

A C++ library for protein sub-structure search
Jianfu Zhou1 and Gevorg Grigoryan1,2,*
1Department of Computer Science, 2Department of Biological Sciences, Dartmouth College, Hanover,
NH, USA 03755

*To whom correspondence should be addressed.

Abstract
Summary: MASTER is a previously published algorithm for protein sub-structure search. Given a da-
tabase of protein structures and a query structural motif, composed of multiple disjoint segments, it
finds all sub-structures from the database that align onto the query to within a pre-specified backbone
root-mean-square deviation. Here, we present an improved version of the algorithm, MASTER v.2, in
the form of an open-source C++ Application Program Interface library, thereby providing programmatic
access to structure search functionality. An entirely reorganized approach to database representation
now enables large structural databases to be stored in memory, further simplifying development of
automated search-based methods. Given the increasingly important role of structure-based data min-
ing, our improved implementation should find ample uses in structural biology applications.
Availability: MASTER is available at https://grigoryanlab.org/master/master-v2.php.
Contact: gevorg.grigoryan@dartmouth.edu

1 Introduction
The apparent modularity of the protein structural universe (i.e., the fre-
quent recurrence of local structural patterns) has been exploited in diverse
structure modeling and design applications in a variety of ways (Grigoryan
et al., 2011; Huang et al., 2014; Koga et al., 2012; Leaver-Fay et al., 2011;
Szilagyi and Zhang, 2014). In our own work, we have found it particularly
useful to identify precise atom-for-atom matches, from within the known
structural database, to arbitrary constellations of disjoint backbone frag-
ments (Frappier et al., 2019; Zheng and Grigoryan, 2017; Zhou et al.,
2020). We previously developed the MASTER algorithm to address this
computational task (Zhou and Grigoryan, 2015), and it has since been uti-
lized by us and others (Kim et al., 2016; Lai et al., 2018; MacKenzie et
al., 2016; Ojewole et al., 2018; Zhang et al., 2018; Zheng et al., 2015;
Zheng and Grigoryan, 2017; Zhou et al., 2020). Here, we present the im-
plementation of a MASTER Application Program Interface (API) library.
It allows users to run MASTER search functions within the context of their
own programs, making MASTER a more convenient tool for structural
biology research.

2 MASTER API library
MASTER takes as query a structural fragment, composed of one or more
disjoint segments, and provably finds all fragments from a database
matching the query to within a given backbone root-mean-square devia-
tion (RMSD) threshold (Zhou and Grigoryan, 2015). The method is fast,
enabling searches over databases with tens of thousands of structures in a
matter of seconds (for realistic thresholds), with the running time in prac-
tice most sensitive to the number of matches falling below the RMSD cut-
off (Zhou and Grigoryan, 2015).

The previous implementation of MASTER comprised a stand-alone
program that used an on-disk database. While it was possible to automate
multiple search requests using system calls, the disk-based database meant
considerable loss of efficiency due to I/O and inter-process

communication. Here we present a new and improved implementation of
MASTER in the form of an API library. It supplies MASTER search func-
tions that mine a memory-accommodated database, abrogating the need
for frequent disk I/O and allowing for the programmatic automation of
search-based tasks without inter-process communication. To reduce the
memory footprint of the database, we developed a proximity-search
method and a data structure that eliminated the need for storing inter-
atomic distances as in the previous implementation.

2.1 Room-saving proximity search algorithm
We refer as “proximity search” to the problem of identifying all points in
a set that are within a given Euclidian distance of a query point. This is a
common computational task of high utility in numerous areas. There exist
several classes of approaches to this problem. An important class is based
on space partitioning. For example, the traditional cell-list approach di-
vides space into cells of identical size; points are mapped into these cells
and proximity queries only happen within the same or neighboring cells
(Frenkel and Smit, 2002). Another popular class of approaches is parti-
tioning points themselves. For instance, in a bounding volume hierarchy,
each point wrapped in a bounding volume forms the leaf node of a tree.
Smaller bounding volumes are then clustered and wrapped within new
larger ones in a recursive way, forming internal nodes of the tree, and the
root encloses all the nodes using a single bounding volume in the end.
Then, proximity queries performed between bounding volumes can effi-
ciently prune sub-trees with no close points (Gottschalk, 2000). For a com-
prehensive review of representative methods adopted in applications re-
lated to molecular science, refer to (Artemova et al., 2011). In our new
implementation of MASTER, we chose a simplified variant of the classi-
cal cell-list proximity search (Frenkel and Smit, 2002) described below.

As described previously (Zhou and Grigoryan, 2015), MASTER works
by limiting the possible alignment locations of presently unaligned seg-
ments based on the deviations accumulated by the segments already
aligned and the specified RMSD cutoff. To do so, MASTER relies on the
ability to quickly perform residue proximity searches—i.e., to find the lists

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.26.062612doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.26.062612
http://creativecommons.org/licenses/by-nc-nd/4.0/

J. Zhou and G. Grigoryan

of residues located within specified ranges of distances from other resi-
dues. In our prior implementation of the algorithm, this functionality was
supported via a database that explicitly stored, for every residue of every
protein, a list of other residues from the same protein located within vari-
ous distance bins of it. The relevant bins to check for a given proximity
query could be identified from the desired inter-segment distance range
(Zhou and Grigoryan, 2015). While allowing for fascicle residue proxim-
ity searches, this database design required 𝑂(𝑀𝑁%) of storage space
(where 𝑁 is the number of residues per protein and 𝑀 is the number of
proteins in a database), such that realistically-sized databases could not
easily fit in memory on commodity machines.

Our new MASTER API implementation does not explicitly store inter-
residue distances and rather embeds every database structure into a 3D
grid on the fly, upon reading. The minimal and maximal values of atomic
coordinates along X-, Y-, and Z-axes define the vertices of the grid, and
each residue (or rather its CA atom) is mapped into a grid box. Following
this embedding, a proximity search simply involves identifying the box to
which the source atom belongs followed by visiting only those boxes of
the grid that could potentially contain atoms within the relevant distance
range of the source atom.

A grid structure requires 𝑂(𝑛() space, where 𝑛 is the linear dimension-
ality of the grid (i.e., number of boxes along each dimension). However,
overly fine grids are not necessary in practice, since volume exclusion
limits how closely protein atoms can be spaced, such that the physical grid
box dimension should be roughly a constant. Suppose we choose grids
with boxes of side length 𝑙. Then, to accommodate a protein with a radius
of gyration 𝐷, we would need a grid with 𝑛 = 𝑂(𝐷 𝑙⁄) boxes along the
side. For globular proteins, the radius of gyration should grow roughly as
cubic root of length (i.e., number of residues), such that we would need
𝑛 = 𝑂-√𝑁/ 𝑙⁄ 0 grid points along the side for a total memory cost of
𝑂(𝑁 𝑙(⁄) = 𝑂(𝑁). In the worst case of a fully extended protein, where the
radius of gyration is proportional to length (i.e., 𝐷 = 𝑂(𝑁)), accommo-
dating it in a grid would require 𝑛 = 𝑂(𝑁 𝑙⁄) grid points along the side or
a memory cost of 𝑂(𝑁(𝑙(⁄) = 𝑂(𝑁(). While the worst-case memory use
is cubic in protein length, it does not represent a commonly encountered
scenario. This is because in practice sub-structure queries are most mean-
ingful when run with spatially local structural motifs—e.g., for the pur-
pose of identifying dependences or preferences within them or to annotate
a common functional unit. Because queries are expected to be well local-
ized in space, it is not needed to store very long extended structures (even
if these exist in the database) as single units. Rather, one would split such
database entries into multiple overlapping portions, each more spatially
localized (as a globular protein). Furthermore, radii of gyration for struc-
tures in the Protein Data Bank (PDB) do indeed appear to grow roughly
as the cubic root of length (see Fig. 1), indicating that most entries are
globular. Given all of this, 𝑂(𝑁) is a better estimate of asymptotic memory
usage in practice, which compares favorably to the 𝑂(𝑁%) in our previous
implementation (Zhou and Grigoryan, 2015).

The different data structure used in our new implementation impacts
how a proximity search query is performed. Previously, MASTER explic-
itly stored the list of atoms within different distance bins (of width 𝑟) of
each source atom. This took considerable memory but meant that all atoms
within some distance 𝑑 of a query atom could be found by visiting atom
lists in 𝑂(𝑑 𝑟⁄) = 𝑂(𝑑) bins. In total, all atoms within distance of at most
𝑑 + 𝑟 were visited. If we assume some constant upper bound of atomic
density 𝐷, this amounted to 𝑂(𝐷 ∙ (𝑑 + 𝑟)() = 𝑂(𝑑() atoms, such that the
cost of a single proximity search was 𝑂(𝑑 + 𝑑() = 𝑂(𝑑(). In our new
implementation, a proximity search is performed by visiting each grid box
that is within the query distance 𝑑 of the source atom. Assuming grid
boxes with constant side length 𝑙, this means visiting 𝑂((2𝑑)(𝑙(⁄) =

𝑂(𝑑() boxes. The total number of atoms within these boxes is
𝑂((2𝑑)(𝐷) = 𝑂(𝑑() such that the overall cost of finding neighbors is
𝑂(𝑑(+ 𝑑() = 𝑂(𝑑(). Thus, asymptotically, the running time of a prox-
imity search remains the same between the two implementations. Further,
in practice, once the disk I/O overhead associated with database reading is
removed (substantially more costly in our old implementation), we found
the running time of the two implementations to be comparable.

Fig. 1. Cubic root of number of residues correlates with radius of gyration. Each point

corresponds to a single protein structure in a nonredundant subset of the Protein Data Bank

selected by using BLASTClust at 30% sequence identity (Altschul et al., 1990), with its

radius of gyration plotted against the cubic root of its length. Point color indicates data

density (decreasing order red-to-blue). Best-fit lines for the upper and lower boundaries, in

solid black, are produced using least-squares fitting. The number of protein structures (N)

and the Pearson correlation (R) are shown in the title.

3 Example of using MASTER API library
The MASTER API library supplies the essential search function and sev-
eral auxiliary functions for customizing a query and obtaining search re-
sults. Table 1 shows a simple excerpt from a hypothetical C++ program
that uses these functions. The MASTER class serves as the main point of
access to the search functionality, so the program first defines a MASTER
object S. Through S, the program inputs the search query using
setQuery(queryPDB), where queryPDB is a path to a PDB file.
Next, the code defines a target database by using the addTargets(da-
tabaseList) function, with databaseList being a path to a file
with a list of PDB file paths denoting database entries. This function is
responsible for uploading the entire database into memory, such that hav-
ing issued this call once, the same MASTER object can be used for an
arbitrary number of searches without needing disk access. The RMSD
threshold is specified via setRMSDCutoff(rmsdCut) and finally the
actual search is run by calling search() on the MASTER object. Re-
sults are returned by the function solutions() and stored in a mas-
terSolutions object, which provides several functions for interrogat-
ing and manipulating resultant matches, including the ability to access
structure and sequence information for each match. We also include a Py-
thon interface for the MASTER API library, which enables database read-
ing, search, and match writing capabilities from Python.

Table 1: Example of using MASTER API library.
#include “MASTER.h”
int main() {

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.26.062612doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.26.062612
http://creativecommons.org/licenses/by-nc-nd/4.0/

MASTER API library

 ...
 MASTER S;
 S.setQuery(queryPDB);
 S.addTargets(databaseList);
 S.setRMSDCutoff(rmsdCut);
 S.search();
 masterSolutions matches = S.solutions();
 ...
}

4 Conclusion
MASTER is a powerful tool for mining structural motifs in protein struc-
tural databases. Its API library provides researchers with a handy and flex-
ible way to run MASTER searches in the context of their own applications.

Funding
This	work	has	been	supported	by	NSF	award	DMR1534246	and	NIH	award	P20-
GM113132	(GG).	

References
Altschul,S. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–

410.
Artemova,S. et al. (2011) A comparison of neighbor search algorithms for large

rigid molecules. J Comput Chem, 32, 2865–2877.
Frappier,V. et al. (2019) Tertiary Structural Motif Sequence Statistics Enable Fac-

ile Prediction and Design of Peptides that Bind Anti-apoptotic Bfl-1 and Mcl-
1. Structure, 27, 606–617.e5.

Frenkel,D. and Smit,B. (2002) Understanding Molecular Simulation (Second Edi-
tion). Academic Press.

Gottschalk,S. (2000) Collision queries using oriented bounding boxes. PhD thesis.
Grigoryan,G. et al. (2011) Computational Design of Virus-Like Protein Assemblies

on Carbon Nanotube Surfaces. Science, 332(6033), 1071–1076.
Huang,Y. et al. (2014) Assessment of template-based protein structure predictions

in CASP10. Proteins Struct. Funct. Bioinform., 82(S2), 43–56.
Kim,K.-H. et al. (2016) Protein-directed self-assembly of a fullerene crystal. Nat.

Commun., 7, 11429.
Koga,N. et al. (2012) Principles for designing ideal protein structures. Nature, 491,

222–227.
Lai,J. et al. (2018) Towards conformational fidelity of a quaternary HIV-1 epitope:

computational design and directed evolution of a minimal V1V2 antigen. Pro-
tein Eng. Des. Sel., 31(4),121–133.

Leaver-Fay,A. et al. (2011) Rosetta3: An Object-Oriented Software Suite for the
Simulation and Design of Macromolecules. Meth. Enzymol., 487, 545–574.

MacKenzie,C.O. et al. (2016) Tertiary alphabet for the observable protein struc-
tural universe. Proc. Natl. Acad. Sci., 113(47), E7438–E7447.

Ojewole,A.A. et al. (2018) BBK* (Branch and Bound Over K*): A Provable and
Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and
Binding Affinity Over Large Sequence Spaces. J. Comput. Biol., 25(7), 726–
739.

Szilagyi,A. and Zhang,Y. (2014) Template-based structure modeling of protein–pro-
tein interactions. Curr. Opin. Struc. Biol., 24, 10–23.

Zhang,S.-Q.Q. et al. (2018) De Novo Design of Tetranuclear Transition Metal
Clusters Stabilized by Hydrogen-Bonded Networks in Helical Bundles. J. Am.
Chem. Soc., 140(4), 1294–1304.

Zheng,F. et al. (2015) Tertiary Structural Propensities Reveal Fundamental Se-
quence/Structure Relationships. Structure, 23(5), 961–971.

Zheng,F. and Grigoryan,G. (2017) Sequence statistics of tertiary structural motifs
reflect protein stability. Plos One, 12(5), e0178272.

Zhou,J. and Grigoryan,G. (2015) Rapid search for tertiary fragments reveals pro-
tein sequence–structure relationships. Protein Sci., 24(4), 508–524.

Zhou,J. et al. (2020) A general-purpose protein design framework based on mining
sequence-structure relationships in known protein structures. Proc. Natl. Acad.
Sci., 117(2), 1059–1068.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.26.062612doi: bioRxiv preprint

https://doi.org/10.1101/2020.04.26.062612
http://creativecommons.org/licenses/by-nc-nd/4.0/

