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ABSTRACT 

Complex human diseases are affected by genetic and environmental risk factors and their 

interactions. Gene-environment interaction (GEI) tests for aggregate genetic variant sets have been 

developed in recent years. However, existing statistical methods become rate limiting for large 

biobank-scale sequencing studies with correlated samples. We propose efficient Mixed-model 

Association tests for GEne-Environment interactions (MAGEE), for testing GEI between an 

aggregate variant set and environmental exposures on quantitative and binary traits in large-scale 

sequencing studies with related individuals. Joint tests for the aggregate genetic main effects and 

GEI effects are also developed. A null generalized linear mixed model adjusting for covariates but 

without any genetic effects is fit only once in a whole genome GEI analysis, thereby vastly 

reducing the overall computational burden. Score tests for variant sets are performed as a 

combination of genetic burden and variance component tests by accounting for the genetic main 

effects using matrix projections. The computational complexity is dramatically reduced in a whole 

genome GEI analysis, which makes MAGEE scalable to hundreds of thousands of individuals. We 

applied MAGEE to the exome sequencing data of 41,144 related individuals from the UK Biobank, 

and the analysis of 18,970 protein coding genes finished within 10.4 CPU hours. 

 

KEYWORDS: gene-environment interaction, generalized linear mixed model, correlated data, rare 

variants, joint test
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1. INTRODUCTION 

The variation of traits among individuals in a population results from genetic and environmental 

factors, as well as their interactions. Gene-environment interaction (GEI) studies can improve our 

understanding on the biological mechanisms of complex diseases and lead to discoveries of novel 

genetic associations with effects that vary with environmental exposures (Mcallister et al., 2017).  

The advancements in next-generation sequencing technologies over the past decade have enabled 

the increasing availability of large-scale data of low-frequency and rare genetic variants (with 

minor allele frequency (MAF) 1–5% and <1%, respectively). The single-variant tests 

conventionally used for testing GEI with common variants are underpowered for rare variants. For 

example, statistical power for testing GEI with a binary environmental exposure depends on the 

minor allele counts in both exposed and unexposed groups. Although computationally efficient 

GEI tests for biobank-scale studies have been developed recently in the context of single-variant 

tests on unrelated individuals (Bi et al., 2019) , critical methodological bottlenecks still exist to 

expand the sample size and scope of rare variant GEI analyses in large biobank-scale sequencing 

studies. To increase power for rare variants, various set-based methods have been developed to 

collapse variants in a particular gene or functional region to investigate how variants in a set affect 

a phenotype synergistically (Chen et al., 2019; Lee, Wu, & Lin, 2012; Pan, Kim, Zhang, Shen, & 

Wei, 2014; Sun, J., Zheng, & Hsu, 2013), and to demonstrate whether genetic associations with 

the phenotype are modified by environment factors in GEI studies (Chen, Meigs, & Dupuis, 2014; 

Lin et al., 2016; Su, Y., Di, & Hsu, 2017). For example, rareGE is a software tool for GEI tests on 

rare variants (Chen et al., 2014) that implements three variance component tests: two GEI tests 

that treat the genetic main effects either as fixed or random effects, and a joint test for the genetic 

main effects and GEI. (Lin et al., 2016) proposed the interaction sequence kernel association test 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.28.067173doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.067173


 4 

(iSKAT), which extends the SKAT-O test (Lee et al., 2012) for genetic main effects to a GEI test 

for rare variants that estimates the genetic main effects using a ridge regression model (Hastie, 

Tibshirani, & Friedman, 2009). Mixed effects Score Tests for interaction (MiSTi) proposed by (Su 

et al., 2017) is an extension to MiST  (Sun et al., 2013)  in the context of GEI. 

Most of the aforementioned variant set-based GEI tests were developed to analyze unrelated 

samples and directly applying these methods to related samples will lead to invalid statistical 

inference and inflated type I error rates. On the other hand, extending these methods by adding a 

random effects term to account for relatedness in the generalized linear mixed model (GLMM) 

framework would result in an intensive computational complexity of 𝑂(𝑁$) for each variant set, 

where 𝑁 is the sample size (Lim, Chen, Dupuis, & Liu, 2020; Mazo Lopera, Coombes, & de 

Andrade, 2017). For large biobank-scale sequencing studies, such as the UK Biobank, related 

samples are often present. Therefore, there is an urgent need for computationally efficient variant 

set-based GEI tests that are scalable to hundreds of thousands of related samples. 

Joint tests for genetic main effects and GEI effects are used to identify novel associations 

previously missed in genetic main effect tests, by accounting for heterogeneous genetic effects in 

samples with different environmental exposures (Cornelis et al., 2012). Joint tests for common 

variants have been developed (Chen et al., 2014; Kraft, Yen, Stram, Morrison, & Gauderman, 

2007; Selinger-Leneman, Genin, Norris, & Khlat, 2003; Sun, R., Carroll, Christiani, & Lin, 2018), 

and a variant set-based joint test has been implemented in rareGE (Chen et al., 2014). However, 

the rareGE joint test relies on a Monte Carlo method to compute the p values, which changes 

slightly with the random number seed used in the analysis, and an analytical solution is not 

currently available.  
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We propose a computationally efficient method, Mixed-model Association test for GEne-

Environment interactions (MAGEE), to test GEI effects for rare variants that can reduce the 

computational complexity for testing each variant set from 𝑂(𝑁$) to at most 𝑂(𝑁&) for related 

samples, where 𝑁 is the sample size. For samples with well-defined family structures the use of a 

block diagonal correlation structure can greatly reduce the complexity to 𝑂(𝑛𝑁), where 𝑛 is the 

maximum number of individuals in each block. For unrelated samples, the computational 

complexity for testing each variant set in MAGEE is 𝑂(𝑁), with statistical power being close to 

the existing methods such as rareGE and MiSTi. We also propose analytical joint tests in MAGEE 

that do not require Monte Carlo approaches for p value calculations. 

2. MATERIALS AND METHODS 

2.1 Generalized linear mixed models (GLMMs) and main effect tests 

We developed two GEI tests and three joint tests based on GLMMs within the MAGEE framework. 

The full model of MAGEE is: 

𝑔(𝜇*) = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 +𝑲𝒊𝜸 + 𝑟*    (1)， 

where 𝑔(∙)  is the link function of 𝜇* , and  𝜇*  is the conditional mean of the phenotype for 

individual 𝑖 given covariates 𝑿𝒊, genotypes 𝑮𝒊 and a random intercept 𝑟*. 𝑿𝒊 is a row vector of 𝑝 

covariates including an intercept, 𝑮𝒊 is a row vector of 𝑞	variants, and 𝑲𝒊 is a row vector of 𝑐𝑞 

pairwise GEI terms for 𝑐 environmental factors (which are a subset of the 𝑝 covariates in 𝑿𝒊) and 

𝑞 variants. Accordingly, 𝜶 is a 𝑝 × 1 vector for the covariate effects, 𝜷 is a 𝑞 × 1 vector for the 

genetic main effects, and 𝜸 is the 𝑐𝑞 × 1 vector for GEI effects. The length 𝑁  vector for the 

random intercept 𝒓 = (𝑟>	𝑟& ⋯𝑟@)A~𝑁(0,∑ 𝜆G𝝍𝒍
J
GK> ) , where 𝜆G  are the variance component 

parameters for 𝐿 random effects, and 𝝍𝒍 are 𝑁 × 𝑁 known relatedness matrices. 

The genetic main effect model assuming no GEI (𝜸 = 𝟎) is 
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𝑔(𝜇*) = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 + 𝑟*				 (2) 

Tests for 𝐻O:𝜷 = 𝟎 can be constructed in the SMMAT framework (Chen et al., 2019). If 𝜷 are 

treated as random effects, the main effect variance component (MV) test is then SKAT (Wu et al., 

2011) for related samples (Chen, Meigs, & Dupuis, 2013) , from which we can acquire a p value 

𝑝QR . Another main effect test, the main effect hybrid test using Fisher’s method (Fisher, 1928)  

(MF), which combines the burden test and SKAT, is the efficient hybrid test SMMAT-E (Chen et 

al., 2019) . In this test, we get two p values, one from the burden test, 𝑝S, and the other from the 

adjusted SKAT test, 𝑝TU. SMMAT-E (Chen et al., 2019) combines these two p values to calculate 

a p value for the MF test using Fisher’s method 𝑝QV = P(𝜒Y& 	> 	−2𝑙𝑜𝑔𝑝S − 2𝑙𝑜𝑔𝑝TU). 

2.2 Interaction tests 

In model (2), the score vector for 𝜸 is 𝑺̀𝑲 = 𝑲A(𝒚 − 𝝁c𝑮)/𝜙̀, where	𝒚 is an 𝑁 × 1 vector of the 

observed phenotype values, 𝜙̀ is the dispersion parameter estimate, 𝝁c𝑮 is a vector of fitted values, 

and 𝑲 = (𝑲𝟏
A	𝑲𝟐

A …	𝑲𝑵
A )A  is the 𝑁	 × 	𝑐𝑞  matrix for the GEI terms. Generally, testing for GEI 

𝐻O:	𝜸 = 𝟎 requires adjusting for genetic main effects. Therefore, we need to refit model (2) for 

every set of genetic variants in a whole genome GEI analysis. To reduce the computational burden, 

we first fit a global null model without any genetic main effects: 

𝑔(𝜇*) = 𝑿𝒊𝜶 + 𝑟*				 (3) 

From this model, we can construct score vectors 𝑺𝑮 = 𝑮A(𝒚 − 𝝁j𝟎)/𝜙k  and 𝑺𝑲 = 𝑲A(𝒚 − 𝝁j𝟎)/

𝜙k	for genetic main effects and GEI effects, respectively, where 𝝁j𝟎 is a vector of fitted values from 

model (3), and 𝜙k is the dispersion parameter estimate from model (3). Assuming the main effect 

of genetic variants 𝜷 are small, we then approximate the score vector for GEI effects by 𝑺̀𝑲 ≈

𝑺𝑲 − 𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑺𝑮  (in appendix A), where 𝑮 = (𝑮𝟏A	𝑮𝟐A …	𝑮𝑵A )A is a 𝑁 × 𝑞  matrix of 

genetic variants, 𝑿 = (𝑿𝟏A	𝑿𝟐A …	𝑿𝑵A )A  is a 𝑁 × 𝑝  matrix of covariates, 𝑷n = 𝚺no> −
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𝚺no>𝑿(𝑿A𝚺no>𝑿)o>𝑿A𝚺no>  is an 𝑁 ×𝑁  projection matrix, where 𝚺n = 𝑽n +	∑ 𝜆rG𝝍𝒍
J
GK> , 𝑽n = 𝜙k𝑰𝑵 

for continuous traits and 𝑑𝑖𝑎𝑔{ >
wjxy(>owjxy)

} for binary traits, which we estimate from model (3). 

Using this approximation, in the interaction variance component (IV) test, we assume 𝜸	~	𝑁(0,

𝜏𝑾𝑲
&), where 𝑾𝑲  is a 𝑐𝑞 × 𝑐𝑞  predefined diagonal weight matrix for GEI. Testing for GEI 

𝐻O:	𝜸 = 𝟎 is then equivalent to testing the variance component parameter 𝐻O:	𝜏 = 0,  with a test 

statistic  

𝑇~ = 𝑺̀𝑲A𝑾𝑲𝑾𝑲𝑺̀𝑲. 

Under the null hypothesis, 𝑇~ asymptotically follows the distribution of ∑ 𝜉~,�
��
�K> 𝜒>,�& , where  𝜒>,�&  

are independent chi-square distributions with 1 degree of freedom (df), and 𝜉~,� are the eigenvalues 

of 𝑾𝑲𝚲𝑾𝑲, where 𝚲 = 𝑲A𝑷n𝑲 −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o𝟏
𝑮A𝑷n𝑲 (in appendix A). 

Alternatively, we develop the interaction hybrid test using Fisher’s method (IF) to combine a 

burden-type test and an adjusted variance component test that are asymptotically independent, to 

achieve superior power than the IV test when the true mean of interaction effects 𝜸 is not close to 

0. Specifically, in the IF test we assume 𝜸	~	𝑁(𝑾𝑲𝟏𝒄𝒒𝛾O, 𝜏𝑾𝑲
& ), where 𝟏𝒄𝒒 is a vector of 1’s 

with length 𝑐𝑞 , and testing for GEI 𝐻O:	𝜸 = 𝟎  is equivalent to testing 𝐻O:	𝛾O = 𝜏 = 0 

simutaneously. We decompose this test into two tests (Chen et al., 2019; Sun et al., 2013). In the 

first test, we assume 𝜏 = 0 and test 𝐻O:	𝛾O = 0 using the burden score constructed from the global 

null model (3): 𝑺̀𝑲𝑩 = 𝟏𝒄𝒒A 𝑾𝑲𝑺̀𝑲 = 𝟏𝒄𝒒A 𝑾𝑲�𝑺𝑲 − 𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑺𝑮�. The test statistic  

𝑇~x = 𝑺̀𝑲𝑩&  

follows a distribution of 𝜉~x𝜒>
&  under the null hypothesis 𝐻O:	𝛾O = 0 , where the scalar 𝜉~x =

𝟏𝒄𝒒A 𝑾𝑲𝚲𝑾𝑲𝟏𝒄𝒒 = 𝟏𝒄𝒒A 𝑾𝑲 �𝑲A𝑷n𝑲 −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮𝑻𝑷n𝑲�𝑾𝑲𝟏𝒄𝒒.  
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In the second test, we do not make an assumption that 𝛾O = 0 but we assume its true value is small 

and we test 𝐻O:	𝜏 = 0  using adjusted scores accounting for the burden effect 𝑺̀𝑲𝑽 ≈ 𝑺̀𝑲 −

𝚲𝐖𝐊𝟏𝒄𝒒(𝟏𝒄𝒒A 𝐖𝐊𝚲𝐖𝐊𝟏𝒄𝒒)o>𝑺̀𝑲𝑩 (in appendix B). Then the test statistic can be constructed as: 

𝑇� = 𝑺̀𝑲𝑽A 𝑾𝑲𝑾𝑲𝑺̀𝑲𝑽 

and it asymptotically follows a distribution of ∑ 𝜉�,�
��
�K> 𝜒>,�&  under the null hypothesis 𝐻O:	𝜏 = 0, 

where 𝜉�,�  are eigenvalues for 𝑾𝑲𝚲𝑲𝑽𝑾𝑲 , and 𝚲𝑲𝑽 = 𝚲 −

𝚲𝐖𝐊𝟏𝒄𝒒�𝟏𝒄𝒒A 𝐖𝐊𝚲𝐖𝐊𝟏𝒄𝒒�
o>
𝟏𝒄𝒒A 𝐖𝐊𝚲.  

As 𝑺̀𝑲𝑩 and 𝑺̀𝑲𝑽 are asymptotically independent (in appendix B), we combine p values from the 

two tests 𝑇~x  and 𝑇�  using Fisher’s method to compute 𝑝�V = P(𝜒Y& 	> 	−2𝑙𝑜𝑔𝑝~x − 2𝑙𝑜𝑔𝑝�) , 

where 𝑝~x and 𝑝� are p values from the burden-type test 𝐻O:	𝛾O = 0 (under the assumption 𝜏 = 0) 

and the adjusted variance component test 𝐻O:	𝜏 = 0, respectively.  

2.3 Joint tests 

As the score vector 𝑺𝑮 for genetic main effects and the adjusted score vector 𝑺̀𝑲 for GEI effects 

are asymptotically normal with covariance 

𝑪𝒐𝒗�𝑺̀𝑲, 𝑺𝑮� ≈ 𝑪𝒐𝒗�𝑺𝑲 − 𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑺𝑮, 𝑺𝑮� 

= 𝑲A𝑷n𝑮 −𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑮A𝑷n𝑮 = 𝟎, 

they are asymptotically independent and so are the main effect tests and interaction tests derived 

using 𝑺𝑮 and 𝑺̀𝑲, respectively. Therefore, an analytical form of the joint variance component (JV) 

test for genetic main effects and GEI effects can be constructed by combining p values of MV 

(𝑝QR) and IV (𝑝�R) tests using Fisher’s method as 𝑝�R = P(𝜒Y& 	> 	−2𝑙𝑜𝑔𝑝QR − 2𝑙𝑜𝑔𝑝�R), similar to 

the IF test above. 
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We can also construct the joint test using MF and IF since they are also derived using 𝑺𝑮 and 𝑺̀𝑲 

respectively, and both 𝑺̀𝑲𝑩 and 𝑺̀𝑲𝑽 are linear functions of 𝑺̀𝑲 that are asymptotically independent. 

The four p values – 𝑝~x  from the GEI burden-type test, 𝑝�  from the GEI adjusted variance 

component test,	as well as the aforementioned components in the genetic main effects MF test, 	𝑝S 

and 𝑝TU – are asymptotically mutually independent. Therefore, the joint hybrid test using Fisher’s 

method (JF) can be constructed by adding these four p values on the log scale, which follows a 

chi-square distribution with 8 df under the null hypothesis of no genetic main effects or GEI effects 

(Fisher, 1928) (𝑝�V = P(𝜒�& 	> 	−2𝑙𝑜𝑔𝑝S − 2𝑙𝑜𝑔𝑝TU − 2𝑙𝑜𝑔𝑝~x − 2𝑙𝑜𝑔𝑝�)). Alternatively, we can apply 

Fisher’s method to combine two p values from MF and IF tests, which follows a chi-square 

distribution with 4 df under the null hypothesis of no genetic main effects or GEI effects (𝑝�� =

P(𝜒Y& 	> 	−2𝑙𝑜𝑔𝑝QV − 2𝑙𝑜𝑔𝑝�V)). This is a joint hybrid test using double Fisher’s procedures (JD), 

since each of MF and IF p values is already computed using Fisher’s method (refer to Table S1 of 

the supporting information for a summary of all five new tests: GEI tests IV and IF, and joint tests 

JV, JF and JD).  

2.4 Simulations 

We conducted extensive simulations to 1) investigate MAGEE’s type I error control in unrelated 

and related samples; 2) compare p values from MAGEE and the existing methods rareGE and 

MiSTi on the scale of 10o� to 10o>� in unrelated samples; and 3) compare the power of each test 

within the MAGEE framework. All the simulation scenarios were performed for both quantitative 

and binary traits. 

2.4.1 Type I error in unrelated samples  

HAPGEN2 (Su, Z., Marchini, & Donnelly, 2011)  was used to simulate 200,000 haplotypes on 

chromosome 22 based on 1000 Genomes project CEU data (Sabeti, 2015) as the reference panel. 
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We randomly paired them into genotypes of 100,000 unrelated individuals. We simulated 40 

genotype replicates, and each genotype replicate has a total of 119,317 variants, which were 

assigned to 1,194 variant sets. The first 1,193 groups had 100 variants per group, while the last 

group contained 17 variants. The MAF for each variant ranged from 5.0 × 10o� to 0.5, with a 

mean of 0.18. 

We simulated 1,000 phenotype replicates for each genotype replicate. The quantitative trait for 

individual 𝑖 was simulated from 

𝑦* = 0.1𝐴𝑔𝑒* + 0.2𝑆𝑒𝑥* + 0.1𝐵𝑀𝐼* + 𝜀*, 

where 𝐴𝑔𝑒*~𝑁(50, 	5), 𝑆𝑒𝑥* ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝐵𝑀𝐼* ∼ 𝑁(25, 4), and the random error 𝜀* ∼

𝑁(0, 1). The binary traits for unrelated sample were simulated as a cohort study from  

log ¬ ­(®yK>)
>o­(®yK>)

¯ = 𝛼O + 0.1(𝐴𝑔𝑒* − 𝐴𝑔𝑒±±±±±) + 0.2(𝑆𝑒𝑥* − 𝑆𝑒𝑥±±±±±) + 0.1(𝐵𝑀𝐼* − 𝐵𝑀𝐼±±±±±±), 

where 𝑦* is the observed phenotype value (either 0 or 1), 𝐴𝑔𝑒, 𝑆𝑒𝑥, and body mass index (𝐵𝑀𝐼) 

follow the same distribution as for the quantitative traits, and 𝐴𝑔𝑒±±±±±, 𝑆𝑒𝑥±±±±±, and 𝐵𝑀𝐼±±±±±± are the mean 

values for 𝐴𝑔𝑒, 𝑆𝑒𝑥, and 𝐵𝑀𝐼, respectively, and 𝛼O was set to log O.Y
>oO.Y

. For both quantitative and 

binary traits, we tested for gene-BMI interactions using beta density weight function with 

parameters 1 and 25 on the MAF (Wu et al., 2011) for both common and rare genetic variants, so 

that rare variants would have larger weights than common variants. 

2.4.2 Type I error in related samples  

Since MAGEE can be applied to both unrelated and related samples, we also simulated 40 

genotype replicates for 25,000 families with two parents and two children with a theoretical 

kinship matrix of ²
0.5		0.0		0.25		0.25
0.0		0.5		0.25		0.25
0.25		0.25		0.5		0.25
0.25		0.25		0.25		0.5

³, totaling 100,000 individuals. The 100,000 haplotypes for 

the 50,000 founders were randomly sampled and paired into genotypes, and each child inherited 
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one random haplotype from each parent within the same family. The total number of variants were 

also 119,317 and were assigned to 1,194 variant sets. 

We simulated 1,000 phenotype replicates for each genotype replicate. The quantitative trait for 

individual 𝑗 in family 𝑖 was simulated from  

𝑦*� = 0.1𝐴𝑔𝑒*� + 0.2𝑆𝑒𝑥*� + 0.1𝐵𝑀𝐼*� + 𝑟*� + 𝜀*�, 

where 𝐴𝑔𝑒*� ∼ 𝑁(50, 5) for parents and 𝐴𝑔𝑒*� ∼ 𝑁(20, 5) for children, 𝑆𝑒𝑥*� ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5) for 

both parents and children, BMI for family i 𝑩𝑴𝑰𝒊 ∼ 𝑁(²
25
25
25
25

³ , ²

4.0		0.0		1.5		1.5
0.0		4.0		1.5		1.5
1.5		1.5		4.0		1.5
1.5		1.5		1.5		4.0

³), by assuming a 

heritability of 0.75(Elks et al., 2012), the random effects for family i 𝒓𝒊 ∼

𝑁(²

0
0
0
0

³ , ²

0.25		0.0		0.125		0.125
0.0		0.25		0.125		0.125
0.125		0.125		0.25		0.125
0.125		0.125		0.125		0.25

³	), and the random error 𝜀*� ∼ 𝑁(0, 0.75).   

The binary traits for related sample were simulated as a cohort study from 

log · ­�®y¸K>�
>o­�®y¸K>�

¹ = 𝛼O + 0.1(𝐴𝑔𝑒*� − 𝐴𝑔𝑒±±±±±) + 0.2(𝑆𝑒𝑥*� − 𝑆𝑒𝑥±±±±±) + 0.1(𝐵𝑀𝐼*� − 𝐵𝑀𝐼±±±±±±) + 𝑟*�, 

where 𝐴𝑔𝑒, 𝑆𝑒𝑥, 𝐵𝑀𝐼, and the random effects for family i 𝒓𝒊 follow the same distribution as for 

the quantitative traits, and 𝐴𝑔𝑒±±±±± , 𝑆𝑒𝑥±±±±± , and 𝐵𝑀𝐼±±±±±±  are the population mean values for them, 

respectively, 𝛼O  is log O.Y
>oO.Y

. For both quantitative and binary traits, we tested for gene-BMI 

interactions using beta density weight function with parameters 1 and 25 on the MAF (Wu et al., 

2011) for both common and rare genetic variants. 

2.4.3 Comparison of p values 

We simulated both quantitative and binary traits with unrelated individuals to compare the p value 

estimations for MAGEE with existing methods rareGE and MiSTi. Quantitative traits were 

simulated from 𝑦* = 0.1𝐴𝑔𝑒* + 0.2𝑆𝑒𝑥* + 0.1𝐵𝑀𝐼* + ∑ 𝛽»(𝐺*»
�
»K> − 𝐺»±±±) + ∑ 𝛾»(𝐾*�» − 𝐾»±±±)

�
»K> + 𝜀* , 
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and binary traits were simulated from log ¬ ­(®yK>)
>o­(®yK>)

¯ = 𝛼O + 0.1(𝐴𝑔𝑒* − 𝐴𝑔𝑒±±±±±) + 0.2(𝑆𝑒𝑥* − 𝑆𝑒𝑥±±±±±) +

0.1(𝐵𝑀𝐼* − 𝐵𝑀𝐼±±±±±±) + ∑ 𝛽»(𝐺*»
�
»K> − 𝐺»±±±) + ∑ 𝛾»(𝐾*» − 𝐾»±±±)

�
»K> , where 𝐺*»  denoted the t-th genetic 

variant for the i-th individual, and 𝐺»±±± was the mean of the t-th variant,	𝐾*» = 𝐺*»(𝐵𝑀𝐼* − 𝐵𝑀𝐼±±±±±±) was 

the GEI term for the t-th variant with BMI for individual i, and 𝐾»±±± was the mean of the t-th 

interaction term. We conducted tests with sample sizes 2,000, 5,000, and 10,000. In scenario 1, we 

simulated both genetic main effects 𝛽»  and GEI effects 𝛾»  from 𝑐𝑙𝑜𝑔>O(𝑀𝐴𝐹»), with different 

values of constant 𝑐. In scenario 2, we simulated only genetic main effects 𝛽» from 𝑐𝑙𝑜𝑔>O(𝑀𝐴𝐹»), 

and set GEI effects 𝛾» = 0 so that it was a null hypothesis simulation for interaction tests but an 

alternative hypothesis simulation for joint tests. The specific values for constant 𝑐 in each scenario 

and a summary of the simulation scenarios can be found in Table S2. In all these scenarios, 𝐴𝑔𝑒*, 

𝑆𝑒𝑥*, 𝐵𝑀𝐼* and 𝜀* followed the same distribution as in the null simulations for unrelated samples.  

We simulated one genotype replicate with 100 variants for 10,000 unrelated individuals, and 1,000 

phenotype replicates in each scenario. For 𝛽» and 𝛾», we randomly assigned 80% of them to 0, 10% 

to have a positive effect, and 10% to have a negative effect. 

2.4.4 Power 

To investigate the power of each test within the MAGEE framework, we simulated six scenarios 

using related individuals with sample sizes 20,000, 50,000, and 100,000 in each scenario. In 

scenarios 1-3, we randomly assigned 80% of genetic main effects 𝛽» and GEI effects 𝛾» to 0, 10% 

of 𝛽»  and 𝛾»  to have a positive effect, and the remaining 10% of each of 𝛽»  and 𝛾»  to have a 

negative effect. These proportions were changed to 80% null, 16% positive, and 4% negative in 

scenarios 4-6. In all of the six scenarios, 𝐴𝑔𝑒*� , 𝑆𝑒𝑥*� ,𝐵𝑀𝐼*� , 𝑟*� , and 𝜀*�  followed the same 

distributions as the null simulations for related individuals.  We simulated one genotype replicate 
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with 100 variants for 100,000 related individuals with the same family structure as the null 

simulations for related individuals, and 1,000 phenotype replicates in each scenario. 

Quantitative traits were simulated from 	𝑦*� = 0.1𝐴𝑔𝑒*� + 0.2𝑆𝑒𝑥*� + 0.1𝐵𝑀𝐼*� + ∑ 𝛽»(𝐺*�» −
�
»K>

𝐺»±±±) + ∑ 𝛾»(𝐾*�» − 𝐾»±±±)
�
»K> + 𝑟*� + 𝜀*�, and binary traits were simulated from log · ­�®y¸K>�

>o­�®y¸K>�
¹ = 𝛼O +

0.1(𝐴𝑔𝑒*� − 𝐴𝑔𝑒±±±±±) + 0.2(𝑆𝑒𝑥*� − 𝑆𝑒𝑥±±±±±) + 0.1(𝐵𝑀𝐼*� − 𝐵𝑀𝐼±±±±±±) + ∑ 𝛽»(𝐺*�» − 𝐺»±±±)
�
»K> + ∑ 𝛾»(𝐾*�» −

�
»K>

𝐾»±±±) + 𝑟*� , where 𝐺*�»  was the t-th genetic variant for individual j in family i, and 𝐾*�» = 𝐺*�»(𝐵𝑀𝐼*� −

𝐵𝑀𝐼±±±±±±) was the GEI term for the t-th variant with BMI for individual j from family i. In scenarios 1 

and 4, we simulated both genetic main effects 𝛽» and GEI effects 𝛾» from 𝑐𝑙𝑜𝑔>O(𝑀𝐴𝐹»), with 

different values of constant 𝑐. In scenario 2 and 5, we simulated only genetic main effects 𝛽» from 

𝑐𝑙𝑜𝑔>O(𝑀𝐴𝐹»), and set GEI effects 𝛾» = 0. In scenario 3 and 6, we set genetic main effects 𝛽» =

0, and simulated GEI effects 𝛾» from 𝑐𝑙𝑜𝑔>O(𝑀𝐴𝐹»). The detailed simulation settings and choices 

for constant 𝑐 in each scenario for both quantitative and binary trait are listed in Table S3. 

2.5 Application to UK Biobank whole exome sequencing data 

We used the first tranche of UK Biobank whole exome sequencing (WES) data released in March 

2019 with 49,959 participants, which included 43,386 White British individuals with non-missing 

age. We tested for gene-sex interactions on a quantitative trait BMI, as well as a dichotomized trait 

obesity, which was defined as BMI ≥ 30 (24.1% of the study samples). After removing samples 

with missing genetic ancestry or gender and sex mismatches, the total number of individuals was 

41,144, including 18,925 men and 22,219 women. For BMI, we fit a heteroscedastic linear mixed 

model (Conomos et al., 2016) that allowed the residual variance to be different in men and women, 

adjusting for sex, age, age2, the interaction terms between sex and age, age2, and the top ten 

ancestry principal components (PCs). For obesity, we adjusted for the same covariates in a GLMM. 

We used the population-level genotype data generated from the Functionally Equivalent (FE) 
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pipeline (Regier et al., 2018). The variant sets were defined as protein-coding regions for the WES 

data and a total of 18,970 protein-coding regions with 9,760,758 variants were available for 

analysis. Variants with MAF less than 0.001 were excluded from the analysis. We applied a beta 

density weight function with parameters 1 and 25 on the MAF (Wu et al., 2011), and performed 

both GEI and joint tests using a single thread on a computing server. 

3. RESULTS 

3.1 Simulation Studies 

3.1.1 Type I error 

Table 1 summarizes the empirical type I error rates of MAGEE tests for quantitative and binary 

traits with 100,000 unrelated sample at significance levels of 0.05, 1.0	 × 10oY, and 2.5	 ×	10o�. 

In each cell, empirical type I error rates were estimated from 47,760,000 p values under the null 

hypothesis (40 genotype replicates  × 1,000 phenotype replicates × 1,194 variant sets) of the null 

model for unrelated samples. In Figure S1, the quantile-quantile (QQ) plots for both quantitative 

and binary traits show that all MAGEE main effect tests, GEI tests, and joint tests are well 

calibrated.  

Similarly, Table 2 shows the empirical type I error rates of MAGEE tests for 100,000 related 

samples from 25,000 families at the same significance levels as Table 1. Figure 1 shows that with 

related individuals in the sample, existing methods that ignore the correlation structure, such as 

rareGE and MiSTi, give inflated type I error rates. In contrast, MAGEE tests control type I errors 

successfully. Due to the computational speed issue, rareGE and MiSTi do not scale up to the 

sample size of 100,000. Therefore, analyses in Figure 1 were performed using 10,000 related 

samples from 2,500 families, in which 119,400 p values (1 genotype replicate × 100 phenotype 

replicates × 1,194 variant sets) were estimated. Figure S2 shows the QQ plots of MAGEE tests 
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for quantitative and binary traits with 100,000 related samples from 47,760,000 p values, which 

are consistent with our results from 100,000 unrelated samples in Figure S1. 

3.1.2 Computation time and p value comparison 

We compared the p values from MAGEE with those from rareGE and MiSTi for both quantitative 

and binary traits in 2,000, 5,000, and 10,000 unrelated samples. Each panel in Figure 2 (scenario 

1 for quantitative trait: both genetic main effects and GEI effects) displays 1,000 p values from 

quantitative trait analyses with unrelated samples when both genetic main effects and GEI effects 

were simulated. MAGEE IV, IF, and JV tests have close p values with rareGE GEI test, MiSTi 

test, and rareGE JOINT test, respectively, and the accuracy increases with the sample size. Similar 

results are found in Figure S3 (scenario 2 for quantitative trait: genetic main effects only), in which 

only the genetic main effects but no GEI effects were simulated, as well as Figures S4 and S5 

(scenario 1 and scenario 2 for binary traits).  

Figure 3 compares the CPU time per p value on a single thread for MAGEE, rareGE, and MiSTi 

in quantitative trait analyses using unrelated individuals. As both rareGE and MiSTi require fitting 

a separate statistical model for each genetic variant set, their CPU time increases dramatically with 

the sample size, while MAGEE tests remain computationally efficient in large samples. Similar 

results are also observed in Figure S6 from binary trait analyses. In addition, MAGEE joint tests 

are performed simultaneously with the main effect and GEI tests. For example, when performing 

the JV test, MV and IV test results will be produced automatically; when performing either the JF 

or JD test, MF and IF test results will also be computed automatically.  

3.1.3 Power 

Figure 4 shows the empirical power of the seven tests within the MAGEE framework in analyzing 

quantitative traits (scenario 1 to 6), at the significance level of  2.5 × 10o� with 20,000, 50,000, 
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and 100,000 related samples, respectively. The top panels show results from the scenarios 1-3, 

which have variants with 80% null, 10% positive, and 10% negative effects. When both genetic 

main effects and GEI effects are present (Figure 4A), the three joint tests are most powerful and 

they have very close power that increases along with the sample size. In the other two scenarios 

with only either genetic main effects (Figure 4B) or GEI effects (Figure 4C), the joint tests are less 

powerful than main effects tests or GEI tests, respectively. In general, the variance component 

tests (MV, IV and JV) and the hybrid tests (MF, IF, JF and JD) have close power, with the hybrid 

tests power being slightly more powerful in these simulation settings. The bottom panels show 

results from the scenarios 4-6, which have variants with 80% null, 16% positive, and 4% negative 

effects. The results are similar with scenarios 1-3 except that the hybrid tests have recognizable 

higher power compared to the variance component tests, for all main effect, GEI and joint tests. 

Furthermore, the JF test is slightly less powerful than the JD test, except in Figure 4A and 4D, 

when both genetic main effects and GEI effects were simulated. Similar results with six simulation 

scenarios for binary traits are shown in Figure S7. In general settings, we would recommend IF for 

the GEI test, and JD for the joint test, if we do not have any prior knowledge about the genetic 

architecture of main effects or GEI effects. 

3.2 UK Biobank whole exome sequencing data 

The analysis of all 18,970 protein coding regions were finished in 10.4 hours using a single thread 

on a computing server for a single phenotype. Figure 5 shows that the IF tests are well calibrated 

for both the quantitative trait BMI and the dichotomized trait obesity, while the mild inflations in 

the JD tests are likely attributable to the main effect tests, as expected for polygenic traits. However, 

from Figure 6 one can see that across the 18,970 protein-coding regions, only one significant p 

value in the melanocortin 4 receptor (MC4R) gene region on chromosome 18 was found in the JD 
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test of gene-sex interaction for BMI at the significance level of 0.05/18,970 = 2.64 ×	10o� after 

Bonferroni correction for multiple testing (Bland & Altman, 1995) . The IF test p value in this 

region was not significant (𝑝 = 0.26), so the significant signal in the JD test (𝑝 = 2.29 × 10oÂ) 

was mostly driven by genetic main effects (MF test 𝑝 = 4.56	 ×	10o�). MC4R is one of the most 

common monogenic cause of severe obesity in humans (Krashes, Lowell, & Garfield, 2016; Vaisse, 

Clement, Guy-Grand, & Froguel, 1998). Previously, genome-wide association studies have 

identified common variants in or near MC4R with sex-specific effects on human brain structure 

and eating behavior (Horstmann et al., 2013), but it is unknown whether there are sex-specific 

genetic effects on BMI in this region.  

4. DISCUSSION 

We have developed computationally efficient variant set-based mixed model GEI tests and joint 

tests in the MAGEE framework, which can be applied to both quantitative and binary traits in large 

biobank-scale sequencing studies with hundreds of thousands of possibly related individuals. We 

have shown in simulation studies that existing GEI tests for variant sets developed for unrelated 

samples would have inflated type I error rates when applied to related samples, while MAGEE 

successfully controls type I errors in both unrelated and related samples. MAGEE requires fitting 

a global null model only once for all the tests across the whole genome, and it uses two matrix 

projection approaches to approximate the test statistics. MAGEE accounts for sample relatedness 

using GLMMs, and it greatly reduces the computational complexity for testing each variant set 

from 𝑂(𝑁$) to no more than	𝑂(𝑁&) with highly accurate approximations, making it the method 

of choice. For samples with a block-diagonal relatedness structure (such as family studies), the 

computational complexity for testing each variant set is further reduced to 𝑂(𝑛𝑁), where 𝑛 is the 

maximum number of individuals in each block (e.g., the family size), which is often much smaller 
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than the total sample size 𝑁 . For unrelated samples, MAGEE tests have a computational 

complexity of 𝑂(𝑁). The CPU time of MAGEE is much smaller than existing methods, since it 

does not require fitting a separate statistical model to account for genetic main effects, for each 

variant set in the whole genome analysis. Moreover, the MAGEE joint tests are unique because p 

values are computed analytically, instead of using the Monte Carlo approaches as implemented in 

rareGE (Chen et al., 2014). Based on our simulation studies, the hybrid test IF is more powerful 

than the variance component test IV for GEI effects, especially when the interaction effects do not 

have a mean of 0, and the hybrid test JD is usually the most powerful joint test. When both genetic 

main effects and GEI effect are present on approximately the same scale, the hybrid test JF is 

slightly more powerful than the JD test, but the power difference is negligible. In reality, with little 

knowledge on the genetic architecture of a quantitative or binary trait, the IF test is recommended 

for identifying GEI effects, and the JD test is recommended for identifying genetic associations 

that allow for heterogeneous effects in different environmental exposures. 

We applied MAGEE to the WES data from the UK Biobank. The results showed that MAGEE p 

values were well calibrated in these real data applications, and we identified an association 

between BMI and MC4R gene from the joint test. However, we did not find any significant p 

values from the interaction test. It is possible that interaction effects may be too small to identify 

in 41,144 samples. As the WES project is ongoing in the UK Biobank, we hope to revisit gene-

environment interaction analyses when WES data from more UK Biobank samples are released in 

the coming years. 

Recently, StructLMM was developed to test GEI effects for a single genetic variant with high-

dimensional environmental factors (Moore et al., 2019). While MAGEE can test GEI effects for 

multiple genetic variants with multiple environmental factors, its performance in a high-
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dimensional setting (e.g., a large number of genetic variants along with hundreds of environmental 

factors) has not been fully investigated. Moreover, MAGEE GEI and joint tests using summary 

statistics in a meta-analysis setting can further boost statistical power by combining association 

evidence from multi-million samples from large-scale sequencing studies in upcoming years. Our 

MAGEE framework provides a foundation for future research in these directions. 
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TABLES 

Table 1. Empirical type I error rates of MAGEE tests for 100,000 unrelated individuals at 

significance levels of 0.05, 1.0	 × 10oY, and 2.5	 ×	10o�. 

  
Quantitative trait 
Significance Level   

Binary trait 
Significance Level 

Test 0.05 1.0 × 10oY 2.5 ×	10o�   0.05 1.0 × 10oY 2.5 ×	10o� 
MV 0.050 1.00 × 10oY 2.74 ×	10o�   0.050 1.02 × 10oY 2.35 ×	10o� 
MF 0.050 1.01 × 10oY 2.49 ×	10o�  0.050 1.00 × 10oY 2.84 ×	10o� 
IV 0.050 1.04 × 10oY 2.47 ×	10o�  0.050 1.01 × 10oY 2.31 ×	10o� 
IF 0.050 1.01 × 10oY 2.70 ×	10o�  0.050 9.93 × 10o� 2.14 ×	10o� 
JV 0.050 1.02 × 10oY 2.51 ×	10o�  0.050 1.01 × 10oY 2.44 ×	10o� 
JF 0.050 1.00 × 10oY 2.55 ×	10o�  0.050 1.02 × 10oY 2.59 ×	10o� 
JD 0.050 1.00 × 10oY 2.53 ×	10o�   0.050 1.01 × 10oY 2.40 ×	10o� 

 

 

Table 2. Empirical type I error rates of MAGEE tests for 100,000 related individuals at significance 

levels of 0.05, 1.0	 × 10oY, and 2.5	 × 	10o�. 

  
Quantitative trait 
Significance Level   

Binary trait 
Significance Level 

Test 0.05 1.0 × 10oY 2.5 ×	10o�   0.05 1.0 × 10oY 2.5 ×	10o� 
MV 0.050 9.97 × 10o� 2.32 ×	10o�   0.050 9.92 × 10o� 2.28 ×	10o� 
MF 0.050 1.01 × 10oY 2.72 ×	10o�  0.050 9.93 × 10o� 1.86 ×	10o� 
IV 0.050 9.82 × 10o� 1.99 ×	10o�  0.048 8.90 × 10o� 2.07 ×	10o� 
IF 0.050 9.87 × 10o� 1.97 ×	10o�  0.048 8.81 × 10o� 2.14 ×	10o� 
JV 0.050 9.99 × 10o� 2.81 ×	10o�  0.049 9.55 × 10o� 2.14 ×	10o� 
JF 0.050 9.98 × 10o� 2.74 ×	10o�  0.048 9.30 × 10o� 2.11 ×	10o� 
JD 0.050 1.01 × 10oY 2.83 ×	10o�   0.048 9.14 × 10o� 2.16 ×	10o� 
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FIGURE LEGENDS  

Figure 1. Quantile-Quantile plots of MAGEE, rareGE and MiSTi tests on quantitative traits in 

10,000 related samples. (A) MAGEE IV, rareGE and MiSTi GEI tests. (B) MAGEE JV and rareGE 

joint tests. 
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Figure 2. Comparison of p values from MAGEE versus rareGE and MiSTi tests on quantitative 

traits when both genetic and GEI effects were present (scenario 1) in 2,000, 5,000, and 10,000 

unrelated samples. (A) MAGEE IV versus rareGE GEI tests. (B) MAGEE IF versus MiSTi GEI 

tests. (C) MAGEE JV versus rareGE joint tests. 
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Figure 3. CPU time per p value of MAGEE, rareGE and MiSTi tests on quantitative traits in 

unrelated samples. (A) MAGEE, rareGE and MiSTi GEI tests. (B) MAGEE and rareGE joint tests. 
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Figure 4. Empirical power of MAGEE tests on quantitative traits in 20,000, 50,000, and 

100,000 related samples. (A) Scenario 1: 80% null variants, 10% causal variants with positive 

effects and 10% causal variants with negative effects for both genetic main effects and GEI effects. 

(B) Scenario 2: 80% null variants, 10% causal variants with positive effects and 10% causal 

variants with negative effects for genetic main effects only. (C) Scenario 3: 80% null variants, 10% 

causal variants with positive effects and 10% causal variants with negative effects for GEI effects 

only. (D) Scenario 4: 80% null variants, 16% causal variants with positive effects and 4% causal 

variants with negative effects for both genetic main effects and GEI effects. (E) Scenario 5: 80% 

null variants, 16% causal variants with positive effects and 4% causal variants with negative effects 

for genetic main effects only. (F) Scenario 6: 80% null variants, 16% causal variants with positive 

effects and 4% causal variants with negative effects for GEI effects only. 
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Figure 5. Quantile-Quantile plots of UK Biobank WES data analysis using MAGEE tests for 

gene-sex interaction effects on BMI and obesity. (A) BMI analysis. (B) Obesity analysis. 
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Figure 6. Manhattan plots of UK Biobank WES data analysis using MAGEE tests for gene-sex 

interaction effects on BMI and obesity. (A) MAGEE IF test on BMI. (B) MAGEE JD test on BMI. 

(C) MAGEE IF test on obesity. (D) MAGEE JD test on obesity. 
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APPENDIX A: APPROXIMATIONS FOR THE SCORE VECTOR 𝑺̀𝑲 

Let 𝜶c, 𝜷Å, and 𝒓Æ  be the estimates for 𝜶, 𝜷, and 𝒓 from Equation 2, 𝒀Å is the working vector for the 

GLMM and 𝒀Å=	𝒚 for quantitative trait, and 𝑌̀* = 𝑿𝒊𝜶c + 𝑮𝒊𝜷Å + 𝑟̃* + {𝜇ÆÊ*(1 − 𝜇ÆÊ*)}o>(𝑦* − 𝜇ÆÊ*) 

for binary traits. 

𝒚o𝝁c𝑮
ËÅ

= 𝑽Åo>�𝒀Å − 𝑿𝜶c − 𝑮𝜷Å − 𝒓Æ	�, 

= 𝚺Åo>�𝒀Å − 𝑿𝜶c − 𝑮𝜷Å� 

= 𝚺Åo> Ì𝒀Å − (𝑿	𝑮)·𝑿
A𝚺Åo>𝑿 𝑿A𝚺Åo>𝑮

𝑮A𝚺Åo>𝑿 𝑮A𝚺Åo>𝑮
¹
o>
·𝑿

A𝚺Åo>
𝑮A𝚺Åo>

¹𝒀ÅÍ 

= �𝚺Åo> − 𝚺Åo>𝑿�𝑿A𝚺Åo>𝑿�
o>
𝑿A𝚺Åo>�𝒀Å − �𝚺Åo> − 𝚺Åo>𝑿�𝑿A𝚺Åo>𝑿�

o>
𝑿A𝚺Åo>� 

𝑮¬𝑮A �𝚺Åo> − 𝚺Åo>𝑿�𝑿A𝚺Åo>𝑿�
o>
𝑿A𝚺Åo>�𝑮¯

o>
𝑮A �𝚺Åo> − 𝚺Åo>𝑿�𝑿A𝚺Åo>𝑿�

o>
𝑿A𝚺Åo>�𝒀Å 

Assuming the true value of  𝜷  is small, including the 𝑮𝒊𝜷  term in Equation (2) does not 

dramatically change the variance component estimates for 𝜏 and 𝜙 from Equation (3), we can 

approximate that 𝚺Åo> − 𝚺Åo>𝑿�𝑿A𝚺Åo>𝑿�
o>
𝑿A𝚺Åo> ≈ 𝑷n and 𝒚o𝝁j𝟎

Ën
≈ 𝑷n𝒀Å, so  

𝑺̀𝑲 =
𝑲A(𝒚 − 𝝁c𝑮)

𝜙̀
≈ 𝑲A𝑷n𝒀Å −𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑮A𝑷n𝒀Å ≈ 𝑺𝑲 − 𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑺𝑮 

We can rewrite 𝑺̀𝑲  in the matrix form as �−𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o𝟏

𝑰� ·
𝑺𝑮
𝑺𝑲
¹ , where 

·𝑺𝑮𝑺𝑲
¹~𝑁(¬𝟎𝟎¯ , ·

𝑮A𝑷n𝑮 𝑮A𝑷n𝑲
𝑲A𝑷n𝑮 𝑲A𝑷n𝑲

¹), the variance of 𝑺̀𝑲 is then 

𝚲 = �−𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o𝟏

𝑰� ·𝑮
A𝑷n𝑮 𝑮A𝑷n𝑲

𝑲A𝑷n𝑮 𝑲A𝑷n𝑲
¹Î−�𝑮

A𝑷n𝑮�
o𝟏
𝑮A𝑷n𝑲

𝑰
Ï 

= 𝑲A𝑷n𝑲− 𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o𝟏
𝑮A𝑷n𝑲  
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APPENDIX B: APPROXIMATIONS FOR THE SCORE VECTOR 𝑺̀𝑲𝑽 

To get 𝑺̀𝑲𝑽, we need to fit Equation (A1) 

𝑔(𝜇*) = 𝑿𝒊𝜶 + 𝑮𝒊𝜷 +𝑲𝒊𝑾𝑲𝟏𝒄𝒒𝛾O + 𝑟*				 (A1) 

Let 𝜶cÅ , 𝜷ÅÅ , 𝒓Æ̀ ,	and 𝛾Æ̀O  be the estimates for 𝜶, 𝜷, 𝒓 and 𝛾O  from Equation (A1), 𝒀ÅÅ  is the working 

vector for Equation (A1) and 𝒀ÅÅ=	𝒚 for quantitative trait, and 𝑌̀̀* = 𝑿𝒊𝜶cÅ + 𝑮𝒊	𝜷ÅÅ + 𝑲𝒊𝑾𝑲𝟏𝒄𝒒𝛾Æ̀O +

𝑟̃Ð* + �𝜇Æ̀Ñ*�1 − 𝜇Æ̀Ñ*��
o>
(𝑦* − 𝜇Æ̀Ñ*) for binary traits, where 𝜇Æ̀Ñ*  is the mean for individual i after 

fitting Equation (A1). The mean vector after fitting Equation (A1) is 𝝁cÅ𝑲. 

𝒚 − 𝝁cÅ𝑲
𝜙̀̀

= 𝑽ÅÅo> ¬𝒀ÅÅ − 𝑿𝜶cÅ − 𝑮	𝜷ÅÅ −𝑲𝑾𝑲𝟏𝒄𝒒𝛾Æ̀O − 𝒓Æ̀ 	¯ 

= 𝚺ÅÅo> ¬𝒀ÅÅ − 𝑿𝜶cÅ − 𝑮	𝜷ÅÅ −𝑲𝑾𝑲𝟏𝒄𝒒𝛾Æ̀O¯ 

Let 𝒁 = (𝑮 𝑲𝑾𝑲𝟏𝒄𝒒)	, 

𝒚 − 𝝁cÅ𝑲
𝜙̀̀

= 𝚺ÅÅo> Ó𝒀ÅÅ − (𝑿 𝒁) Î𝑿
A𝚺ÅÅo>𝑿 𝑿A𝚺ÅÅo>𝒁

𝒁A𝚺ÅÅo>𝑿 𝒁A𝚺ÅÅo>𝒁
Ï
o>

Î𝑿
A𝚺ÅÅo>

𝒁A𝚺ÅÅo>
Ï𝒀ÅÅÔ 

= Õ𝚺ÅÅo> − 𝚺ÅÅo>𝑿 ¬𝑿A𝚺ÅÅo>𝑿¯
o>
𝑿A𝚺ÅÅo>Ö𝒀ÅÅ − Õ𝚺ÅÅo> − 𝚺ÅÅo>𝑿 ¬𝑿A𝚺ÅÅo>𝑿¯

o>
𝑿A𝚺ÅÅo>Ö 

𝒁 ×𝒁A Õ𝚺ÅÅo> − 𝚺ÅÅo>𝑿 ¬𝑿A𝚺ÅÅo>𝑿¯
o>
𝑿A𝚺ÅÅo>Ö 𝒁Ø

o>
𝒁A Õ𝚺ÅÅo> − 𝚺ÅÅo>𝑿 ¬𝑿A𝚺ÅÅo>𝑿¯

o>
𝑿A𝚺ÅÅo>Ö𝒀ÅÅ 

Let 𝑷ÅÅ = 𝚺ÅÅo> − 𝚺ÅÅo>𝑿 ¬𝑿A𝚺ÅÅo>𝑿¯
o>
𝑿A𝚺ÅÅo>, 

𝒚 − 𝝁cÅ𝑲
𝜙̀̀

= 𝑷ÅÅ𝒀ÅÅ − 𝑷ÅÅ(𝑮 𝑲)Ù
𝑮A𝑷ÅÅ𝑮 𝑮A𝑷ÅÅ𝑲𝑾𝑲𝟏𝒄𝒒

𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷ÅÅ𝑮 𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷ÅÅ𝑲𝑾𝑲𝟏𝒄𝒒
Ú
o>

Î 𝑮A𝑷ÅÅ

𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷ÅÅ
Ï𝒀ÅÅ 

= Õ𝑷ÅÅ − 𝑷ÅÅ𝑮 ¬𝑮A𝑷ÅÅ𝑮¯
o>
𝑮A𝑷ÅÅÖ𝒀ÅÅ − Õ𝑷ÅÅ − 𝑷ÅÅ𝑮 ¬𝑮A𝑷ÅÅ𝑮¯

o>
𝑮A𝑷ÅÅÖ𝑲𝑾𝑲𝟏𝒄𝒒 

×𝟏𝒄𝒒A 𝐖𝐊𝑲A Õ𝑷ÅÅ − 𝑷ÅÅ𝑮 ¬𝑮A𝑷ÅÅ𝑮¯
o>
𝑮A𝑷ÅÅÖ𝑲𝑾𝑲𝟏𝒄𝒒Ø

o>
𝟏𝒄𝒒A 𝐖𝐊𝑲A Õ𝑷ÅÅ − 𝑷ÅÅ𝑮 ¬𝑮A𝑷ÅÅ𝑮¯

o>
𝑮A𝑷ÅÅÖ 𝒀ÅÅ 
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Assuming the true values of 𝜷 and 𝛾O  are small, including the terms 𝑮𝒊𝜷 and 𝑲𝒊𝑾𝑲𝟏𝒄𝒒𝛾O  in 

Equation (A1) does not dramatically change the variance component estimates for 𝜏 and 𝜙 from 

Equation (3), so we can approximate that 𝑷ÅÅ = 𝚺ÅÅo> − 𝚺ÅÅo>𝑿 ¬𝑿A𝚺ÅÅo>𝑿¯
o>
𝑿A𝚺ÅÅo> ≈ 𝑷n  and 𝒚o𝝁j𝟎

Ën
≈

𝑷n𝒀ÅÅ, so  

𝑺̀𝑲𝑽 =
𝑲A�𝒚 − 𝝁cÅ𝑲�

𝜙̀̀
≈ 𝑲A𝑷n𝒀ÅÅ − 𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�

o>
𝑮A𝑷n𝒀ÅÅ − 𝑲A𝑷n𝑲𝑾𝑲𝟏𝒄𝒒 

Û𝟏𝒄𝒒A 𝐖𝐊 �𝑲A𝑷n𝑲− 𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝑲�𝑾𝑲𝟏𝒄𝒒Ü

o>
𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷n𝒀ÅÅ 

+𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝑲𝑾𝑲𝟏𝒄𝒒 Û𝟏𝒄𝒒A 𝐖𝐊 �𝑲A𝑷n𝑲 −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�

o>
𝑮A𝑷n𝑲�𝑾𝑲𝟏𝒄𝒒Ü

o>
 

𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷n𝒀ÅÅ +𝑲A𝑷n𝑲𝑾𝑲𝟏𝒄𝒒 Û𝟏𝒄𝒒A 𝐖𝐊 �𝑲A𝑷n𝑲− 𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝑲�𝑾𝑲𝟏𝒄𝒒Ü

o>
 

𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝒀ÅÅ −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�

o>
𝑮A𝑷n𝑲𝑾𝑲𝟏𝒄𝒒 

Û𝟏𝒄𝒒A 𝐖𝐊 �𝑲A𝑷n𝑲− 𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝑲�𝑾𝑲𝟏𝒄𝒒Ü

o>
𝟏𝒄𝒒A 𝐖𝐊𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�

o>
𝑮A𝑷n𝒀ÅÅ 

Notice that 𝚲 = 𝑲A𝑷n𝑲 −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o𝟏
𝑮A𝑷n𝑲 , 𝑺̀𝑲 ≈ 𝑺𝑲 − 𝑲A𝑷n𝑮(𝑮A𝑷n𝑮)o>𝑺𝑮  and 𝑺̀𝑲𝑩 =

𝟏𝒄𝒒A 𝑾𝑲𝑺̀𝑲,  

𝑺̀𝑲𝑽 ≈ 𝑲A𝑷n𝒀ÅÅ −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝒀ÅÅ − 𝚲𝑾𝑲𝟏𝒄𝒒�𝟏𝒄𝒒A 𝐖𝐊𝚲𝑾𝑲𝟏𝒄𝒒�

o>
𝟏𝒄𝒒A 𝑾𝑲 

�𝑲A𝑷n𝒀ÅÅ −𝑲A𝑷n𝑮�𝑮A𝑷n𝑮�
o>
𝑮A𝑷n𝒀ÅÅ� 

≈ 𝑺̀𝑲 − 𝚲𝐖𝐊𝟏𝒄𝒒(𝟏𝒄𝒒A 𝐖𝐊𝚲𝐖𝐊𝟏𝒄𝒒)o>𝑺̀𝑲𝑩 

𝑺̀𝑲𝑩  and 𝑺̀𝑲𝑽  are asymptotically independent because they are asymptotically normal with 

covariance  

𝑪𝒐𝒗�𝑺̀𝑲𝑽, 𝑺̀𝑲𝑩� = 𝑪𝒐𝒗¬�𝑰𝒄𝒒 − 𝚲𝑾𝑲𝟏𝒄𝒒�𝟏𝒄𝒒A 𝐖𝐊𝚲𝐖𝐊𝟏𝒄𝒒�
o>
𝟏𝒄𝒒A 𝑾𝑲� 𝑺̀𝑲, 𝟏𝒄𝒒A 𝑾𝑲𝑺̀𝑲¯ 

								= �𝑰𝒄𝒒 − 𝚲𝑾𝑲𝟏𝒄𝒒�𝟏𝒄𝒒A 𝐖𝐊𝚲𝐖𝐊𝟏𝒄𝒒�
o>
𝟏𝒄𝒒A 𝑾𝑲�𝚲𝑾𝑲𝟏𝒄𝒒 = 𝟎. 
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