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ABSTRACT  

Epitranscriptome is an exciting area that studies different types of modifications in transcripts and the 

prediction of such modification sites from the transcript sequence is of significant interest. However, the 

scarcity of positive sites for most modifications imposes critical challenges for training robust algorithms. 

To circumvent this problem, we propose MR-GAN, a generative adversarial network (GAN) based model, 

which is trained in an unsupervised fashion on the entire pre-mRNA sequences to learn a low 

dimensional embedding of transcriptomic sequences. MR-GAN was then applied to extract embeddings 

of the sequences in a training dataset we created for eight epitranscriptome modifications, including m6A, 

m1A, m1G, m2G, m5C, m5U, 2′-O-Me, Pseudouridine (Ψ) and Dihydrouridine (D), of which the positive  

samples are very limited. Prediction models were trained based on the embeddings extracted by MR-

GAN. We compared the prediction performance with the one-hot encoding of the training sequences and 

SRAMP, a state-of-the-art m6A site prediction algorithm and demonstrated that the learned embeddings 

outperform one-hot encoding by a significant margin for up to 15% improvement. Using MR-GAN, we also 

investigated the sequence motifs for each modification type and uncovered known motifs as well as new 

motifs not possible with sequences directly. The results demonstrated that transcriptome features 

extracted using unsupervised learning could lead to high precision for predicting multiple types of 

epitranscriptome modifications, even when the data size is small and extremely imbalanced. 
 

Keywords: N6-methyladenosine (m6A), epitranscriptome, RNA modification site prediction, generative 

adversarial networks (GAN), unsupervised representation learning, methylated RNA immunoprecipitation 

sequencing (MeRIP-Seq). 
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INTRODUCTION 

Epitranscriptome is an exciting emerging area that studies modifications in transcripts. The insurgent 

interest is largely fuelled by the recent discovery of widespread N6-methyl-adenosine (m6A) methylation 

in mammalian mRNAs [1, 2], which has been shown to play important regulatory roles in every stage of 

RNA metabolism and involve in many diseases. Besides m6A, many other types of modifications are 

found to exist in the eukaryotic transcriptome. While some of them including N1-methyladenosine (m1A), 

5-hydroxymethylcytosine (hm5C), 5-methylcytidine (m5C), 2′-O-methylation (2’-O)  and pseudouridine (Ψ) 

are found widespread, other types such as Dihydrouridine (D), and m2G have only a hundred sites 

discovered thus far. These exciting findings have spurred intense research to identify transcriptome 

modifications in different cells and to decipher their roles in regulating various biological processes [3]. 
We consider in this paper the prediction of transcriptome modification sites from transcript 

sequences. This problem is naturally a supervised learning task, which aims to train predictive models for 

each type by using labeled positive and negative modification sites. There is a large collection of 

algorithms for predicting m6A sites from mRNA sequences[4-10], most notably SRAMP. However, such 

predictive algorithms for other modifications are still scarce because training robust models for these 

modification sites face several challenges[11, 12]. First, training for modification types with scarce labeled 

samples suffers from significant overfitting, making the model incapable of learning true methylation-

specific sequence features from random noise patterns. Second, training data for all modifications suffer 

the significant class imbalance, a common challenge in most of the genomics applications, where only a 

small percentage of transcriptome nucleotides are true methylation sites and the majority of them are 

negatively labeled unmodified sites. Unfortunately, traditional supervised learning tends to treat these 

extremely small numbers of instances as noise and again fails to learn desired methylation-specific 

sequence features from the positive samples[13]. Third, predicting modification sites of these different 

types altogether imposes a greater challenge as different types are likely to share similar biological 

sequence patterns making them less distinguishable from each other. One viable solution to address 

these challenges is to take advantage of the vast unlabelled part of the transcriptome sequences with 

unsupervised representation learning to learn transcriptome-wide sequence features as a whole. We 

assume that the unlabelled part of the transcriptome could contain unidentified modification sites and/or 

modification related functional sites (e.g., RNA binding protein binding sites). Therefore, the unsupervised 

learning of transcriptome sequences may help capture modification-related features, which are difficult to 

learn otherwise by a supervised approach using only labeled sequences. We intend to learn these 

features in an unsupervised setting to leverage the supervised learning using labeled data such that the 

classifiers trained using only a few labeled examples can generalize to predict modification sites robustly. 

Unsupervised learning methods have recently attracted an influx of research interest, especially in the 

field of bioinformatics. For example, Restricted Boltzmann machines have been applied for unsupervised 

pre-training of neural networks that were later used to initialize the supervised learning of protein 3D 

structures [14, 15] and amino acid contacts[16]. Besides, Asgari et al. [17] proposed a low dimension 
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representation method for protein sequences, which is inspired by the widely known word2vec model of 

natural language processing. However, none of these methods have been trained to extract features from 

RNA sequences.  
In pursuit of addressing the challenges described above, we propose an unsupervised feature 

construction approach based on Generative Adversarial Network (GAN) [18]. Our method, aptly known as 

MR-GAN, predicts multiple types of modification sites in RNA using GAN based unsupervised feature 

learning. This method delves deep into the largely unexplored area of low dimension representation of 

RNA sequences and demonstrates the usefulness of the unsupervised feature learning in handling some 

of the most difficult problems in the intersection of machine learning and bioinformatics (small and 

imbalance dataset). Though the idea of GAN has been fervently researched in the computer vision 

domain in recent years [19-21], this architecture is largely uncharted territory for bioinformatics except a 

few [22, 23]. The original GAN framework [18], which consists of two modules known as generator and 

discriminator, was designed to learn a generative distribution of data through a two-player minimax game. 

While the generator’s goal is to “fool” the discriminator by producing samples that are as close to the real 

data distribution as possible, the discriminator strives to be not fooled by correctly classifying between 

real and fake data. The adversarial framework has been shown to provide a superior loss to other 

traditional ones based on mean square error or mutual information for learning data distributions.     
Despite the success of GAN in mimicking the underlying data distribution, GANs cannot be 

readily applied to learn the abstract representation of data due to the lack of an efficient inference module. 

Hence, in order to learn the low dimension feature representation of RNA sequences using GAN based 

framework, we employed Adversarial Learned Inference (ALI) model [24], which jointly learns an encoder 

network and a decoder network using the adversarial process similar to GAN. The decoder network takes 

random noise as input and maps it to the data space, whereas the encoder network maps RNA 

sequences to the latent representation. Finally, the encoder, decoder, and a discriminator network get 

combined into the adversarial game, where the discriminator network is trained to distinguish between the 

joint distribution of latent/data-space samples from the decoder and encoder network. 
We adapted the inference learning approach of ALI and employed it to a large compendium of the 

pre-mRNA sequence of the human transcriptome. The objective was to learn an abstract representation 

of transcriptomic sequences that are typically 51 bp long and utilize the embedding as feature vectors for 

predicting eight different types of transcriptome modification sites including m1A, m1G, m2G, m5C, 2’O, 

m5U, pseudouridine (Ψ), and Dihydrouridine (D). Evaluating the effectiveness of features by predicting 

multiple post-transcriptional modifications serves in the manifold. First, the computational prediction of 

distinct epitranscriptomic marks is biologically significant and a long-sought goal for bioinformatics 

researchers. Accurate identification of these marks is essential for deciphering their biological functions 

and mechanism. However, discriminating between RNA modifications using only genomic sequence is a 

challenging task because there are more than 100 different types of RNA modifications characterized so 

far in diverse RNA molecules, including mRNAs, tRNAs, rRNAs and lncRNAs and they may share similar 
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nucleotide sequence preference. Many transcriptome-wide sequencing technologies have been 

developed recently to determine the global landscape of RNA modifications (e.g, Pseudo-seq, Ψ-seq, 

CeU-seq, Aza-IP, MeRIP-seq, m6A-seq, miCLIP, m6A-CLIP, RiboMeth-seq, Nm-seq and m1A-seq) that 

identifies distinct epitranscriptomic marks [25]. However, individual experimental identification of these 

modification sites is very costly, labor-intensive and time-consuming. So, we created a benchmark 

dataset by combining eight different types of post-transcriptional modification data (e.g., m1A, m1G, m2G, 

m5C, m5U, 2′-O, Ψ and D). We compared the effectiveness of the embeddings with the one-hot encoding 

of RNA sequences and demonstrated that the learned embeddings outperform one-hot encoding by a 

significant margin (Fig. 2). We have also applied our method on the m6A dataset provided by SRAMP and 

improved the performance by 4%-12% for different case scenarios in predicting m6A site (Fig. 3). Finally, 

we carried out exploratory analysis via t-SNE to rationalize the superiority of MR-GAN features as well as 

investigated motifs learned by our model to determine the biological relevance of the embedded 

representation. 
 

 
MATERIAL AND METHODS 

Transcriptome dataset for training MR-GAN  
Because our goal is to learn a low dimensional representation of transcriptome sequences using GAN, 

we employed pre-mRNA sequences from the entire human transcriptome to train the proposed MR-GAN 

model. Engaging the large corpus of pre-mRNA sequences is important as it aids our unsupervised 

training to learn patterns from coding and noncoding region to ensure that sufficient contexts are 

observed. The training dataset was compiled from all the chromosomes of the human genome hg38 

assembly [26].  Separate fasta format files (*.fa) were downloaded from the UCSC genome browser for 

each of the chromosomes. Each of the files comprises of intronic and exonic sequences for all the genes 

belonging to the specific chromosome. We then chopped the sequences at the non-overlapping interval 

of every 51 bp and got rid of the sequences that contain character N (represents ambiguous nucleotide). 

We selected 51 bp as the input RNA sample length because previous studies involving the prediction of 

RNA modifications have discovered this length as preferable for capturing contextual information [5, 6]. 

This preprocessing step results in a total of 40.7 million samples of length 51 bp. Finally, in order to feed 

into the MR-GAN for unsupervised learning, each of these sequences was represented by a 4 × 51 binary 

one-hot encoded matrix with rows corresponding to A, C, G, and U. 
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Table 1: Number of samples for different transcriptome modifications in the benchmark dataset.  

Modification type 
 

Number of samples 
 

Center nucleotide 
A C G U 

2’-O 2802 422 820 899 661 
D 162    162 

m1A 3173 3173    
m1G 29   29  
m2G 59   59  
m5C 536  536   
m5U 30    30 
Ψ 3732 31 40 29 3632 

Negative (random) 7699 1963 1815 1917 2004 
Total 18222 5589 3211 2933 6489 

 

Datasets for epitranscriptome modifications 

To train and evaluate models for human transcriptome modification site prediction using transcript 

sequence features extracted by the MR-GAN encoder, we created two benchmark datasets. The first 

dataset includes sites from eight different types of transcriptome modification and negative random 

sequences (see Table 1). The positive sites were collected primarily from RMBase [27], which provides 

location information of the modified single base. We utilized the modified single base as the center and 

extended it to 51 bp by including 25 bp nucleotide sequences from both the upstream and downstream 

direction to form positive sequences. We also extracted a set of background sequence samples, 

randomly sampled from the genomic locations that do not contain any modification sites; we ensured that 

the proportions of the sequences centered at either A, U, C or G are roughly balanced (see Table 1). 

Then, the negative training samples were created for different types of modifications separately. For 2’-O 

or Pseudouridine, which occur on all four different nucleotides, the negative samples include the 

background samples and samples from all other eight types of modification. Otherwise, for any of the 

other seven modifications that are associated with a unique nucleotide, the negative samples include only 

sequences centered at that unique nucleotide from the background samples and those from other types. 

While some of the modifications have large positive sample sizes, the majority of others as in m2G and 

m1G have very few positive samples. Training reliable prediction models with small, highly imbalanced 

training datasets are highly challenging leaning tasks. In this work, we show the power of the MR-GAN 

encoder in helping extract discriminate sequencing features for different modification sites. 

The second dataset consists of positive and negative samples for transcriptome m6A methylation. We 

choose to train an MR-GAN on m6A separately because m6A is the most abundant and widely studied 

transcriptome modification and there are also existing sequence-based prediction algorithms. This 

dataset was derived mostly from [6], which used a similar dataset to train an m6A site predictor called 
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SRAMP. Positive samples of this dataset are miCLIP sites from [28] that also contain the m6A motif 

(DRACH) and the negative samples are random sequences that also have the DRACH motif located at 

the center but have no miCLIP detected m6A sites. Similar to for SRAMP, two sets of training data, 

namely the full transcript mode, where the training sequences were collected from the full transcripts, and 

the mature mRNA mode, which extracted training sequences from cDNA sequences, were prepared. 

Table 2 provides detailed information about the m6A training datasets.  

 

Table 2: Numbers of samples in the training and testing dataset for m6A. Data were prepared for the full 

transcript and mature mRNA modes. 

 Full transcript mode Mature mRNA mode 
Training data (pos:neg) 31901:229204 26755:51094 
Testing data (pos:neg) 8284:31070 6905:34349 

 

 

Generative adversarial network 

GAN, proposed by Goodfellow et al. [18], is a generative network that learns the distribution of data and 

produces samples of synthesized data from the captured distribution. GAN includes two differentiable 

functions characterized by neural networks: the discriminator function 𝐶𝐶(𝑥𝑥;𝜃𝜃𝐶𝐶)with parameters 𝜃𝜃𝐶𝐶 that 

outputs a single scalar representing the probability of 𝑥𝑥. from the real rather than synthesized data 

distribution and the generator 𝐷𝐷(𝑧𝑧;  𝜃𝜃𝐷𝐷) parameterized by 𝜃𝜃𝐷𝐷   that maps samples from a prior of input 

noise variables 𝑃𝑃z(𝑧𝑧) to data distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥). GAN is trained by implementing a two-player minimax 

game, where 𝐷𝐷is optimized to tell apart real from synthesized or fake data and D is optimized to generate 

data (from noise) that “fools” the discriminator. This joint optimization can be formulated as  

 

𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚𝑥𝑥𝐶𝐶𝑉𝑉(𝐷𝐷,𝐶𝐶) = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[log𝐶𝐶(𝑥𝑥)] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧[log (1 − 𝐶𝐶�𝐷𝐷(𝑧𝑧)�)] (1) 

 

Despite the recent successes of GAN in computer vision, the idea was unexplored in the 

genomics domain until Frey et al. [22] applied the framework on DNA sequences with some modifications. 

Instead of training a generative model that produces realistic DNA sequences, they synthesize 

sequences with certain desired properties. For instance, the data distribution captured by GAN was 

utilized to design DNA sequences with higher protein binding affinity than those real sequences found in 

the protein binding microarray (PBM) data.  

MR-GAN for unsupervised learning of transcriptome sequences  
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As discussed earlier, GANs lack an inference network that prohibits them from understanding abstract 

data representations. People have used the discriminator network to extract features but as a learning 

entity to separate the real and synthetic samples, the discriminator primarily learns discriminate features 

between real and synthetic samples. Hence, the discriminator features are not a true representation of 

the underlying data. Learning an inverse mapping from generated data 𝐸𝐸(𝑥𝑥) back to the latent input 𝑧𝑧can 

be one viable solution to the problem under consideration. To this end, we propose MR-GAN, a model 

inspired by the ALI and BiGAN framework, which consists of three multilayer neural networks as depicted 

in Figure 1. Briefly, in addition to the generator D (or decoder in this case) from the standard GAN 

framework, MR-GAN includes an encoder E, which maps data 𝑥𝑥 to latent representations 𝑧𝑧 . The 

discriminator C of MR-GAN discriminates joint samples of the data and corresponding latent component 

(pairs �𝑥𝑥;𝐸𝐸(𝑥𝑥)�versus (𝐷𝐷(𝑧𝑧); 𝑧𝑧) as real fake pairs, where the latent variable is either an encoder output 

𝐸𝐸(𝑥𝑥) or a generator input 𝑧𝑧. Overall, the training is performed to optimize the following minimax objective. 

 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷,𝐸𝐸𝑚𝑚𝑚𝑚𝑥𝑥𝐶𝐶𝑉𝑉(𝐷𝐷,𝐸𝐸,𝐶𝐶) = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[log𝐶𝐶(𝑥𝑥,𝐸𝐸(𝑥𝑥))] + 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧[log (1 − 𝐶𝐶(𝐷𝐷(𝑧𝑧), 𝑧𝑧))] (2) 

  

 

Figure 1: Unsupervised Feature Learning Scheme of MR-GAN 

In MR-GAN’s setting, aside from training a generator, we train an encoder 𝑄𝑄:Ω(𝑥𝑥) → Ω(𝑧𝑧), 

which maps data points 𝑥𝑥 into the latent feature space. The discriminator takes input from both the data 
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and latent representation, producing 𝑃𝑃𝐶𝐶(𝑌𝑌|𝑥𝑥, 𝑧𝑧) , where 𝑌𝑌 = 1  if 𝑥𝑥  is sampled from the real data 

distribution 𝑝𝑝𝑥𝑥, and 𝑌𝑌 = 0 if 𝑥𝑥 is generated through the output of 𝐷𝐷(𝑧𝑧), and 𝑧𝑧 ∼ 𝑝𝑝z . Each of the C, D, 

and E modules, which are parametric functions, are optimized simultaneously using a stochastic gradient 

descent algorithm. The specific architecture of C, D, and E modules can be found in supplementary Table 

1.  Since the MR-GAN encoder learns to capture the semantic attributes of whole human transcriptome 

sequences, it produces more powerful feature representations than a fully supervised model that is 

trained using only the labeled transcriptome modification site sequences, especially for those occasions 

where training data are limited. 

Training MR-GAN 
The GAN framework trains a generator, such that no discriminative model can distinguish samples of the 

data distribution from samples of the generative distribution. Both generator and discriminator are trained 

using the optimization function noted in equation (1). In the MR-GAN setting, the loss function (2) is 

considered, which is optimized over the generator, encoder, and discriminator. However, both (1)  and (2) 

can be considered as computing the Jensen-Shannon divergence, which is potentially not continuous 

concerning the generator’s parameters, thus leading to poor training convergence and stability [29]. In 

[29], an alternative optimization function was proposed that is based on the Earth-Mover (also called 

Wasserstein-1) distance 𝑊𝑊(𝑞𝑞,𝑝𝑝)and is defined as the minimum cost of transporting mass in order to 

transform the distribution 𝑞𝑞 into the distribution𝑝𝑝.In contrast to equation (1) and (2), the Wasserstein 

distance is a continuous and differentiable function in the parameter space and therefore has improved 

training stability. However, it requires weight clipping to be implemented that still leads to the generation 

of poor samples and failure to converge. Therefore, we trained MR-GAN using Wasserstein optimization 

function but instead of enforcing the weight clipping, we imposed a soft version of the constraint with a 

penalty on the gradient norm as follows  

𝐿𝐿 = 𝐸𝐸𝑧𝑧~𝑝𝑝𝑧𝑧[𝐶𝐶(𝐷𝐷(𝑧𝑧), 𝑧𝑧)] − 𝐸𝐸𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝐶𝐶�𝑥𝑥,𝐸𝐸(𝑥𝑥)�� + 𝜆𝜆 ∗ 𝐸𝐸𝑥𝑥�~𝑝𝑝𝑥𝑥�[(∥ ∇𝑥𝑥�𝐶𝐶(𝑥𝑥�) ∥2− 1)2] (3) 

 

            Original Wasserstein Loss                        Gradient Penalty 

This technique is known as WGAN-GP (Gradient Penalty) and was initially proposed in [30]. The entire 

MR-GAN framework was optimized using the standard stochastic gradient descent method, where the 

learning rate was set to 1e-4. In our implementation, the batch size was equal to 100 samples. We trained 

the network for two epochs, which takes around four days in a computer with a single GPU. In our 

experience, the loss keeps oscillating during the training process as has been observed in previous 

studies [31-33]. However, WGAN-GP has shown that the discriminator loss is close to zero when the 

GAN model approaches convergence. As a result, we took a snapshot of our model at every 2,000 

iterations during the training process and selected the model with minimum discriminator loss (-5.2) for 
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downstream processing. In our training, the minimum discriminator loss occurs at iteration 809,600, 

whereas the total number of iterations for two epochs was 814,600. 

 
Training predictors for epitranscriptome sites based on features extracted from the MR-GAN 
encoder  

After the MR-GAN model is trained in an unsupervised manner using transcriptome-wide pre-

mRNA sequences, we retained the MR-GAN encoder and used it as a feature extractor for modification 

site sequences and trained prediction models based on these features [21]. To train a model to predict 

modification sites, we first fed each 51 bp long sequences in our training and testing datasets into the 

encoder and concatenated the feature maps from the last four convolutional layers into a vector of 2,112 

features. Then, support vector machine (SVM) classifiers with the Radial basis function kernel were 

trained as the site predictors for each modification type based on the feature vectors extracted from the 

corresponding training sets. This resulted in eight predictors for the first dataset and a separate predictor 

for m6A. Note that these eight predictors together can also be considered as a multi-class classifier 

trained based on the one-vs-rest approach.  

To obtain a baseline prediction performance, we also trained SVM classifiers using the one-hot encoded 

modification sequences. One hot encoding is a widely used encoding approach in deep learning to 

represent biological sequences with numeric formats [34-37]. The one-hot encoding converts a 51 bp 

mRNA sequence into a 4x51 binary matrix, where each row corresponds to either A, C, G or U and a 

single “1” in each column encodes the corresponding nucleotide at that location of the sequence.   

 

RESULTS 

Prediction performance of the eight epitranscriptome modifications 

In this section, we comprehensively evaluate the performances of the eight modification predictors trained 

on MR-GAN generated features and the one-hot encoding using the first dataset. Because the positive 

and negative samples for any modification are heavily imbalanced, where negative samples are about 3 

to 200 times more than the positive samples, the appropriate metric to gauge the classification 

performance is the area under the precision-recall curve (auPRC). Since both precision and recall are 

dependent on the number of true positives rather than true negatives, the auPRC is less prone to inflation 

by the class imbalance than auROC [38]. Fig. 2 shows the auPRC performances achieved by a 5-fold 

cross-validation scheme for each of the modifications. As described earlier, each modification predictor 

was trained by selecting the samples of the particular modification as the positive class whereas the 

samples having the same center nucleotide as a positive class from the rest of the modifications including 

the random negative ones were attributed to the negative class. It is clear from Fig. 2 that MR-GAN 
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extracted features outperform one-hot encoding representation by significant margins for most of the RNA 

modifications. The auPRC increase attained by MR-GAN features ranges from 5.6% to 19.2% across 

different modifications. Notably, the performance improvements are more prominent for the modifications 

with a comparatively lower number of samples. For instance, the average auPRC for predicting D, m2G, 

m5C and m5U using MR-GAN embedding is 12.3% higher than the one-hot encoding comparing to the 3.8% 

average auPRC increment for the rest of the modifications with larger sample size (2’-O-Me, 

Pseudouridine, m1A). This indicates that the unsupervised training of MR-GAN has helped the model to 

learn additional information that otherwise would be difficult to learn with a limited number of training 

samples.  Furthermore, the MR-GAN features consistently deliver prediction results at higher than 85% 

auPRC which is a remarkable feat considering the minuscule ratio of positive to negative samples in the 

heavily imbalanced dataset. Using a highly skewed dataset to train predictors generally leads to the 

outcome that most of the positive samples are misclassified as negative ones. To solve this complexity, 

many prediction algorithms resample the negative data to balance the ratio of positive and negative 

subsets. Remarkably, we did not perform any data balancing technique in training, as the features 

learned by the MR-GAN encoder were powerful enough to handle the class imbalance problem by itself. 

Finally, we noticed that the one-hot encoded feature representation performs comparably to the MR-GAN 

features for two modification types (m1A and m1G). Because there are only 29 positive samples for m1G, 

it is reasonable to expect that the one-hot encoded feature representation and the MR-GAN features 

reach similar performance but these performances might not be generalized due to the small sample size.  

For m1A, where there are 3,173 positive training samples, it is likely that the positional sequence pattern 

in training samples already contains significant discriminating information for the one-hot predictor to 

reach maximum accuracy. Taken together, these results demonstrate that the proposed unsupervised 

representation by MR-GAN successfully captures the important features required for discriminating the 

RNA modifications, which might not be captured with small training samples. 
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Figure 2. Prediction performance (auPRC) of eight epitranscriptome modifications using MR-GAN 

features and one-hot encoding. The number next to a modification name is the number of corresponding 

positive samples. The auPRCs are listed on top of the bars. 

Prediction performance of m6A sites 

While in the previous section we demonstrated the superior prediction performance of MR-GAN 

embedding on modifications with relatively smaller training samples, we investigate in this section 

whether this unsupervised feature learning can help improve the performance of m6A prediction, where 

the number of positive samples required for training is large. Because of the availability of m6A data from 

SRMAP, we were able to evaluate the performance on independent testing datasets as opposed to cross-

validation. Similar to the SRAMP evaluations in [6], we investigated the MR-GAN model performance in 

terms of auPRC on the full transcript mode and mature RNA mode using the independent testing data as 

described in Table 2.   
Figure 3 summarizes the prediction results of MR-GAN and SRAMP on testing data for both the 

input modes. As evident, the MR-GAN extracted features outperform SRAMP proposed encodings in both 

modes (11.1% for the mature mRNA mode and 3.6% for the full transcript mode), suggesting that 

unsupervised learning from the entire transcriptome sequence can improve the learning of modification-

related features over the encodings employed in SRAMP algorithm. It is pointed out in [6] that SRAMP 

suffers in the mature mRNA mode due to the discarding of all introns, which may disrupt the original 

sequence context of an m6A site and therefore reduce the discriminative capability of the extracted 

features. Also, the distance between an m6A site and a non-m6A site generally becomes closer in mature 

mRNA sequences compared with that in the corresponding pre-mRNA sequences, which further 
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aggravates the prediction outcome of SRAMP. By contrast, the unsupervised training enables MR-GAN 

to learn the information about pre-mRNA sequences and thus produce considerable prediction 

improvement. 

 
Figure 3. m6A prediction performance (auPRCs) of MR-GAN and SRAMP 

 

Visualizing MR-GAN features for different epitranscriptome modifications 

To gain an intuitive understanding of the superior performance of MR-GAN features and explore the 

relationship among features of different modifications, we applied t-SNE [39] to project the high 

dimensional features onto 2D and 3D space. t-SNE is a popular nonlinear dimension reduction method 

that optimizes the similarities of the probabilities of distances between high dimensional samples space 

and corresponding lower-dimensional projected samples. It has been widely used for data visualization in 

a variety of fields such as video, image, and audio signals [39]. For this visualization, we first utilized 

principal component analysis (PCA) to map the MR-GAN and one-hot encoded representations of 

different RNA modification samples to lower dimensions, which were then fed to t-SNE to obtain 

representations in 2D and 3D spaces. We first compared the t-SNE plots in a 3D space between MR-

GAN features and the one-hot encodings  (Fig. 4). For this comparison, we only included the five 

epitranscriptome modifications with a comparatively larger number of samples. As evident in Fig. 4(a), all 

one-hot encoded samples were squeezed together and barely separable. In contrast, MR-GAN extracted 

features show well-separated groups of samples (Fig. 4(b)). As a result, it is much easier to achieve 

separable hyperplanes in the SVM classifier when MR-GAN features are used. 
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(a) (b) 

Figure 4. 3D scatterplots of t-SNE projected (a) one-hot encoded samples and (b) MR-GAN features for 

five epitranscriptome modifications that have a comparatively larger number of samples.  
 

One way to validate the data embedding is to verify if the samples with similar functionalities are 

clustered together in the embedding space. Therefore, we investigated the relationship of MR-GAN 

features between different modifications, where we projected the data samples of eight types of 

modifications to the 2D space using t-SNE (Fig. 5). To produce a clear and uncluttered 2D plot, we 

randomly picked a maximum of 70 samples from each of the modifications. Fig. 5 reveals that the four 

most abundant mRNA modifications, m6A, m1A, m5C, and 2’-O, each form unique groupings with 

somewhat small overlapping among them, suggesting that each of them has its distinct sequence 

patterns that might be associated with modification-specific RNA binding proteins and hence unique 

functions. Such distinct grouping is supported by their different transcript distributions, where m6A, m1A, 

m5C, and 2’-O are mostly enriched in the stop codon, the start codon, the 3’UTR and the CDS, 

respectively. However, there is a small overlapping between m6A and 2’-O. Indeed, single-base mapping 

technology has found that the second nucleotide from the 5’ cap of certain mRNA has N6, 2’-O-

dimethyladenosine (m6Am) [28]. Moreover, 2’-O exists in all four types of nucleotides and it is not 

surprising to see 2’-O to share some overlapping with almost all other modifications. We also observe that 

the m1A cluster contains virtually all m1G samples, implying that m1A and m1G have significantly share 

sequence patterns and potentially similar regulatory functions. Certainly, m1A is shown to disrupt the 

Watson-Crick base-pairing and found to collaborate with m1G to induce local duplex melting in RNA [40]. 

The fact that they are isolated from other modifications may suggest that disrupting the base-pairing 

might be their unique function. Compared with the other three clusters, the m5C cluster shows the most 

overlapping with m6A and 2’-O. Although the evidence of collaborations between these three methylations 

is limited, m6A and m5C have been shown to enhance the translation of p21 by jointly methylating its 

3’UTR. In addition to these four clusters, Ψ shows overlapping with m6A, m5C, and 2’-O. Ψ is found 

throughout different regions in mRNA. The samples of the remaining two modifications, D and m2G, are 
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widely scattered without any clear patterns. They are also much less studied and their actual distributions 

in mRNA and their functions are mostly unknown.      

 

 

 
Figure 5. 2D scatter plot of all modification sites using MR-GAN features map modifications with similar 

functions altogether 

 
Figure 6. The top motifs of different transcriptome modifications learned by MR-GAN 
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Features learned by MR-GAN confirmed known modification sequence motifs  

In this section, we delve into the encoder network to comprehend the sequence motifs for different mRNA 

modifications captured by the latent semantic representation of MR-GAN. Following a similar strategy 

described in DeepBind [34] for the sequence logo generation, we extracted the subsequences that give 

the maximum response in the convolutional operation for a kernel at the first layer of the encoder network. 

We repeated this subsequence extraction task on each of the sequences of the benchmark dataset using 

the 32 kernels at the first layer. Next, we performed motif enrichment analysis using MEME-ChIP [41] by 

feeding the unique subsequences from each modification type as the positive set while the subsequences 

extracted from the random samples of the benchmark dataset were utilized as the control set for each of 

the modifications to ensure the common background. The top-3 enriched motifs discovered by MEME-

ChIP and the associated RNA binding proteins (RBPs) for the relatively abundant mRNA modifications 

are shown in Fig. 6.  Two of the most enriched motifs detected for m6A belong to the well-known DRACH 

motif. The RBPs that share the motifs include FMR1, whose binding mRNAs in the mouse brain have 

been shown to be significantly methylated with m6A marks [42]. Other RBPs associated with these top 

motifs include splicing factors SRSF1 and Zinc finger CCCH domain-containing protein ZC3H10. 

Currently, no evidence of their interaction with m6A exist. However, m6A reader protein YTHDC1 is shown 

to regulate splicing through interacting with splicing factor SRSF3 and SRSF10 [43, 44] and the Zinc 

finger CCCH domain-containing protein ZC3H13 is reported to regulate m6A to control embryonic stem 

cell self-renewal. These existing results may point to unknown interactions of m6A with SRSF1 and 

ZC3H10. Next, we examined the known motifs for each of the remaining abundant modifications in the 

top enriched motifs and reported many other new motifs associated with known RBPs. To systematically 

investigate the associated RPBs predicted by MR-GAN, we accumulated the list of RBPs for each of the 

mRNA modifications that were identified as discriminative by MEME-ChIP in the above experiment, 

resulting in total 72 RBPs. We then performed a clustergram analysis (Fig. 7) such that the RBPs are 

clustered according to the significance with which they are found to be unique to these mRNA 

modifications by MEME-ChIP. Interestingly, we discovered that most of the modifications have at least 

one unique RBPs (Supplementary Table 2). For instance, RBM3 and RALY are unique to m6A, HNRNPC 

is unique to m1A, and SRSF2 is unique to m5C. RBM3 is shown to be a functional partner of the splicing 

factor SRSF3 [45], which is recruited by m6A to regulate alternative splicing [44]. RALY is a member of 

the hnRNP family, which are considered as indirect m6A readers [46, 47]. Also, there were also RBPs, 

such as SNRNP70, that are determined as discriminative for most of the modifications. SNRNP70 is a 

key early regulator of 5' splice site selection. This result could suggest that regulating splicing would be a 

common function which various modifications possess.  We also discovered that 55 of the 72 RBPs 

identified by this analysis overlaps with the proteins isolated by the RICK experiment [48], which 

systematically captures proteins bound to a wide range of RNAs (Supplementary Table 3). This indicates 

that our unsupervised learning captures RBPs that are biologically meaningful and repeatedly identified 

by other related studies.  
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In order to further validate the credibility of the features captured by our method, we converted the 32 

convolutional kernels for m5C samples into position frequency matrices or motifs following the similar 

procedure of DeepBind. Then, we aligned these motifs to known motifs using the TOMTOM algorithm [49]. 

Of the 32 motifs learned by the first layer of the encoder network, 25 significantly matched known RBP 

motifs (E < 0.05).  Subsequently, we proceeded to verify whether the RBPs identified by this analysis 

concurs with the results of other studies investigating similar problems. In [50], the authors carried out an 

analysis to determine the relationship between m5C sites and RBPs using CLIP-seq data and reported 

the RBPs showing statistically significant enrichment of m5C in their binding sites compared to randomly 

sampled Cs. Expectedly, several of the RBPs identified by our motif analysis for m5C (6 of 25) were also 

discovered by that study, which further endorses the significance of our work (Supplementary Table 4). 

 

CONCLUSION 

We considered the prediction of different transcriptome modifications based on RNA sequences. To 

address the problem of small sample size for many of the modifications, we developed a generative 

adversarial network model called MR-GAN, which is trained to learn low dimension embeddings of 

transcriptomic-wide sequences in an unsupervised manner. The learned embedding, as demonstrated 

through the experimental results, contain the improved representation of sequences for different 

modifications as it maps the RNA modifications with similar functionalities together. We have also 

demonstrated that the motifs learned by MR-GAN in the process of discriminating between various 

transcriptome modifications are biologically meaningful and conforms to the findings of some of the 

previous studies. It is noteworthy to mention that we analyzed only nine out of almost 100 well-known 

modifications. We believe there would be more interesting patterns revealed if the MR-GAN sequence 

features are applied to additional RNA modifications. The main advantage of MR-GAN is that the model 

can perform in a satisfactory accuracy even with the heavily skewed dataset without the need for 

employing data balancing techniques. This is a significant contribution to the bioinformatics research 

community because we often fail to develop a well-performing computation prediction model due to the 

lack of enough labeled data. We hope to extend this work by applying the embedding into more genomic 

sequence related classification problems. 
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Figure 7. Clustergram analysis (heatmap) of RNA binding proteins identified to most likely interact with 

different transcriptome modifications. The color represents the significance with which they are found to 

be unique to these mRNA modifications by MEME-ChIP. The significance goes from lowest to highest as 

color varies from blue to red.   
 

AVAILABILITY 

MR-GAN is available in the GitHub repository (https://github.com/sirajulsalekin/MR-GAN). The training 
data are available for download at https://drive.google.com/open?id=1aASppi8f0jWk-
iGNcMV1iP6yzz_tPj4g 
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