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Abstract 
Human DNA-methylation data have been used to develop biomarkers of ageing - 

referred to ‘epigenetic clocks’ - that have been widely used to identify differences 

between chronological age and biological age in health and disease including 

neurodegeneration, dementia and other brain phenotypes. Existing DNA methylation 

clocks are highly accurate in blood but are less precise when used in older samples or 

on brain tissue. We aimed to develop a novel epigenetic clock that performs optimally in 

human cortex tissue and has the potential to identify phenotypes associated with 

biological ageing in the brain. We generated an extensive dataset of human cortex DNA 

methylation data spanning the life-course (n = 1,397, ages = 1 to 104 years). This 

dataset was split into ‘training’ and ‘testing’ samples (training: n = 1,047; testing: n = 

350). DNA methylation age estimators were derived using a transformed version of 

chronological age on DNA methylation at specific sites using elastic net regression, a 

supervised machine learning method. The cortical clock was subsequently validated in 

a novel human cortex dataset (n = 1,221, ages = 41 to 104 years) and tested for 

specificity in a large whole blood dataset (n = 1,175, ages = 28 to 98 years). We 

identified a set of 347 DNA methylation sites that, in combination optimally predict age 

in the human cortex. The sum of DNA methylation levels at these sites weighted by their 

regression coefficients provide the cortical DNA methylation clock age estimate. The 

novel clock dramatically out-performed previously reported clocks in additional cortical 

datasets. Our findings suggest that previous associations between predicted DNA 

methylation age and neurodegenerative phenotypes might represent false positives 

resulting from clocks not robustly calibrated to the tissue being tested and for 

phenotypes that become manifest in older ages. The age distribution and tissue type of 

samples included in training datasets need to be considered when building and applying 

epigenetic clock algorithms to human epidemiological or disease cohorts.   

 

Keywords: Cortex, age, ageing, disease, epigenetic clock, DNA methylation, post-

mortem  
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Introduction 
 

Advancing age is associated with declining physical and cognitive function, and is a 

major risk factor for many human brain disorders including dementia and 

neurodegenerative disease (Harper, 2014; Sierra, 2019). Understanding the biological 

mechanisms involved in ageing will be a critical step towards preventing, slowing or 

reversing age-associated phenotypes. Due to the substantial inter-individual variation in 

age-associated phenotypes, there is considerable interest in identifying robust 

biomarkers of ‘biological’ age, a quantitative phenotype that is thought to better capture 

an individuals’ risk of age-related outcomes than actual chronological age (Jylhävä et 

al., 2019). Several data modalities have been used to generate estimates of biological 

age; these include measures of physical fitness (e.g. muscle strength) (Sosnoff and 

Newell, 2006), cellular phenotypes (e.g. cellular senescence) (Baker et al., 2011) and 

genomic changes (e.g. telomere length) (Jylhävä et al., 2017; Sanders and Newman, 

2013).  

 

Epigenetic mechanisms act to regulate gene expression developmentally via chemical 

modifications to DNA and histone proteins (Bernstein et al., 2007), conferring cell-type-

specific patterns of gene expression and differing markedly between tissues and cell-

types (Mendizabal and Yi, 2016). There has been recent interest in the dynamic 

changes in epigenetic processes over the life course, and a number of ‘epigenetic 

clocks’ based on one specific epigenetic modification - DNA methylation (DNAm) - have 

been developed that appear to be highly predictive of chronological age (Campisi and 

Vijg, 2009; Horvath, 2013; Horvath et al., 2012, 2018; Knight et al., 2016; Oberdoerffer 

and Sinclair, 2007; Simpkin et al., 2017). The landmark DNAm clock was developed by 

Horvath (Horvath, 2013), who applied elastic net regression to Illumina DNAm array 

data from a large number of samples derived from a range of tissues (n = ~ 8,000 

across 51 tissue and cell types), and generated a predictor based on DNAm at 353 CpG 

sites that is highly predictive of chronological age (Horvath, 2013). Given that changes 

in DNAm are known to index exposure to certain environmental risk factors for diseases 

of old age (for example, tobacco smoking) (Elliott et al., 2014; Sugden et al., 2019), and 
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variable DNAm is robustly associated with a number of age-associated disorders 

(Chouliaras et al., 2018; Chuang et al., 2017; Smith et al., 2016), there has been 

interest in the hypothesis that DNAm clocks might robustly quantify variation in 

biological age. Horvath’s DNAm age clock, for example, has been widely applied to 

identify accelerated epigenetic ageing - where DNAm age predictions deviate from 

chronological age such that individuals appear older than they really are - in the context 

of numerous health and disease outcomes (Horvath and Ritz, 2015; Levine et al., 2015; 

Marioni et al., 2015; McCartney et al., 2018). Since age is a major risk factor for 

dementia and other neurodegenerative brain disorders, there is particular interest in the 

application of epigenetic clock algorithms to these phenotypes, especially as differential 

DNAm has been robustly associated with diseases including Alzheimer’s disease and 

Parkinson’s disease (Lunnon et al., 2014; Smith et al., 2016; Yu et al., 2015). Recent 

studies have reported an association between accelerated DNAm age and specific 

markers of Alzheimer’s disease neuropathology in the cortex (e.g. neuritic plaques, 

diffuse plaques and amyloid-β load) (Levine et al., 2015, 2018). Furthermore, among 

individuals with Alzheimer’s disease, DNAm age acceleration is associated with 

declining global cognitive functioning and deficits in episodic and working memory 

(Levine et al., 2015, 2018). 

 

A major strength of existing epigenetic clocks is that they work relatively well across 

different types of sample; the Horvath multi-tissue clock, for example, can accurately 

predict age in multiple tissues across the life-course. However, as with any predictor, 

the composition of the training data used to develop the clock influences the generality 

of the model. To date, there has been limited research comparing the prediction 

accuracy and potential bias of existing clock algorithms across different tissues and 

ages. Recent analyses have highlighted potential biases when using Horvath’s clock in 

older samples (>~60 years) and in samples derived from certain tissues, especially the 

central nervous system (El Khoury et al., 2019). This is important for the interpretation 

of studies of possible relationships between accelerated epigenetic age and age-related 

diseases affecting the human brain (e.g. dementia and neurodegenerative phenotypes); 

reported associations between accelerated DNAm age and disease may actually be a 
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consequence of fitting a suboptimal predictor to available datasets. Potential 

confounders include differential changes in DNAm with age across tissues, and the age 

distribution of the samples used to train existing classifiers. Resolution of these biases 

requires the construction of specific DNAm clocks developed using data generated on 

the relevant tissue-type and including broad representation of the age spectrum they will 

be used to interrogate. Recently, a number of tissue-specific DNA methylation clocks 

have been described, including clocks designed for whole blood (Hannum et al., 2013; 

Zhang et al., 2019), muscle (Voisin et al., 2019), bone (Gopalan et al., 2019) and 

paediatric buccal cells (McEwen et al., 2019). Importantly, although these DNAm age 

estimators have increased predictive accuracy within the specific tissues in which they 

were built, they lose this precision when applied to other tissues (El Khoury et al., 2019).  

 

We describe the development of a novel DNAm clock that is specifically designed for 

application in DNA samples isolated from the human cortex and is accurate across the 

lifespan including in tissue from elderly donors. We demonstrate that our clock 

outperforms existing DNAm-based predictors developed for other tissues, minimising 

the potential for spurious associations with ageing phenotypes relevant to the brain.  

 

Materials and methods 
 

Datasets used to develop the novel cortical DNAm age clock: To develop and 

characterise our cortical DNAm age clock (“DNAmClockCortical”) we collated an extensive 

collection of DNAm data from human cortex samples (see Supplementary Table 1), 
complementing datasets generated by our group (http://www.epigenomicslab.com) with 

publicly available datasets downloaded from the Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/) (Jaffe et al., 2016; De Jager et al., 2014; Lunnon et 

al., 2014; Pidsley et al., 2014; Smith et al., 2018, 2019; Wong et al., 2019) (see 

Supplementary Table 1). In each of these datasets DNAm was quantified across the 

genome using the Illumina 450K DNA methylation array which covers >450,000 DNA 

methylation sites as previously described (Pidsley et al., 2013). To optimise the 

performance of the DNAmClockCortical and to avoid reporting over-fitted statistics, the 
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samples were split into a “training” dataset (used to determine the DNAm sites included 

in the model and their weighted coefficients) and a “testing” dataset (used to profile the 

performance of the proposed model). To reduce the effects of experimental batch in our 

model, we maximised the number of different datasets included in the training data by 

combining the ten cohorts and randomly assigning individuals within them to either the 

training or testing dataset in a 3:1 ratio (Table 1). In total, our training dataset (age 

range = 1-108 years, median = 57 years; see Supplementary Fig. S1) comprised 

DNAm data from 1,047 cortex samples (derived from 832 donors) and our testing 

dataset (age range = 1-108 years, median = 56 years; see Supplementary Fig. S1) 

comprised DNAm data from 350 cortex samples (derived from 323 donors). Individuals 

with a diagnosis of Alzheimer’s disease and other major neurological phenotypes were 

excluded from our analysis given the previous associations between them and 

deviations in DNAm age (Levine et al., 2015, 2018).  

 

Cortex validation dataset: An independent “validation” cortical dataset was generated 

using post-mortem occipital (OCC) and prefrontal cortex (PFC) samples from the Brains 

for Dementia Research (BDR) cohort. BDR was established in 2008 and is a UK-based 

longitudinal cohort study with a focus on dementia research (Francis et al., 2018) 

coordinated by a network of six dementia research centres based around the UK. Post-

mortem brains underwent full neuropathological dissection, sampling and 

characterisation using a standardised protocol (Bell et al., 2008; Samarasekera et al., 

2013). DNA was isolated from cortical tissue samples using the Qiagen AllPrep 

DNA/RNA 96 Kit (Qiagen, cat no.80311) following tissue disruption using BeadBug 1.5 

mm Zirconium beads (Sigma Aldrich, cat no.Z763799) in a 96-well Deep Well Plate 

(Fisher Scientific, cat no.12194162) shaking at 2500rmp for 5 minutes. Genome-wide 

DNA methylation was profiled using the Illumina EPIC DNA methylation array (Illumina 

Inc), which interrogates >850,000 DNA methylation sites across the genome (Moran et 

al., 2016). After stringent data quality control (see below) the final validation dataset 

consisted of DNAm estimates for 800,916 DNAm sites profiled in 1,221 samples (632 

donors; 610 PFC; 611 OCC; see Table 1 for more details). This dataset consists of 
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predominantly elderly samples (age range = 41-104 years, median = 84 years; see 

Supplementary Fig. S1). 
 
Whole blood dataset: We recently generated DNAm data from whole blood obtained 

from  1,175 individuals (age range = 28-98 years; median age = 59 years; see Table 1 

for more details) included in the UK Household Longitudinal Study (UKHLS) 

(https://www.understandingsociety.ac.uk/) (Hannon et al., 2018).The UKHLS was 

established in 2009 and is a longitudinal panel survey of 40,000 UK households from 

England, Scotland, Wales and Northern Ireland (Buck and McFall, 2011). For each 

participant, non-fasting blood samples were collected through venipuncture; these were 

subsequently centrifuged to separate plasma and serum, and samples were aliquoted 

and frozen at −80°C. DNAm data were generated using the Illumina EPIC DNA 

methylation array as described previously ((Hannon et al., 2018). After stringent QC 

(see below) the whole blood dataset consisted of data for 857,071 DNAm sites profiled 

in 1,175 samples (Hannon et al., 2018). 

 

DNA methylation data pre-processing: Unless otherwise reported, all statistical analysis 

was conducted in the R statistical environment (version 3.5.2; https://www.r-

project.org/). Raw data for all datasets were used, prior to any QC or normalisation, and 

processed using either the wateRmelon (Pidsley et al., 2013) or bigmelon (Gorrie-Stone 

et al., 2019) packages. Our stringent QC pipeline included the following steps: (1) 

checking methylated and unmethylated signal intensities and excluding poorly 

performing samples; (2) assessing the chemistry of the experiment by calculating a 

bisulphite conversion statistic for each sample, excluding samples with a conversion 

rate <80%; (3) identifying the fully methylated control sample was in the correct location 

(where applicable); (4) multidimensional scaling of sites on the X and Y chromosomes 

separately to confirm reported sex; (5) using the 65 SNP probes present on the Illumina 

450K array and 59 on the Illumina EPIC array to confirm that matched samples from the 

same individual (but different brain regions) were genetically identical and to check for 

sample duplications and mismatches; (6) use of the pfilter() function in wateRmelon to 

exclude samples with >1 % of probes with a detection P value > 0.05 and probes with 
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>1 % of samples with detection P value  > 0.05; (8) using principal component analysis 

on data from each tissue to exclude outliers based on any of the first three principal 

components; (9) removal of cross-hybridising and SNP probes (Chen et al., 2013). The 

subsequent normalisation of the DNA methylation data was performed using the 

dasen() function in either wateRmelon or bigmelon (Gorrie-Stone et al., 2019; Pidsley et 

al., 2013).  

 

Deriving a novel cortical DNAm age classifier: To build the DNAmClockCortical we 

implemented an elastic net (EN) regression model, using the methodology described by 

Horvath (2013). The EN model is designed for high dimensional datasets with more 

features than samples and where the features are potentially highly correlated (Zou and 

Hastie, 2005). As part of the methodology, the model selects the subset of features (i.e. 

DNAm sites) that cumulatively produce the best predictor of a provided outcome. EN 

was implemented in the R package GLMnet (Friedman et al., 2010). It uses a 

combination of Ridge and LASSO (Least Absolute Shrinkage and Selection Operator) 

regression. Ridge regression penalises the sum of squared coefficients and has an 

(alpha) parameter of zero. LASSO regression penalises the sum of the absolute values 

of the coefficients and has an ! parameter of one. EN is a convex combination of ridge 

and LASSO and, therefore, the elastic net ! parameter was set to 0.5. The lambda 

value (the shrinkage parameter) was derived using 10-fold cross-validation on the 

training dataset (lambda = 0.0178). DNAm probes included in the analysis were limited 

to sites which were present on both the Illumina EPIC and Illumina 450K arrays, with no 

missing values across the training datasets (n probes = 383547). Previous analyses 

have shown that the relationship between DNAm age (predicted age from epigenetic 

age estimators) and chronological age is logarithmic between 0-20 years and linear 

from 20 years plus (Horvath, 2013). Our data revealed a similar pattern and therefore 

chronological age was transformed (Supplementary Fig. S2).  A transformed version of 

chronological age was regressed on DNAm levels at all included DNAm sites.  

 

Implementing DNAm Age prediction: We applied the DNAmClockCortical (comprising 347 

DNAm sites) to the testing, validation and whole blood DNAm datasets. We then 
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compared its performance to a number of existing DNAm clocks: Horvath’s original 

multi-tissue clock (“DNAmClockMulti”; 353 DNAm sites) (Horvath, 2013), Zhang’s EN 

blood-based DNAm clock (“DNAmClockBlood”: 514 DNAm sites) (Zhang et al., 2019) and 

Levine’s ‘pheno age’ DNAm Clock (“DNAmClockPheno”; 513 DNAm sites) (Levine et al., 

2018). Briefly, to predict DNAm age using the DNAmClockMulti we applied the agep() 

function in wateRmelon (Pidsley et al., 2013). Although this function does not contain 

the custom normalisation method applied at the DNAm age calculator website 

(https://DNAmClock.genetics.ucla.edu/), both methods work similarly in brain and blood 

studies, providing the data have been pre-processed adequately (El Khoury et al., 

2019).To predict age using the DNAmClockPheno (Levine et al., 2018), we also applied 

the agep() function, inputting a vector of the coefficients and the intercept using the data 

provided in the supplementary material of Levine et al’s manuscript. To predict DNAm 

age with the DNAmClockblood, we used the authors’ published code (available on GitHub 

https://github.com/qzhang314/DNAm-based-age-predictor) (Zhang et al., 2019).  

 

Determining the predictive accuracy of different DNAm clocks: DNAm age was 

estimated in the testing dataset (n = 350), validation dataset (n = 1221) and whole blood 

dataset (n = 1175) using the DNAmClockCortical, DNAmClockMulti, DNAmClockBlood and 

the DNAmClockPheno. To compare and evaluate the predictive accuracy of these DNAm 

age predictors, estimates were assessed using two measures: Pearson’s correlation 

coefficient (r; a measure indicating the strength of the linear relationship between the 

actual (chronological age) and predicted (DNAm age) variables) and the root mean 

squared error (RMSE; square root of the mean differences between the actual and 

predicted variables) which quantifies the precision of the estimator. 

 

Analysis against age: To test associations between DNAm age and chronological age, 

we fitted regression models to each dataset. As a subset of donors included in the 

testing and validation datasets had data from multiple cortical regions, we used mixed 

effects linear regression models, implemented with the lme4 and lmerTest packages, 

where DNAm age was regressed against chronological age as a fixed effect and 

individual was included as a random effect. In the blood cohort, as there was only one 
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sample per individual, we applied standard linear regression models. A second 

regression model was also fitted which additionally tested for associations with an age-

squared term.  

 

Data availability: The datasets used for the training and testing samples are available 

for download from GEO (https://www.ncbi.nlm.nih.gov/geo/) using the following 

accession numbers: GSE74193; GSE59685; GSE80970; GPL13534 and GSE43414. 

The validation data are available from the authors upon reasonable request. The whole 

blood DNA methylation data are available upon application through the European 

Genome-Phenome Archive under accession code EGAS00001001232. Analysis scripts 

used in this manuscript are available on GitHub (https://github.com/qzhang314/DNAm-

based-age-predictor).   

 

 

Results 
 
Existing DNAm clock algorithms work sub-optimally in the human cortex, systematically 

underestimating age in elderly individuals  

 

The performance of DNAm clocks is influenced by the characteristics (e.g. specific 

tissue type and age range) of the training data used to build the prediction algorithm. 

Applying predictors to datasets that differ in terms of these characteristics may lead to 

biases when estimating DNAm age, and confound phenotypic analyses using these 

variables (El Khoury et al., 2019). We found that existing DNAm clocks (i.e. the 

DNAmClockMulti (Horvath, 2013) the DNAmClockBlood (Zhang et al., 2019) and the 

DNAmClockPheno (Levine et al., 2018)) do not perform optimally in human cortex tissue 

(Supplementary Fig. S3), with notable differences between derived DNAm age and 

actual chronological age (i.e. the derived values do not lie along the y = x line, see Fig. 
1). In our testing dataset (n = 350 cortex samples; age range = 1 - 108 years; median 

age = 57 years), the DNAmClockMulti systematically overestimated DNAm age in 

individuals over ~60, and systematically underestimated it in individuals below ~60 
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years (Fig. 1A(ii) and Fig. 2A(ii)). In the elderly group, around 80% of samples had 

lower predicted DNAm ages than their actual chronological age. These deviations were 

also observed when looking at the mean differences between actual age and predicted 

DNAm age (referred to as Δ (delta) age), such that Δ age was positive for younger ages 

and vice versa for the elderly group (Supplementary Fig. S4A). Use of the 

DNAmClockBlood produced even more pronounced systematic underestimation of DNAm 

age in adults, starting around 30 years (Fig. 1A(iii) and Fig. 2A(iii)), and this trend was 

mirrored for Δ age (see Supplementary Fig. S4A). Finally, the DNAmClockPheno 

severely under predicted age in the cortex, with 100% of samples being assigned a 

lower DNAm age than the actual chronological age (Fig. 1A(iv), Fig. 2A(iv) and 
Supplementary Fig. S4A(iv)). Similar biases in age prediction were seen in our 

validation cohort (n = 1,221 cortex samples; age range = 41 years to 104 years; mean 

age = 83.49 years), confirming the systematic underestimation of DNAm age in elderly 

donors (see Fig. 1B and Fig. 2B). As with the other clocks, Δ age captured these 

biases, with particularly poor performance evident when applying the DNAmClockPheno 

and the DNAmClockBlood to this dataset, in which Δ age was consistently below zero 

(where zero would represent perfect prediction; see Supplementary Fig. S4B). 
 

Developing a novel DNAm clock for the human cortex based on 347 DNA methylation 

sites  
 
The composition of the training data used to build a predictor can influence the 

generality of the model. Therefore, to alleviate the biases observed when applying 

existing DNAm clocks to data generated on elderly human cortex samples, we focussed 

on building a DNAm clock using relevant tissue samples from donors that spanned a 

broad range of ages and included a large number of samples from elderly donors 

(Supplementary Fig. S1). We developed our novel cortical DNAm clock 

(DNAmClockCortical) using an elastic net regression, regressing chronological age against 

DNAm levels across 383,547 sites quantified 1,047 cortex samples (see Methods). 

This approach identified a set of 347 DNAm sites which in combination optimally predict 

age in the human cortex. The sum of DNAm levels at these sites weighted by their 
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regression coefficients provides the DNAmClockCortical age estimate (see 

Supplementary Table 2). Of note, the majority of sites selected for our cortex clock 

were novel and not present in existing DNAm clock algorithms; only 5 of the sites 

overlap with the DNAmClockMulti (composed of 353 DNAm sites), 15 with the 

DNAmClockBlood (comprising 514 DNAm sites), and 5 with the DNAmClockPheno 

(comprising 513 DNAm sites) (see Supplementary Table 3).  

 

Increased prediction accuracy of the novel cortex clock in cortical tissue compared to 

existing DNAm clocks  

 

We used the DNAmClockCortical to estimate DNAm age in both the testing (n = 350 

cortex samples) and validation (n = 1221 cortex samples) datasets, and comparing the 

estimates to those derived using DNAmClockMulti, DNAmClockBlood and 

DNAmClockPheno. The DNAmClockCortical predicted age accurately in the testing dataset 

and there was a strong correlation between DNAm age and age (r = 0.99; Table 2 and 
Fig. 1A(i)). In the validation dataset, which consisted predominantly of elderly samples, 

our clock also performed well and was highly correlated with age (r = 0.83), 

outperforming DNAmClockMulti (r = 0.65), DNAmClockBlood (r = 0.52), and 

DNAmClockPheno (r = 0.32) (see Table 2; Fig. 1B(i)). The most striking differences were 

in the accuracy of the DNAmClockCortical in comparison to previously developed DNAm 

clocks; it outperformed the three other clocks we tested across all accuracy statistics in 

both cortical datasets (Table 2). The biggest differences in accuracy can be seen in the 

validation dataset (see Fig. 1B; Fig. 2B and Supplementary Fig. S4B), in which the 

RMSE was 15 years more accurate when using the DNAmClockCortical (RMSE: 5 years) 

than the DNAmClockMulti (RMSE: 20 years), 28 years more accurate than the 

DNAmClockBlood (RMSE: 33 years) and 77 years more accurate than the 

DNAmClockPheno (RMSE: 82 years). The DNAmClockPheno was consistently the most 

inaccurate at estimating age in the cortical data sets (RMSE: testing 60 years; validation 

82 years), followed by DNAmClockBlood (RMSE: testing 19 years; validation 33 years) 

and the DNAmClockMulti (RMSE: testing: 10 years; validation 20 years) (see Table 2 for 

more details). 
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The relationship between age and DNAmClock plateaus in old age 

 

By definition, DNAm age is correlated with chronological age, meaning age is a 

potential confounder for analyses of Δ age; not adequately controlling for age increases 

the likelihood that false positive associations will be identified (El Khoury et al., 2019). 

To assess associations between DNAm age and chronological age we used a mixed 

effects regression model (see Methods) and found that estimates from all four DNAm 

age clocks were significantly associated with age in the testing dataset (Bonferroni P < 

0.008, see Table 3). Many studies of Δ m age in health and disease control for age by 

using a linear model to regress out its effect (Marioni et al., 2015; McKinney et al., 2018) 

although one of the assumptions of this approach is that the prediction accuracy of the 

DNAm clock is consistent across the life course. If the accuracy varies non-linearly with 

chronological age, then simply including age as a linear covariate in association 

analyses will not sufficiently negate the confounding effect of age.  We therefore sought 

to formally test the extent to which the prediction accuracy of the four clocks correlates 

with age by including an age squared term in the regression model. In the testing 

dataset all four clocks had a significant age squared term (Table 3), indicating that their 

predictive accuracy varies as a function of age. Specifically, all clocks were associated 

with a plateau where the difference between DNAm age and chronological age 

becomes larger as actual age increases (Fig. 2). Importantly, however, the coefficient 

for the age squared term was smallest for the DNAmClockCortical (beta = -0.002, P = 

1.94E-07), again highlighting that bespoke clocks can be used to minimise bias in 

subsequent analyses.  

 

The cortical clock loses accuracy when applied to non-cortical tissues  

 

To assess the specificity of the novel cortex clock we next applied each of the DNAm 

age clocks to a large whole blood DNAm dataset (n = 1175; age range = 28 - 98 years; 

mean age = 57.96 years). Although the DNAmClockCortical actually performed 

remarkably well on whole blood (r = 0.88), with a similar predictive ability to the 
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DNAmClockMulti (r = 0.90) (Fig. 3 and Supplementary Fig. S5), there was a non-linear 

relationship between DNAm age and age estimated using this clock and a systematic 

under prediction of DNAm age in samples from people aged over 60 years (Fig. 3A(i) 
and Fig. 3B(i)). The DNAmClockBlood performed best on the blood dataset (r = 0.97), 

outperforming the three other clocks (Table 4; Fig.3; Supplementary Fig. S5 and 
Supplementary Fig. S6) and providing further support for the notion that epigenetic 

clocks work optimally for the tissue-type on which they are calibrated.   

 

Discussion 
 

Existing DNAm age clocks have been widely utilised for predicting age and exploring 

accelerated ageing in disease, although there is evidence of systematic underestimation 

of DNAm age in older samples, particularly in the brain (El Khoury et al., 2019). We 

developed a novel epigenetic age model specifically for human cortex - the cortical 

DNAm clock (DNAmClockCortical) - built using an extensive collection of DNAm data from 

>1000 human cortex samples. Our model dramatically outperforms existing DNAm-

based biomarkers for age prediction in data derived from the human cortex.  

 

There are several potential causes of the systematic underestimation of DNAm age in 

the cortex, especially in samples from elderly donors, when using existing DNAm clocks 

such as Hovath’s DNAmClockMulti (Horvath, 2013), Zhang’s DNAmClockBlood (Zhang et 

al., 2019) and Levine’s DNAmClockPheno (Levine et al., 2018). First, it may be a 

consequence of the distribution of ages in the training data used in existing clocks; 

these clocks were derived using samples containing a relatively small proportion of 

samples from human brain and/or from older people.  Second, as there is evidence for 

cell-type and tissue specific patterns of DNAm (Mendizabal et al., 2019), the observed 

imprecision may reflect a consequence of underfitting the model across tissues. Third, 

the relationship between DNA methylation and age may not be linear across the 

lifespan, and a non-linear model is needed to capture attenuated effects in older 

samples. This would be comparable to the transformation required to accurately predict 
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DNAm age for younger samples (0-20 years), where the association between age and 

with DNA methylation is of larger magnitude. 

 

Our data suggest that both tissue-specificity and the age of samples included in the 

training dataset influence the precision of DNAm age estimators, as shown by the 

increase in accuracy when using our cortical clock relative to existing clocks in human 

cortex tissue samples. This notion is further supported by the accuracy we found using 

the blood-based estimators on a large blood dataset. Our observations suggest that 

tissue type has a major influence on the accuracy of DNAm age clocks, and to 

accurately predict age it is important to use a clock calibrated specifically for the tissue 

from which samples have been derived. Our data demonstrate that the performance of 

existing DNAm clocks varies considerably across ages and is diminished in samples 

from elderly donors. This is particularly important to consider when assessing DNAm 

age in the context of diseases and phenotypes that are associated with older age such 

as dementia and neurodegenerative disease. Our results show that it is important to use 

a clock that has been trained using samples from the relevant age group; the training 

data used in the development of the DNAmClockCortical included a good representation of 

older samples, meaning it overcomes the systematic underestimation of DNAm age in 

the elderly that was observed with existing clocks. The importance of developing tissue-

specific estimators is supported by other recently developed tissue-specific clocks 

including DNAm age predictors for whole blood (Zhang et al., 2019), human skeletal 

muscle (Voisin et al., 2019) and human bone (Gopalan et al., 2019), which all out 

perform pan-tissue clocks in samples from the specific tissues in which they were 

trained. It is known that DNA methylation patterns are distinct between tissue and cell 

types (Mendizabal et al., 2019), and it is therefore not surprising that DNAm age 

estimation models would differ in accuracy across tissue types. As technologies for 

profiling DNAm in purified cell populations, future clocks should be developed for 

specific cell-types to overcome issues of cellular heterogeneity in complex tissues such 

as the brain. 
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Although a pan-tissue estimator such as Horvath’s DNAmClockMulti has clear general 

utility, the trade-off between accuracy and practicality needs to be taken into 

consideration depending on the hypothesised question being tested. Applying one 

model across multiple tissues may lead to a suboptimal fit (for example, when applying 

a linear model where there is non-linearity). To assess the linearity of DNAm age 

predictors we investigated the association between DNAm age, and age squared. 

Adding the squared variable allowed us to more accurately model the effect of age, 

which could have a non-linear relationship with DNAm age. The DNAmClockCortical was 

the most linear in terms of fitting DNAm age against actual age. Although age squared 

terms were significantly associated with DNAm age in the testing data using all 

estimators, the higher significance of the age squared term in the cortex-specific clock 

suggests that of all the clocks, our model is the least biased. However, as indicated by 

the relationship between DNAm and age squared, we need to consider the possibility 

that fitting a linear model might not be the best approach, and to account for this 

possibility we recommend that future age-acceleration analyses control for age squared 

terms. 

 

Due to the nature of DNAm clocks, Δ age estimated using existing clocks is highly 

correlated with chronological age (El Khoury et al., 2019). If age is not controlled for it 

could lead to spurious associations with health outcomes, which are driven by age and 

not the variable of interest. Furthermore, as the prediction is less precise in older 

individuals, even where DNAm is regressed on chronological age, the residual may still 

be associated with age, potentially leading to false positive associations. Recent studies 

have found associations between accelerated DNAm age in human brain and 

neurodegenerative phenotypes (Levine et al., 2015, 2018). Our findings suggest that 

previous associations with age-associated phenotypes may have been confounded by a 

lack of robust calibration to estimate DNAm age in human cortex from elderly donors; 

caution is warranted in interpreting reported results. While, DNAm age is a useful 

indicator of age, it may not be the best indicator of health disparities between individuals 

with brain disorders.  
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In summary, we show that previous epigenetic clocks systematically underestimate age 

in older samples and do not perform as well in human cortex tissue. We developed a 

novel epigenetic age model specifically for human cortex. Our findings suggest that 

previous associations between predicted DNAm age and neurodegenerative 

phenotypes may represent false positives resulting from suboptimal calibration of 

DNAm clocks for the tissue being tested and for phenotypes that manifest at older ages. 

The age distribution and tissue type of samples included in training datasets need to be 

considered when building and applying epigenetic clock algorithms to human 

epidemiological or disease cohorts.  
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FIGURE LEGENDS 
Figure 1: Comparison of chronological age with DNA methylation age derived 
using four DNA methylation age clocks. Shown are comparisons of chronological 

age with predicted age in (A) the testing dataset (n = 350 cortical samples) and (B) the 

validation dataset (n = 1221 cortical samples). DNAm age was predicted using four DNA 

methylation age clocks: (i) our novel DNAmClock
Cortical

; (ii) Horvath’s
 
DNAmClock

Multi
; 

(iii) Zhang’s
 
DNAmClock

Blood 
and (iv) Levine’s DNAmClock

Pheno
. The x-axis represents 

chronological age (years) and the y-axis represents predicted age (years). Each point 

on the plot represents an individual sample. Our cortical clock out-performed the three 

alternative DNAm clocks across all accuracy statistics. DNA methylation age estimates 

derived using the DNAmClock
Multi 

(A(ii) testing and B(ii) validation) and the
 

DNAmClock
Blood 

 (A(iii) testing and B(iii) validation) appear to have a non-linear 

relationship with chronological age. 

  

*DNAmClock
Cortical 

= Cortical DNA methylation age Clock;  DNAmClock
Multi 

= Multi-tissue 

DNA methylation age clock; 

 
DNAmClock

Blood 
 = Blood DNA methylation age clock and DNAmClock

Pheno 
= Pheno Age 

DNA methylation age clock. 

 
Figure 2: The cortical DNA methylation age clock has elevated accuracy in human 
cortex samples across the lifespan. Shown is the distribution of the error (DNA 

methylation age - chronological age) for each age decile in (A) the testing dataset (n =  

350 cortical samples) and (B) the validation dataset (n = 1221 cortical samples) for each 

of the four DNA methylation age clocks: (i) our novel DNAmClock
Cortical

; (ii) Horvath’s
 

DNAmClock
Multi

; (iii) Zhang’s
 
DNAmClock

Blood 
and (iv) Levine’s DNAmClock

Pheno
. 

Deciles were calculated by assigning chronological age into ten bins and are 

represented along the x-axis by the numbers one to ten, followed by brackets which 

display the age range included in each decile. The ends of the boxes are the upper and 

lower quartiles of the errors, the horizontal line inside the box represents the median 
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deviation and the two lines outside the boxes extend to the highest and lowest 

observations. Outliers are represented by points beyond these lines. The red horizontal 

line represents perfect prediction (zero error). Our novel DNAmClock
Cortical

(A(i) testing 

and B(i) validation) consistently had the smallest error across the age groups, shown by 

the tightness of the boxplot distributions along the zero-error line. The
 
DNAmClock

Multi 

over-predicted younger ages (deciles 1-5 in A(ii)), shown by boxplots distributions 

which are above the zero-error line, and under predicted older ages (deciles 8-10 in 

A(ii) and deciles 1-10 in B(ii)), shown by boxplot distributions below the zero-error line. 
The

 
DNAmClock

Blood 
(A(iii) testing and B(iii) validation) and the DNAmClock

Pheno 
(A(iv) 

testing and B(iv) validation) consistently underpredicted age, with underprediction of 

DNA methylation age increasing with chronological age. 

*DNAmClock
Cortical 

= Cortical DNA methylation age Clock;  DNAmClock
Multi 

= Multi-tissue 

DNA methylation age clock; 

 
DNAmClock

Blood 
 = Blood DNA methylation age clock and DNAmClock

Pheno 
= Pheno Age 

DNA methylation age clock 

 

Figure 3: The blood based DNA methylation clock performs best in data derived 
from whole blood samples. (A) Shown is a comparison of DNA methylation age 

estimates against chronological age in a large whole blood dataset (n = 1175), where 

DNAm age derived using four DNA methylation age clocks: (i) our novel 

DNAmClock
Cortical

; (ii) Horvath’s
 
DNAmClock

Multi
; (iii) Zhang’s

 
DNAmClock

Blood 
and (iv) 

Levine’s DNAmClock
Pheno

. The x-axis represents chronological age (years), the y-axis 

represents predicted age (years). Each point on the plot represents an individual in the 

whole blood dataset. Our novel clock does not predict as well in the cortex, although it 

has a similar predictive ability to Horvath’s clock. The distribution of the error (DNA 

methylation age - chronological age) is presented in (B) for each decile for each of the 

four DNA methylation clocks. Deciles were calculated by assigning chronological age 

into ten bins and are represented along the x-axis by the numbers one to ten, followed 

by brackets which display the age range included in each decile. The ends of the boxes 

are the upper and lower quartiles of the errors, the horizontal line inside the box 
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represents the median deviation and the two lines outside the boxes extend to the 

highest and lowest observations. Outliers are represented by points beyond these lines. 

The red horizontal line represents perfect prediction (zero error). 

*DNAmClock
Cortical 

= Cortical DNA methylation age Clock;  DNAmClock
Multi 

= Multi-tissue 

DNA methylation age clock; 

 
DNAmClock

Blood 
 = Blood DNA methylation age clock and DNAmClock

Pheno 
= Pheno Age 

DNA methylation age clock. 
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TABLES 
Table 1: Sample characteristics of the training (cortex), testing (cortex), validation (cortex) and whole blood datasets used 
in the development and evaluation of our novel cortical DNA methylation clock. 

Dataset 
 

Age (years) Sex (number) Illumina 
BeadCHIPArray 

References for data 
N Mean Median Range Female Male 

Training 1047 56.53 57 1-108 362 685 450K (Jaffe et al., 2016; De 

Jager et al., 2014; 

Lunnon et al., 2014; 

Pidsley et al., 2014; 

Smith et al., 2018, 

2019; Wong et al., 

2019) 

Testing 350 55.87 56 1-108 144 206 450K (Jaffe et al., 2016; De 

Jager et al., 2014; 

Lunnon et al., 2014; 

Pidsley et al., 2014; 

Smith et al., 2018, 

2019; Wong et al., 

2019) 

Validation 1221 83.49 84 41-104 577 644 EPIC 
 

- 

Blood 1175 57.96 59 28-98 686 489 EPIC Hannon et al. (2018) 

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.27.063719doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.063719
http://creativecommons.org/licenses/by/4.0/


 

 23 

Table 2 – Our novel cortex clock outperforms existing DNA methylation age algorithms in human cortex samples. 
Accuracy statistics between DNAm age estimates and chronological age using our novel cortical clock, Horvath’s multi-

tissue clock (Horvath, 2013), Zhang’s elastic net blood clock (Zhang et al., 2019) and Levine’s Pheno Age clock (Levine et 

al., 2018) in both the testing (n = 350 cortical samples) and validation (n = 1221 cortical samples) datasets. RMSE = root 

mean squared error (years). MAD = mean absolute deviation (years). 

 
 

 Testing dataset (n =350) Validation dataset (n = 1221) 

 Cortical Clock Multi-tissue Clock Blood Clock 
Pheno Age 
Clock 

Cortical 
Clock 

Multi-tissue 
Clock 

Blood 
Clock 

Pheno Age 
Clock 

Correlation (r) 0.99 0.96 0.95 0.8 0.83 0.65 0.52 0.32 

RMSE (years) 3.58 9.52 18.86 60.16 5.12 20.12 33.46 82.28 
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Table 4 – The cortex clock is less accurate at estimating DNA methylation age algorithms in blood compared to 
cortex tissue samples. Although still compares well to existing clock algorithms. Accuracy statistics between 

DNAm age estimates and chronological age using our novel cortical clock, Horvath’s multi-tissue clock (Horvath, 2013), 

Zhang’s elastic net blood clock (Zhang et al., 2019) and Levine’s Pheno Age clock (Levine et al., 2018) in our blood 

dataset (n = 1175 whole blood samples). RMSE = root mean squared error (years). MAD = mean absolute deviation 

(years). 
  

 Cortical Clock Multi-tissue Clock Blood Clock Pheno Age Clock 
Correlation (r) 0.88 0.90 0.97 0.87 

RMSE (years) 10.79 7.32 3.95 11.70 
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Table 3 – The relationship between DNAm age and age (age and age2) using different DNAm clock algorithms. 
DNAm age was estimated using our novel cortical clock, , Horvath’s multi-tissue clock (Horvath, 2013), Zhang’s elastic net 

blood clock (Zhang et al., 2019) and Levine’s Pheno Age clock (Levine et al., 2018) in the “testing” dataset (n = 350 

cortical samples), the “validation” dataset (n =1221 cortical samples) and the blood dataset (n =1175 whole blood 

samples).  

  

Testing dataset Validation dataset Blood dataset 
Beta SE P Beta SE P Beta SE P 

Cortical Clock 
DNAm age vs age  1.137 0.034 2.86E-108 1.031 0.174 5.31E-09 0.585 0.063 5.37E-20 

DNAm age vs age2 -0.002 0.000 1.94E-07 -0.002 0.001 0.028 0.000 0.001 0.702 

Multi-tissue clock  
DNAm age vs age  1.082 0.041 3.17E-83 0.683 0.164 3.51E-05 0.754 0.065 6.01E-30 

DNAm age vs age2 -0.004 0.000 2.45E-21 -0.002 0.001 0.085 -0.001 0.001 3.71E-02 

Blood Clock 
DNAm age vs age  0.821 0.034 1.30E-74 0.640 0.175 3.00E-04 1.145 0.046 9.50E-111 

DNAm age vs age2 -0.003 0.000 1.81E-21 -0.002 0.001 0.057 -0.002 0.000 8.47E-09 

Pheno Age Clock 
DNAm age vs age  0.571 0.069 3.19E-15 -0.351 0.229 0.127 0.631 0.085 1.86E-13 

DNAm age vs age2 -0.002 0.001 4.47E-03 0.004 0.001 0.014 0.001 0.001 0.388 
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r = 0.88

RMSE = 10.79
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