEx tissues in 

pair-wise Prakriti comparisons (PvsK, VvsK and VvsP). The x-axis represents the cumulative 

proportion of differentiating SNPs that are eQTLs across diverse GTEX tissues  represented in 

the y-axis in each Prakriti group comparisons across both cohorts.The patterns of cis-eQTL 

enrichment is similar across both cohorts with significant enrichments in tissues such as testis, 

nerve tibia, adipose and depletion in uterus, vagina etc. 
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6. Fig. S6: Bubbleplot heatmap representing the eQTL effect size of alternate alleles of SNPs in 

(A) IFIT5 and (B) ZNF502 retrieved from GTEx V7 cis-eQTL data. The effect of Prakriti 

differentiating SNP has been outlined across tissues. 

 

7. Fig. S7: Alluvial plot of FIG4 gene and its connectivity to various biological processes and 

mouse phenotypes. This highlights that extreme Prakriti phenotypes could yield genes with 

pleiotropic effects from development to physiology. 

 

8. Fig. S8: Bubble plot represent the frequency of occurrence of feature values of 17 phenotypes 

that are significantly associated rs7244213 of SLC14A2 based on the random forest model. 

 

9. Fig. S9: Distinct functions described for extreme Prakriti types in Ayurveda. 
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Table: 

 

Table 1: Prakriti differentiating SNPs reported in PheWAS catalogues in both cohorts. 

 

 
* PNPLA3 associated PHEWAS SNP was retrieved from the study by Diogo et al. (PMID : 

30327483) 
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