
 

A C++ library for protein sub-structure search 
Jianfu Zhou1 and Gevorg Grigoryan1,2,* 
1Department of Computer Science, 2Department of Biological Sciences, Dartmouth College, Hanover, 
NH, USA 03755 

*To whom correspondence should be addressed. 

Abstract 
Summary: MASTER is a previously published algorithm for protein sub-structure search. Given a da-
tabase of protein structures and a query structural motif, composed of multiple disjoint segments, it 
finds all sub-structures from the database that align onto the query to within a pre-specified backbone 
root-mean-square deviation. Here, we present an improved version of the algorithm, MASTER v.2, in 
the form of an open-source C++ Application Program Interface library, thereby providing programmatic 
access to structure search functionality. An entirely reorganized approach to database representation 
now enables large structural databases to be stored in memory, further simplifying development of 
automated search-based methods. Given the increasingly important role of structure-based data min-
ing, our improved implementation should find ample uses in structural biology applications. 
Availability: MASTER is available at https://grigoryanlab.org/master/master-v2.php. 
Contact: gevorg.grigoryan@dartmouth.edu 

 
 
1 Introduction  
The apparent modularity of the protein structural universe (i.e., the fre-
quent recurrence of local structural patterns) has been exploited in diverse 
structure modeling and design applications in a variety of ways (Grigoryan 
et al., 2011; Huang et al., 2014; Koga et al., 2012; Leaver-Fay et al., 2011; 
Szilagyi and Zhang, 2014). In our own work, we have found it particularly 
useful to identify precise atom-for-atom matches, from within the known 
structural database, to arbitrary constellations of disjoint backbone frag-
ments (Frappier et al., 2019; Zheng and Grigoryan, 2017; Zhou et al., 
2020). We previously developed the MASTER algorithm to address this 
computational task (Zhou and Grigoryan, 2015), and it has since been uti-
lized by us and others (Kim et al., 2016; Lai et al., 2018; MacKenzie et 
al., 2016; Ojewole et al., 2018; Zhang et al., 2018; Zheng et al., 2015; 
Zheng and Grigoryan, 2017; Zhou et al., 2020). Here, we present the im-
plementation of a MASTER Application Program Interface (API) library. 
It allows users to run MASTER search functions within the context of their 
own programs, making MASTER a more convenient tool for structural 
biology research. 

2 MASTER API library 
MASTER takes as query a structural fragment, composed of one or more 
disjoint segments, and provably finds all fragments from a database 
matching the query to within a given backbone root-mean-square devia-
tion (RMSD) threshold (Zhou and Grigoryan, 2015). The method is fast, 
enabling searches over databases with tens of thousands of structures in a 
matter of seconds (for realistic thresholds), with the running time in prac-
tice most sensitive to the number of matches falling below the RMSD cut-
off (Zhou and Grigoryan, 2015). 

The previous implementation of MASTER comprised a stand-alone 
program that used an on-disk database. While it was possible to automate 
multiple search requests using system calls, the disk-based database meant 
considerable loss of efficiency due to I/O and inter-process 

communication. Here we present a new and improved implementation of 
MASTER in the form of an API library. It supplies MASTER search func-
tions that mine a memory-accommodated database, abrogating the need 
for frequent disk I/O and allowing for the programmatic automation of 
search-based tasks without inter-process communication. To reduce the 
memory footprint of the database, we developed a proximity-search 
method and a data structure that eliminated the need for storing inter-
atomic distances as in the previous implementation. 

2.1 Room-saving proximity search algorithm 
We refer as “proximity search” to the problem of identifying all points in 
a set that are within a given Euclidian distance of a query point. This is a 
common computational task of high utility in numerous areas. There exist 
several classes of approaches to this problem. An important class is based 
on space partitioning. For example, the traditional cell-list approach di-
vides space into cells of identical size; points are mapped into these cells 
and proximity queries only happen within the same or neighboring cells 
(Frenkel and Smit, 2002). Another popular class of approaches is parti-
tioning points themselves. For instance, in a bounding volume hierarchy, 
each point wrapped in a bounding volume forms the leaf node of a tree. 
Smaller bounding volumes are then clustered and wrapped within new 
larger ones in a recursive way, forming internal nodes of the tree, and the 
root encloses all the nodes using a single bounding volume in the end. 
Then, proximity queries performed between bounding volumes can effi-
ciently prune sub-trees with no close points (Gottschalk, 2000). For a com-
prehensive review of representative methods adopted in applications re-
lated to molecular science, refer to (Artemova et al., 2011). In our new 
implementation of MASTER, we chose a simplified variant of the classi-
cal cell-list proximity search (Frenkel and Smit, 2002) described below. 

As described previously (Zhou and Grigoryan, 2015), MASTER works 
by limiting the possible alignment locations of presently unaligned seg-
ments based on the deviations accumulated by the segments already 
aligned and the specified RMSD cutoff. To do so, MASTER relies on the 
ability to quickly perform residue proximity searches—i.e., to find the lists 
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of residues located within specified ranges of distances from other resi-
dues. In our prior implementation of the algorithm, this functionality was 
supported via a database that explicitly stored, for every residue of every 
protein, a list of other residues from the same protein located within vari-
ous distance bins of it. The relevant bins to check for a given proximity 
query could be identified from the desired inter-segment distance range 
(Zhou and Grigoryan, 2015). While allowing for fascicle residue proxim-
ity searches, this database design required 𝑂(𝑀𝑁%) of storage space 
(where 𝑁 is the number of residues per protein and 𝑀 is the number of 
proteins in a database), such that realistically-sized databases could not 
easily fit in memory on commodity machines. 

Our new MASTER API implementation does not explicitly store inter-
residue distances and rather embeds every database structure into a 3D 
grid on the fly, upon reading. The minimal and maximal values of atomic 
coordinates along X-, Y-, and Z-axes define the vertices of the grid, and 
each residue (or rather its CA atom) is mapped into a grid box. Following 
this embedding, a proximity search simply involves identifying the box to 
which the source atom belongs followed by visiting only those boxes of 
the grid that could potentially contain atoms within the relevant distance 
range of the source atom. 

A grid structure requires 𝑂(𝑛() space, where 𝑛 is the linear dimension-
ality of the grid (i.e., number of boxes along each dimension). However, 
overly fine grids are not necessary in practice, since volume exclusion 
limits how closely protein atoms can be spaced, such that the physical grid 
box dimension should be roughly a constant. Suppose we choose grids 
with boxes of side length 𝑙. Then, to accommodate a protein with a radius 
of gyration 𝐷, we would need a grid with 𝑛 = 𝑂(𝐷 𝑙⁄ ) boxes along the 
side. For globular proteins, the radius of gyration should grow roughly as 
cubic root of length (i.e., number of residues), such that we would need 
𝑛 = 𝑂-√𝑁/ 𝑙⁄ 0 grid points along the side for a total memory cost of 
𝑂(𝑁 𝑙(⁄ ) = 𝑂(𝑁). In the worst case of a fully extended protein, where the 
radius of gyration is proportional to length (i.e., 𝐷 = 𝑂(𝑁)), accommo-
dating it in a grid would require 𝑛 = 𝑂(𝑁 𝑙⁄ ) grid points along the side or 
a memory cost of 𝑂(𝑁( 𝑙(⁄ ) = 𝑂(𝑁(). While the worst-case memory use 
is cubic in protein length, it does not represent a commonly encountered 
scenario. This is because in practice sub-structure queries are most mean-
ingful when run with spatially local structural motifs—e.g., for the pur-
pose of identifying dependences or preferences within them or to annotate 
a common functional unit. Because queries are expected to be well local-
ized in space, it is not needed to store very long extended structures (even 
if these exist in the database) as single units. Rather, one would split such 
database entries into multiple overlapping portions, each more spatially 
localized (as a globular protein). Furthermore, radii of gyration for struc-
tures in the Protein Data Bank (PDB) do indeed appear to grow roughly 
as the cubic root of length (see Fig. 1), indicating that most entries are 
globular. Given all of this, 𝑂(𝑁) is a better estimate of asymptotic memory 
usage in practice, which compares favorably to the 𝑂(𝑁%) in our previous 
implementation (Zhou and Grigoryan, 2015). 

The different data structure used in our new implementation impacts 
how a proximity search query is performed. Previously, MASTER explic-
itly stored the list of atoms within different distance bins (of width 𝑟) of 
each source atom. This took considerable memory but meant that all atoms 
within some distance 𝑑 of a query atom could be found by visiting atom 
lists in 𝑂(𝑑 𝑟⁄ ) = 𝑂(𝑑) bins. In total, all atoms within distance of at most 
𝑑 + 𝑟 were visited. If we assume some constant upper bound of atomic 
density 𝐷, this amounted to 𝑂(𝐷 ∙ (𝑑 + 𝑟)() = 𝑂(𝑑() atoms, such that the 
cost of a single proximity search was 𝑂(𝑑 + 𝑑() = 𝑂(𝑑(). In our new 
implementation, a proximity search is performed by visiting each grid box 
that is within the query distance 𝑑 of the source atom. Assuming grid 
boxes with constant side length 𝑙, this means visiting 𝑂((2𝑑)( 𝑙(⁄ ) =

𝑂(𝑑() boxes. The total number of atoms within these boxes is 
𝑂((2𝑑)(𝐷) = 𝑂(𝑑() such that the overall cost of finding neighbors is 
𝑂(𝑑( + 𝑑() = 𝑂(𝑑(). Thus, asymptotically, the running time of a prox-
imity search remains the same between the two implementations. Further, 
in practice, once the disk I/O overhead associated with database reading is 
removed (substantially more costly in our old implementation), we found 
the running time of the two implementations to be comparable. 
 

 

Fig. 1. Cubic root of number of residues correlates with radius of gyration. Each point 

corresponds to a single protein structure in a nonredundant subset of the Protein Data Bank 

selected by using BLASTClust at 30% sequence identity (Altschul et al., 1990), with its 

radius of gyration plotted against the cubic root of its length. Point color indicates data 

density (decreasing order red-to-blue). Best-fit lines for the upper and lower boundaries, in 

solid black, are produced using least-squares fitting. The number of protein structures (N) 

and the Pearson correlation (R) are shown in the title. 

3 Example of using MASTER API library 
The MASTER API library supplies the essential search function and sev-
eral auxiliary functions for customizing a query and obtaining search re-
sults. Table 1 shows a simple excerpt from a hypothetical C++ program 
that uses these functions. The MASTER class serves as the main point of 
access to the search functionality, so the program first defines a MASTER 
object S. Through S, the program inputs the search query using 
setQuery(queryPDB), where queryPDB is a path to a PDB file. 
Next, the code defines a target database by using the addTargets(da-
tabaseList) function, with databaseList being a path to a file 
with a list of PDB file paths denoting database entries. This function is 
responsible for uploading the entire database into memory, such that hav-
ing issued this call once, the same MASTER object can be used for an 
arbitrary number of searches without needing disk access. The RMSD 
threshold is specified via setRMSDCutoff(rmsdCut) and finally the 
actual search is run by calling search() on the MASTER object. Re-
sults are returned by the function solutions() and stored in a mas-
terSolutions object, which provides several functions for interrogat-
ing and manipulating resultant matches, including the ability to access 
structure and sequence information for each match. We also include a Py-
thon interface for the MASTER API library, which enables database read-
ing, search, and match writing capabilities from Python. 
 
Table 1: Example of using MASTER API library. 
#include “MASTER.h” 
int main() { 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.26.062612doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.26.062612
http://creativecommons.org/licenses/by-nc-nd/4.0/


MASTER API library 

  ... 
  MASTER S; 
  S.setQuery(queryPDB); 
  S.addTargets(databaseList); 
  S.setRMSDCutoff(rmsdCut); 
  S.search(); 
  masterSolutions matches = S.solutions(); 
  ... 
} 

 

4 Conclusion 
MASTER is a powerful tool for mining structural motifs in protein struc-
tural databases. Its API library provides researchers with a handy and flex-
ible way to run MASTER searches in the context of their own applications. 
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