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FIG. 7. Data transformation applied to human CBMC with
spiked-in mouse cells. (a) tSNE plot of the single-cell tran-
scriptomic (scRNA-seq) data. The RNA count data have
been log-normalized, as described in Eq. (D1), and com-
pressed using a dimensional reduction method (Appendix A).
The indicated color scheme for cell types is carried over to
(b,c,d,e). NK and DC denote natural killer cells and dendritic
cells, respectively. CD14+ monocytes, CD16+ monocytes,
megakaryocytes, and plasmacytoid dendritic cells (pDCs) are
grouped into the category “Other” and omitted in other pan-
els. (b) A version of the centered log ratio (CLR) transforma-
tion of the single-cell immunophenotype data, as described
in Eq. (D2). (c) Another version of the CLR transforma-
tion of the single-cell immunophenotype data, as described
in Eq. (D3). (d) Our data transformation method using the
relative size factor t i = ai =a0 , with ai being the arithmetic
mean of count per protein, as described in Eq. (D6). (e)
Our data transformation method using the relative size fac-
tor t i = gi =g0 , with gi being the geometric mean of count
(plus one pseudocount) per protein, as described in Eq. (D7).

stream analyses such as clustering and visualization. In-
heriting the parameters from the (ZI)NB model fitting
makes the transformation easily interpretable and com-
patible with the proposed statistical hypothesis testing
framework. Further details and comparison with other
data transformation (normalization) methods are dis-

cussed in Appendix D.
Unlike the original approach [1], some CITE-seq data

may lack a spike-in control from another species. In those
cases, we recommend first finding a set of non-immune
cells (e.g., erythrocytes in the blood, and keratinocytes
in the skin [16, 17]) that are transcriptomically distinct
from the rest of the cells, and then using the set to build
the null model for immunophenotype profiling. If this
strategy is not feasible, then an unsupervised method
could be developed to distinguish signal from noise by
fitting bimodal or multimodal distributions.

As previously mentioned, parallel transporting the im-
munophenotypes of cells on the hypersphere might move
some cells slightly out of the positive orthant. We here
addressed the issue by setting the small negative compo-
nents to zero and rescaling the rest of the components to
preserve the normalization condition. Even though this
simple correction method did not noticeably affect the
neighborhood structure of the point clouds in our data,
future studies would be needed to develop a more rigor-
ous geometric construction that can handle these cells.

Our method of batch correction, upon some modifica-
tion, may be also applicable to other types of count data;
e.g., other multi-omics count data that complement the
scRNA-seq assay, and count data used for topic model-
ing in text mining. A potentially interesting direction for
future investigation would be integrating the geometric
and statistical methods directly on a Riemannian data
manifold.
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Appendix A: Data set preparation

The CITE-seq data set of human CBMC and spiked-
in mouse cells was obtained from the Gene Expression
Omnibus under the accession number GSE100866. For
the scRNA-seq data, we followed the suggested proce-
dures of normalization, feature selection, dimensional re-
duction, and Louvain clustering in Seurat v3 [18]. The
cell labels were determined from the list of biomarkers
detected for each cluster using Seurat, as in [1]. Further-
more, we summed up the RNA counts mapping to the
mouse genome, and calculated the percentage of mouse
gene counts with respect to the total RNA counts; the
putative single cells with a percentage of mouse genes
from 5% to 95% were filtered out, as they might be dou-
blets of cells from the two species. The cells with larger
than 95% mouse genes were labeled as mouse cells. A
tSNE plot of the transcriptomic data with labeled cells
is shown in Fig. 7(a). For a clear demonstration of our
analysis, we have chosen human cells with labels only
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from the following eight cell types: B cells, memory
CD4+ T cells, naive CD4+ T cells, CD8+ T cells, natural
killer (NK) cells, dendritic cells (DCs), CD34+ cells and
erythrocytes. The cells labeled as CD14+ monocytes,
CD16+ monocytes, megakaryocytes, plasmacytoid den-
dritic cells (pDCs), and multiplets were all filtered out.
The full list of 13 cluster of differentiation (CD) proteins
measured in the experiment is {CD3, CD4, CD45RA,
CD56, CD16, CD10, CD11c, CD14, CD19, CD34, CCR5
(CD195), CCR7 (CD197)}, all of which are shown on the
x-axis in Fig. 2.

Processed tables of ADT counts in murine skin cells
and spiked-in human embryonic kidney 293 (HEK293)
cells [6] are available at https://github.com/jssong-
lab/SAGACITE. The samples OXA1, 2, and 3 were
from the ear skin of three different mice treated with
inflammation-inducing oxazolone, while EtOH1, 2, and 3
were from the ear skin of three different mice treated with
ethyl alcohol as control. The immune cells in each skin
sample were isolated after enzymatic digestion and then
cell sorting using flow cytometry. The HEK293 cells were
then spiked in, just before CITE-seq was performed. For
each cell, we calculated the percentage of RNA counts
mapping to the mouse genome with respect to the to-
tal amount of RNA counts; a cell with the percentage
greater than 99% was classified as a mouse cell, and a
cell with the percentage smaller than 5% was classified
as a human cell. No further sub-classification of mouse
cells based on the transcriptome was performed.

Appendix B: EM algorithm for NB model fitting

The posterior density p(λi|yi, ti, α, β) of λi defined in
(23) satisfies

Eλi|yi,ti,α,β [λi] =

∫ ∞
0

λi p(λi|yi, ti, α, β) dλi =
yi + α

ti + β
(B1)

and

Eλi|yi,ti,α,β [log λi] =

∫ ∞
0

log λi p(λi|yi, ti, α, β) dλi

= Ψ(yi + α)− log(ti + β),
(B2)

where Ψ(z) = d
dz log Γ(z) is the digamma function.

For a dataset (y, t) of N independent samples, we de-
fine the following sample averages of expectation values:

Eλ|y,t,α,β [1] = 1, (B3)

Eλ|y,t,α,β [λ] =
1

N

N∑
i=1

yi + α

ti + β
, (B4)

Eλ|y,t,α,β [logλ] =
1

N

N∑
i=1

[Ψ(yi + α)− log(ti + β)].

(B5)

Given the current estimate of (α, β), we need to update
them as

(αnew, βnew) = arg max
α∗,β∗

Eλ|y,t,α,β [logP (y,λ|t, α∗, β∗)]

= arg max
α∗,β∗

N∑
i=1

Eλi|yi,ti,α,β [logP (yi, λi|ti, α∗, β∗)]

= arg max
α∗,β∗

N∑
i=1

∫ ∞
0

log Gamma(λi;α
∗, β∗)

× p(λi|yi, ti, α, β) dλi

= arg max
α∗,β∗

`NB(α∗, β∗),

(B6)

where

`NB(α∗, β∗) ≡ (α∗ − 1) Eλ|y,t,α,β [logλ]− β∗ Eλ|y,t,α,β [λ]

+ α∗ log β∗ − log Γ(α∗).
(B7)

Solving ∂
∂β∗ `NB(α∗, β∗) = 0 for β∗, we get β∗ =

α∗/Eλ|y,t,α,β [λ]. Substituting this expression of β∗ into
`NB(α∗, β∗), we define a new function depending only on
α∗:

˜̀
NB(α∗) = (α∗ − 1) Eλ|y,t,α,β [logλ]

− α∗ log Eλ|y,t,α,β [λ] + α∗ logα∗ − α∗ − log Γ(α∗).

(B8)

Maximizing this function, we finally obtain the updates

αnew = arg max
α∗

˜̀
NB(α∗), βnew = αnew/Eλ|y,t,α,β [λ].

(B9)
In each iterative step, we compute the optimization of
αnew numerically using a generalized version of Newton’s
method which enables faster convergence [13, 19].

Appendix C: EM algorithm for ZINB model fitting

For the ZINB model, the joint probability function is

P (yi, zi, λi|ti, α, β, ω) = ω δzi,0 δyi,0 δ(λi)

+ (1− ω)δzi,1Poisson(yi;λi ti)Gamma(λi;α, β),
(C1)

where zi ∈ {0, 1} is a latent Bernoulli random variable
modeling the “dropout” event (zi = 0). The posterior
probability function is

P (zi, λi|yi, ti, α, β, ω) = δzi,0 δ(λi)hi(α, β, ω)

+ δzi,1(1− hi(ω, α, β)) p(λi|yi, ti, α, β),
(C2)

where the posterior density p(λi|yi, ti, α, β), for zi = 1, is
defined in (23), and

hi(α, β, ω) ≡ ω δyi,0
ω δyi,0 + (1− ω) NB(yi;µi = tiα/β, α)

.

(C3)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.28.067306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.067306
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

Given the current estimate of (α, β, ω), we need to update
them as

(αnew, βnew, ωnew)

= arg max
α∗,β∗,ω∗

Ez,λ|y,t,α,β,ω[logP (y, z,λ|t, α∗, β∗, ω∗)]

= arg max
α∗,β∗,ω∗

`NB(α∗, β∗, ω∗),

(C4)

where `ZINB(α∗, β∗, ω∗), collecting only the terms involv-
ing α∗, β∗, ω∗, is given by

`ZINB(α∗, β∗, ω∗)

≡ 1

N

N∑
i=1

[
hi(α, β, ω) logω∗ + (1− hi(α, β, ω)) log(1− ω∗)

]
+

1

N

N∑
i=1

(1− hi(α, β, ω))

×
∫ ∞
0

p(λi|yi, ti, α, β) log Gamma(λi;α
∗, β∗) dλi

=
1

N

N∑
i=1

[hi(α, β, ω) logω∗ + (1− hi(α, β, ω)) log(1− ω∗)]

+ (α∗ − 1)Elogλ − β∗Eλ + [α∗ log β∗ − log Γ(α∗)]E1.
(C5)

In the last line, E1, Eλ, and Elogλ are defined as follows,
similar to (B3), (B4), and (B5):

E1 ≡
1

N

N∑
i=1

(1− hi(ω, α, β)), (C6)

Eλ ≡
1

N

N∑
i=1

(1− hi(α, β, ω))

∫ ∞
0

dλi fi(α, β)λi

=
1

N

N∑
i=1

(1− hi(α, β, ω))
yi + α

ti + β
,

(C7)

Elogλ ≡
1

N

N∑
i=1

(1− hi(α, β, ω))

∫ ∞
0

dλi fi(α, β) log λi

=
1

N

N∑
i=1

(1− hi(α, β, ω))[Ψ(yi + α)− log(ti + β)].

(C8)

Solving ∂
∂ω∗ `ZINB(α∗, β∗, ω∗) = 0 for ω∗, we obtain

ωnew =
1

N

N∑
i=1

hi(α, β, ω). (C9)

From ∂
∂β∗ `ZINB(α∗, β∗, ω∗) = 0, we have α∗/β∗ = Eλ/E1.

Keeping only those terms involving α∗ and β∗ in (C5)
and substituting β∗ = α∗E1/Eλ, we can define a function
that depends only on α∗ as follows

˜̀
ZINB(α∗)/E1 ≡(α∗ − 1)Elogλ/E1 − α∗ log (Eλ/E1)

+ α∗ logα∗ − α∗ − log Γ(α∗).
(C10)

The update now reads

αnew = arg max
α∗

{
˜̀
ZINB(α∗)/E1

}
, βnew = αnewE1/Eλ.

(C11)
With the ratios Elogλ/E1 and Eλ/E1 calculated using
(C6), (C7), and (C8), the resulting optimization is the
same as in (B8).

Appendix D: Comparison of data transformation
methods

The log normalization with a fixed scale factor s0, com-
monly used to process scRNA-seq data, transforms the
count data (ci,1, . . . , ci,D) within the i-th cell as

ci,j 7→ log

(
ci,j
si
× s0 + 1

)
= log

(
ci,j
si/s0

+ 1

)
, (D1)

where si ≡
∑D
k=1 ci,k is the total sequencing depth in the

i-cell, and s0 can be chosen to be a typical value of si.
Some common choices are s0 = 1000, 10000, or 100000,
depending on the data. We also find it reasonable to
choose s0 as either the arithmetic or the geometric mean
of si’s.

The centered log ratio (CLR) is a related transforma-
tion method that is previously used to process the CITE-
seq count data [1], and is defined as

ci,j 7→ log

(
cij + 1

gi

)
= log (ci,j + 1)− 1

D

D∑
k=1

log (ci,k + 1),

(D2)

where gi =
[∏D

k=1(ci,k + 1)
]1/D

is the geometric mean of

the D surface protein counts, each adjusted by one pseu-
docount. It can be interpreted as row mean-centering the
table of pseudocount-adjusted log counts, log (ci,j + 1).
Another version of the CLR transformation, imple-
mented in Seurat v3 [18], is given by

ci,j 7→ log

(
ci,j
gi

+ 1

)
, (D3)

which is not row-centered. Unlike the expression defined
in (D2), the alternative form given in (D3) always yields
nonnegative values.

We here propose a new data transformation method
using the posterior E[λi,j ] computed using the MLE of
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ZINB model parameters (αj , βj , ωj) for the j-th protein,
as given in (26); we take the logarithm for better visu-
alization of the data, the effect of which is clear when
we compare Fig. 6(c) with Fig. 6(d). When the zero-
inflation mixing coefficient ωj = 0, our transformation is

ci,j 7→ log

(
ci,j + αj
ti + βj

)
; (D4)

when ωj 6= 0, it is

ci,j 7→ log

1−
ωj δci,j ,0

ωj + (1− ωj)
(

βj

ti+βj

)αj

ci,j + αj
ti + βj

.
(D5)

We provide two choices regarding how to compute the
relative size factor ti for the i-th cell: the first definition
is

ti = si/s0 = ai/a0, ai ≡
1

D

D∑
k=1

ci,k, (D6)

where the ratio si/s0 is the same as that used in the log
normalization method (D1), ai is the arithmetic mean
of the D surface protein counts, and a0 = s0/D is some
choice of typical value of ai; the other definition is

ti = gi/g0, gi =

[
D∏
k=1

(ci,k + 1)

]1/D
, (D7)

where gi is the geometric mean as in the two versions of
CLR transformation (D2) and (D3), and g0 is some choice
of typical value of gi. Although (D6) capturing the differ-
ences in total count might seem more intuitive, we recom-
mend (D7), as the geometric mean is more robust against

outliers than the arithmetic mean. Transformation re-
sults for the two choices are shown in Fig. 7(d) and (e),
respectively, where it is apparent that the second conven-
tion ti = gi/g0 better separates the CD8+ T cells from
spiked-in mouse cells along the CD3+ direction. This
phenomenon may be attributed to the fact that CD8+ T
cells have high CD8 counts and, thus, inflated size fac-
tors under the former definition, thereby suppressing the
transformed CD3 values. Consistent with this observa-
tion, performing statistical tests on the CD3 level shows
that the CD8+ T cells are correctly classified as being
CD3+, when (D7), but not when (D6), is used to calcu-
late the size factors.

In each of the transformation methods described
above, the argument of the logarithm can be considered
as a normalized version of the raw count ci,j . In our
transformation, the argument is E[λ], and the normal-
ization adds a data-driven pseudocount αj to the raw
count and βj to the relative size factor ti ∼ 1, which cor-
rects the sum ci,j + αj for different sequencing depths.
Similarly, the term containing ωj corrects for the case of
an inflated zero count. Compared with the log normal-
ization (D1) and the CLR transformation (D2,D3), our
approach utilizes the model parameters inferred from the
data, rather than adding an arbitrary pseudocount of 1.
It is also specific to a particular surface protein and has
the ability to address a potential dropout effect in the
measurement.

In our implementation, we have chosen g0 to be the
geometric mean of all gi’s. However, a different choice of
g0 would merely translate the distribution of the trans-
formed data by a constant. That is, under rescaling
ti → b ti by a fixed constant b, the mixture probabili-
ties of the NB and ZINB models remain invariant under
the compensating redefinitions λi,j → λi,j/b, αj → αj ,
βj → b βj , (ci,j+αj)/(ti+βj)→ (1/b)(ci,j+αj)/(ti+βj),
and ωj → ωj ; hence, the only effect of choosing a differ-
ent g0 is to rescale E[λi,j ] by a multiplicative constant
for all i, resulting in translating log E[λi,j ] by a global
constant for all cells.
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