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Recent advances in next generation sequencing-based single-cell technologies have allowed high-
throughput quantitative detection of cell-surface proteins along with the transcriptome in individual
cells, extending our understanding of the heterogeneity of cell populations in diverse tissues that are
in different diseased states or under different experimental conditions. Count data of surface proteins
from the cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) technology pose
new computational challenges, and there is currently a dearth of rigorous mathematical tools for
analyzing the data. This work utilizes concepts and ideas from Riemannian geometry to remove
batch effects between samples and develops a statistical framework for distinguishing positive signals
from background noise. The strengths of these approaches are demonstrated on two independent
CITE-seq data sets in mouse and human. Python source code implementing the algorithms is
available at https://github.com/jssong-lab/SAGACITE.

I. INTRODUCTION

In recent years, single-cell analysis has undergone im-
mense and rapid progress, continuing to transform our
understanding of the diversity, development, and coop-
eration of distinct cell types in various tissues. It is
now possible to measure the level of messenger RNAs
(mRNAs) in thousands of individual cells via a single
experiment of single-cell RNA sequencing (scRNA-seq).
Furthermore, multi-omics technologies providing comple-
mentary information about the genomic, proteomic, and
metabolomic states of single cells are being developed
and applied.

Immunophenotyping is the process of classifying im-
mune cells, often relying on the detection of cell-surface
proteins. For example, fluorescent activated cell sort-
ing (FACS), a commonly used technique, can be per-
formed before scRNA-seq to provide the immunopheno-
type information of cells. Two new technologies, cellular
indexing of transcriptomes and epitopes by sequencing
(CITE-seq) [1] and RNA expression and protein sequenc-
ing (REAP-seq) [2], now allow simultaneous performance
of immunophenotyping and scRNA-seq transcriptomic
profiling in single cells. Both methods are designed to
detect proteins on the surface of single cells by adding a
panel of DNA-barcoded antibodies on top of the existing
high-throughput scRNA-seq techniques. The antibodies
bind their corresponding surface proteins, and after cell
lysis, the DNA barcodes attached to the antibodies are
PCR amplified and sequenced along with the mRNAs.
Both CITE-seq and REAP-seq use a unique molecular
identifier (UMI)-based protocol, which largely reduces
amplification biases. In addition to a count matrix for
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RNAs, the methods yield a matrix of UMI counts – re-
ferred to as the antibody-derived tag (ADT) counts in
the CITE-seq literature – derived from sequencing the
barcodes attached to the antibodies.

Being less prone to “dropout” effects, the ADT count
matrix of surface proteins provides useful information
about the immunophenotypes of single cells, while posing
new computational challenges in data analysis. Similar to
other single-cell techniques, sequencing depth differs from
cell to cell; a sound model of ADT count data should take
the variation in sequencing depth into account. While
UMI-based scRNA-seq data can be modeled with neg-
ative binomial (NB) or zero-inflated negative binomial
(ZINB) models even for heterogeneous cells [3–5], a di-
rect application of the same approach is not ideal for
the count matrix of surface proteins, because a subset of
the counts typically comes from nonspecific background
binding of antibodies [1]. Fortunately, this type of back-
ground noise can be assessed by spiking in control cells
from another species that normally do not cross-react
with the antibodies. We thus develop a rigorous statis-
tical method for fitting null distributions of ADT counts
that are from spiked-in cells, and use it to call positive
signals of a protein in the native cells at an adjustable
false discovery rate (FDR); to our knowledge, a rigorous
statistical framework for such hypothesis testing is not
yet available. As model fitting could be adversely af-
fected by systematic differences in measurement between
samples, potential systematic biases should be removed
prior to model fitting. To accomplish this task, we view
single cells as points on a Riemannian manifold and ap-
ply ideas from differential geometry to develop a method
for removing batch effects between samples.

In this paper, we first introduce the notion of high-
dimensional Riemannian manifold endowed with the
Fisher-Rao metric, and apply the idea to map the im-
munophenotype profiles of single cells to a hypersphere.
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The gist of our batch correction approach relies on the
intuition that on this hypersphere, the distribution of
points corresponding to spiked-in control cells should be
similar between independent samples. We will thus re-
move sample-specific biases by aligning the center of mass
(COM) of spiked-in cells from each sample to a consensus
COM. We then apply the same aligning transformation
learned from the spike-in data to the native species data,
thereby removing potential systematic biases present in
both spiked-in and native cells of a given sample. Main
computational challenges lie in computing the COM of
a point cloud on the hypersphere and “parallel trans-
porting” the point cloud along a specific path connecting
the old and new COM, according to some notion of ge-
ometry defined on the manifold. Finally, we implement
expectation-maximization (EM) algorithms to fit the pa-
rameters of our null models describing nonspecific bind-
ing of antibodies, and perform statistical tests to detect
signals, while keeping the false discovery rate (FDR) un-
der control.

II. RESULTS

We have applied our geometric and statistical methods
to the following two CITE-seq data sets: (1) the public
data set of human cord blood mononuclear cells (CBMC)
[1], with a low level (∼ 5%) of spiked-in mouse control
cells; (2) our own data set consisting of 6 samples, each
containing immune cells isolated from mouse skin after
topical treatment with either inflammation-inducing ox-
azolone (OXA, 3 mice) or ethyl alcohol (EtOH, 3 mice)
as control, as well as a small percentage (∼ 5%) of human
HEK293 cells spiked in after the treatment and isolation
of the mouse cells [6].

In the first data set, individual cells’ RNA expression
(scRNA-seq) profiles were used to identify the mouse
spiked-in cells and classify the human cells into distinct
cell types (Appendix A); in the second set, scRNA-seq
data were used only to identify the human spiked-in cells.
For both data sets, the relatively small number of spiked-
in cells from a distinct species were identified and sepa-
rated by calculating the percentage of total RNA counts
mapped to the native vs. spiked-in species’ genome (Ap-
pendix A). Our approach utilizes the geometric and sta-
tistical information contained in spiked-in cells to model
the background noise and systematic batch effects in the
count data of cell-surface proteins.

Each experiment under consideration has a fixed list
of M DNA-barcoded antibodies added before sequenc-
ing, where each antibody primarily binds its correspond-
ing cell-surface protein, although some non-specific bind-
ing manifested as background noise may also be possible.
This experimental design determines the list of M cell-
surface proteins, the abundance of which is to be mea-
sured by sequencing the DNA barcodes of corresponding
antibodies. For a set of N single cells sequenced, a sub-
set of D proteins selected from the whole list yields an

N ×D matrix of count data,

C =


c1,1 c1,2 · · · c1,D
c2,1 c2,2 · · · c2,D

...
...

...
cN,1 cN,2 · · · cN,D

 , (1)

where ci,j ∈ Z≥0 denotes the UMI count, for the i-th cell,
of the j-th protein in the selected subset. A row vector in
this matrix thus contains the immunophenotype informa-
tion of the corresponding cell. In our analysis, the chosen
set of N cells could be all the cells sequenced in an exper-
iment or only a subset, representing a certain species or a
particular inferred cell type. Similarly, the dimension D
could be equal to the total number M of assayed surface
proteins, or it could be chosen to be smaller, depending
on the biological question of interest.

A. Mapping immunophenotypes of cells to points
on a Riemannian manifold

We first transform the row vector of count data for the
i-th cell into a probability vector, with the j-th compo-

nent pj calculated as the fraction ci,j/
∑D
k=1 ci,k. The

fraction can be interpreted as the maximum likelihood
estimation (MLE) of the probability of finding a certain
protein on the i-th cell to be the j-th protein, given that
it is one of the D proteins. This transformation maps
each cell to a point on the (D− 1)-dimensional probabil-
ity simplex ∆(D−1) ⊂ RD, which, under the coordinate
system (p1, . . . , pD) of the ambient space, is a polytope

satisfying
∑D
j=1 pj = 1 and pj ≥ 0. On the simplex,

the usual Euclidean distance does not properly represent
how dissimilar two points are from each other. Hence, we
employ mathematical techniques from information geom-
etry and differentiable manifolds to enable the analysis
of single-cell data on the probability simplex.

The open probability simplex ∆̊(D−1), i.e., the relative
interior of the probability simplex, satisfying

D∑
j=1

pj = 1, pj > 0, (2)

forms a differentiable Riemannian manifold M when
equipped with the Fisher-Rao information metric [7–9].
A vector ~u in the tangent space TpM at p = (p1, . . . , pD)
is given by

~u = (u1, . . . , uD) ∈ RD, such that
D∑
j=1

uj = 0; (3)

for any ~u, ~u′ ∈ TpM, the inner product defined by the
Fisher-Rao metric is

〈~u, ~u′〉p =
D∑
j=1

uj u
′
j

pj
. (4)
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Let N ≡ 2S(D−1) ⊂ RD denote a (D− 1)-dimensional
hypersphere of radius R = 2 centered at the origin, and

N+ ≡ 2S
(D−1)
+ ∈ N the positive orthant of the hyper-

sphere. It is well known [7–9] that the open probability
simplex can be isometrically mapped onto N+ via the
diffeomorphism

ψ :M→N+,

p 7→ x,

(p1, . . . , pD) 7→ (x1, . . . , xD) ≡ (2
√
p1, . . . , 2

√
pD),

(5)

where x = ψ(p) ∈ N+ has coordinates (x1, . . . , xD) sat-
isfying

D∑
j=1

xj
2 = R2 = 4, xj > 0. (6)

The tangent space at x ∈ N+ can be obtained as the
image of the differential of ψ,

Dψ(p) : TpM→ TxN+,

~u 7→ ~w = Dψ(p)[~u], wj =
uj√
pj
,

(7)

with the standard inner product

∀~w, ~w′ ∈ TxN+, 〈~w, ~w′〉x =
D∑
j=1

wj w
′
j . (8)

Note that the pullback of this standard inner product on
N+ by ψ is just the Fisher-Rao inner product on the open
probability simplex M.

The entire hypersphere N can be regarded as a mani-
fold embedded in the Euclidean space RD with the Carte-
sian coordinates (x1, . . . , xD). Unlike the geometry of
the open probability simplex, several properties of the
hypersphere with the standard induced metric from RD
facilitate straightforward intuition and calculations. For
example, any point x ∈ N on the hypersphere can be
represented as a vector x = (x1, . . . , xD), such that a
vector ~w ∈ TxN in the tangent space has coordinates

w = (w1, . . . , wD) satisfying x · w =
∑D
j=1 xj wj = 0,

where the dot (·) denotes the usual dot product in RD.
Furthermore, the geodesic between two points x and y on
a manifold can be derived using the metric-compatible
Levi-Civita connection on the manifold. When the man-
ifold is the hypersphere N of radius R = 2, the geodesic
is simply the great arc connecting the two points; that
is, with the vector representations x = (x1, . . . , xD) and
y = (y1, . . . , yD) in the ambient Euclidean space, the
geodesic distance between x and y is given by

dN (x, y) ≡ R arccos
(x · y
R2

)
= R arccos

(∑D
j=1 xj yj

R2

)
.

(9)
One of the goals in our analysis is to adjust the count

data of immunophenotypes by first mapping them to

CD3

0.0
0.5

1.0
1.5

2.0

CD19

0.0
0.5

1.0
1.5

2.0

CD56

0.5

1.0

1.5

2.0

(a)

MOUSE
B
Memory CD4+ T
Naive CD4+ T
CD8+ T
NK
DC
CD34+
Erythrocyte

CD4

0.0
0.5

1.0
1.5

2.0

CD8

0.0
0.5

1.0
1.5

2.0

CD
11c

0.5

1.0

1.5

2.0

(b)

MOUSE
B
Memory CD4+ T
Naive CD4+ T
CD8+ T
NK
DC
CD34+
Erythrocyte

FIG. 1. Examples of mapping the surface protein count
data of human CBMC with spiked-in mouse cells to a three-
dimensional sphere of radius 2. (a) The list of selected pro-
teins is {CD3, CD19, CD56}. (b) The list of selected proteins
is {CD4, CD8, CD11c}. In both cases, each distinct cell type
is displayed with the color indicated in the legend. NK and
DC denote natural killer cells and dendritic cells, respectively.
Small dots denote individual cells, and large dots with black
outlines denote the Riemannian mean of the point cloud of
each cell type.

points on the hypersphere N , then removing sample-
specific biases on N where calculations are simpler, and
eventually mapping the corrected points back to count
data. As we try to map the count data of cell-surface pro-
teins to the hypersphere, however, there is a small caveat
that we need to address. That is, one or more counts of
surface proteins might be zero for a cell, and the probabil-
ity vector will consequently reside on the boundary of the
probability simplex, where the Fisher-Rao metric is not
defined. Suppose in the probability vector (p1, . . . , pD),
one component, say pk, is 0. One strategy is to replace it
with a small positive number, pk 7→ p̃k = ε, and rescale
the remaining components as p` 6=k 7→ p̃` = p`(1 − ε), so

that the normalization
∑D
j=1 p̃j = 1 is still preserved.

The probability vector now resides on M and can be
mapped to a point (x1, . . . , xD) ∈ N with xk = 2

√
ε.

The distance from this point to any other point on N
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is well defined; taking the limit ε → 0, the distance re-
mains finite as the point is pushed to the boundary of
the positive orthant with its components being xk = 0
and x` 6=k = 2

√
p`. The argument can be generalized to

the case where there are more than one protein with zero
UMI counts.

In summary, given a selected list of D surface proteins
and the N × D count matrix, each row [ci,1, . . . , ci,D]
representing the immunophenotype of the i-th cell can be
mapped to a point on a (D−1)-dimensional hypersphere
of radius 2, with coordinates (x1, . . . , xD) given by

xj = 2

√
ci,j∑D
k=1 ci,k

. (10)

Figure 1 demonstrates two distinct mappings of the in-
dicated cell types from the human CBMC data set. For
the sake of visualization, we have chosen the dimensional-
ity to be D = 3. For the list {CD3, CD19, CD56}, we ob-
serve that most T cells reside in one corner of the positive-
orthant hypersphere with a large CD3 component, while
most B cells are in another corner with a large CD19
component, both forming densely packed point clouds
clearly separated from other cell types and from each
other. For the complementary list {CD3, CD19, CD56},
we see a further separation of CD4+ T cells and CD8+
T cells (although some of them seem to have been mis-
classified). By contrast, the spiked-in mouse cells and
the human erythrocytes (red blood cells) do not possess
those human-specific surface proteins expressed on im-
mune cells; therefore, their count data only come from
background non-specific binding to the DNA-barcoded
antibodies, and their corresponding point clouds lie far
away from any of the corners or edges and mostly overlap
with each other. In the following sections, we will intro-
duce a method that utilizes the data of spiked-in control
cells to remove systematic differences between samples
and to model the “noise” of non-specific binding.

B. Computing the Riemannian mean and removing
batch effects on the hypersphere

With the immunophenotypes of single cells mapped to
points on the hypersphere, we can adjust the points from
different experiments and remove sample-specific biases
by employing the idea, from statistics, of standardizing
data distributions by aligning their mean vectors. On a
Riemannian manifold, Fréchet mean generalizes the no-
tion of Euclidean mean [10]. It is also often referred to
as the Karcher mean, Riemannian center of mass, or Rie-
mannian mean in the literature [9, 11, 12]. In this work,
we will simply use the term Riemannian mean and adopt
the recent numerical algorithm for computing the Rie-
mannian mean of a set of points on the hypersphere [9].

Computing the COM of a point cloud on a Rieman-
nian manifold involves minimizing an objective function
consisting of the pairwise distance between the candidate
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FIG. 2. Riemannian mean calculated from the surface pro-
tein count data of each indicated cell type in the human
CBMC data set. (a) All proteins are included (D = 13).
(b) CD45RA is excluded (D = 12). In both ways of mapping,
the components of the Riemannian mean correspond to the
height of the bars; the light gray bars in the back represent
the spiked-in mouse data, while the thin bars in the front
represent the different cell types in human blood, with their
order and colors indicated in the legend.

COM and every point mass in the collection, thus requir-
ing an investigation of the shortest distance between two
given points or, equivalently, the geodesic path connect-
ing them. On the (D− 1)-dimensional hypersphere N of
radius R, a geodesic g parameterized by t, satisfying the
conditions g(t = 0) = x ∈ N and d

dtg(t = 0) = ~w ∈ TxN ,
is given by

gj(t) = xj cos

(
‖~w‖t
R

)
+
wjR

‖~w‖
sin

(
‖~w‖t
R

)
, (11)

where the embedding coordinates of x and g in RD are
x = (x1, . . . , xD) and g = (g1, . . . , gD), respectively, and

‖~w‖ ≡
√
〈~w, ~w〉x. Taking t = 1, we obtain the exponen-

tial map on the hypersphere, Expx : TxN → N , ~w 7→
y = g(1), with the corresponding vector in RD given by

y = x cos

(
‖~w‖
R

)
+ w

R

‖~w‖
sin

(
‖~w‖
R

)
. (12)

The inverse of the exponential map, Exp−1x : N →
TxN , y 7→ ~w = Exp−1x (y), can be easily computed by
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FIG. 3. Batch effects within the three oxazolone-treated samples (OXA1,2,3) and the three control samples (EtOH1,2,3) of
mouse skin cells. (a) Riemannian mean of the native mouse cells from each sample. (b) Riemannian mean of the spiked-in
human cells from each sample. The bar height corresponds to the component of the Riemannian mean in the direction indicated
on the x-axis.

the Gram-Schmidt process and is given in the embedding
Euclidean coordinates by

w =
θ

sin θ
(y − x cos θ), θ = arccos

(x · y
R2

)
, (13)

for which θ = 0 is reached if and only if s = r, and in
that case, ~w = ~0 is obtained by taking the limit θ → 0.
It follows that the norm of the vector ~w ≡ Exp−1x (y) is
equal to the geodesic distance between the two points on
the hypersphere (9),

‖~w‖ = Rθ = dN (x, y).

Note that because the exponential map commutes with
isometry, the exponential map and the inverse exponen-
tial map on the open probability simplex M can be ob-
tained from these results on the hypersphere by using
Dψ and (Dψ)−1.

We can now define the Riemannian mean on a mani-
fold, generalizing the Euclidean COM as follows: given a
set of N data points

{
y(1), . . . , y(N)

}
with corresponding

masses {m1, . . . ,mN} on the hypersphere, the Rieman-

nian mean ȳ of the collection of point masses is

ȳ = arg min
x

N∑
i=1

mi d
2
N (x, y(i))

= arg min
x

N∑
i=1

mi

∥∥∥~w(i)
∥∥∥2, (14)

where ~w(i) ≡ Exp−1x (y(i)) is the inverse exponential map
at x. The constrained gradient condition with respect to
x then reads

n∑
i=1

mi ~w
(i) = ~0, (15)

and the Riemannian mean on the hypersphere can be at-
tained numerically in iterative steps until this condition
is approximately satisfied [9]. Mapping back the result-
ing mean to the probability simplex M via the inverse
isometry ψ−1 yields the corresponding Riemannian mean
on M. In our biological application, we take all point
masses to be 1.

As the human cells in the CBMC data are labeled with
cell type information inferred from the transcriptome, we
have computed the Riemannian mean for each cell type,
as well as the spiked-in mouse cells. The result depends
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on the choice of surface protein subsets. In Fig. 1, the
Riemannian mean of each cell type is shown as a large
dot with black outline. We see that the Riemannian
mean is a good representative of a densely packed point
cloud on the sphere. Figure 2 shows the components of
the Riemannian mean for D = M (all the proteins) and
D = M − 1 (CD45 excluded). We see that, in this case,
excluding CD45 increases the contrast of specific markers
associated with each cell type, due to the fact that CD45
is generally high in human immune cells and may sup-
press the resolution of other cell-surface markers specific
to certain immune cell subtypes. We also see that CD10,
CCR5, and CCR7 are not biological markers for any of
the cell types, consistent with the result in [1]. This anal-
ysis illustrates how the Riemannian mean summarizes a
set of homogeneous cells, and this idea will guide our
method for removing sample-specific biases.

For our own data set of immune cells isolated from
the mouse skin, plus spiked-in human cells, we have only
identified the species without further classification into
distinct cell types. Figure 3 shows the components of
Riemannian mean for the mouse and human cells in each
of the 6 samples. We observe not only biological dif-
ferences caused by the different treatment conditions –
e.g., the enrichment of CD11b in OXA-treated mouse
cells – but also some systematic differences between sam-
ples subjected to the same treatment – e.g., CD69 being
much higher in EtOH2 than in EtOH1 and EtOH3 for
both mouse and human data. For the spiked-in human
cells, all the count data should in principle come from
non-specific binding, but the Riemannian mean of some
samples are very much separated from the rest. In fact,
certain surface proteins (e.g., CD69, CD44, CD134, and
CD86) show notable, reproducible skews in both mouse
and human cells of the same sample. The pattern of cer-
tain surface protein enrichment in spiked-in human cells
of a specific sample and the persistence of these biases
in the mouse cells of the same sample suggest that there
might exist systematic differences between the samples.
These differences between samples can be further visual-
ized in the principal component analysis (PCA), where
the point clouds of EtOH2, OXA1, and OXA2 are seen
not to overlap with the other similarly treated samples
for both human and mouse cells [Fig. 4(a,b)]. System-
atic differences between samples, also known as batch
effects, will prevent comparison between different exper-
iments. We now describe our method for correcting such
batch effects by aligning the Riemannian mean of sam-
ples and parallel transporting the collection of data from
each sample along a geodesic path connecting the old
COM and the new aligned COM.

In the above discussion of Riemannian mean, we
have seen that given a reference point x, points
y(1), . . . , y(N) in its neighborhood can be mapped to vec-
tors ~w(1), . . . , ~w(N) in the tangent space TxN via y(i) 7→
~w(i) = Exp−1x (y(i)), and vice versa. Using the Levi-Civita
connection, we propose to parallel transport these vectors
along the geodesic path from x to a new reference point
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FIG. 4. Principal component analysis (PCA) of spiked-in
human cells and native mouse cells on the probability sim-
plex before and after batch correction. The single-cell ADT
count data of surface proteins were transformed to probability
vectors and then projected to the plane spanned by the first
two principal components (PCs). (a) Spiked-in human data
before batch correction. One control sample (EtOH2) and
two treated samples (OXA1,2) are seen to be outliers from
the rest. (b) Mouse data before batch correction. The biases
observed in (a) are seen to be carried over here. (c) Spiked-
in human data after batch correction. Point clouds of all six
samples are seen to overlap well. (d) Mouse data after batch
correction. Points from the six samples are seen to align well
with respect to the two treatment conditions. The variance
explained by the first two PCs is also slightly reduced.

z, and then retrieve points in the neighborhood of z via
the exponential map acting on the transported vectors
lying in TzN . On the hypersphere embedded in RD, this
transformation is equivalent to a rotation in the plane
spanned by the vectors x, z ∈ RD. Using (12) and (13),
we have for the rotation

z = x cos θ +
v

θ
sin θ = R(x̂ cos θ + v̂ sin θ), (16)

with θ = arccos
(
x · z/R2

)
, ~v = Exp−1x (z) ∈ TxN , and

the unit vectors x̂ = x/
√
x · x and v̂ = v/

√
v · v. For

a point y(i) in the neighborhood of x, the corresponding
point transported to the neighborhood of z is given by

ỹ(i) = y(i) − y
(i)
‖ (1− cos θ) + y

(i)
⊥ sin θ, (17)

in which

y
(i)
‖ ≡ (y(i) · x̂) x̂ + (y(i) · v̂) v̂,

y
(i)
⊥ ≡ (y(i) · x̂) v̂ − (y(i) · v̂) x̂.
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FIG. 5. Effects of batch correction on the six samples of
mouse skin cells with spiked-in human cells. The data points
on the hypersphere either before or after the batch correction
are mapped back to the probability simplex. Distributions
of proportion for human and mouse cells in each of the six
samples are shown for the four selected surface proteins CD69,
TCR γ/δ, CD90.2, and I-A/I-E.

This approach thus enables a method of correcting
batch effects by aligning the Riemannian mean x of a
point cloud from each sample to a consensus reference
point z and thereby transporting each point cloud to the
neighborhood of z. As previously discussed, the spiked-in
human cells in each mouse sample are supposed to mea-
sure “noise” from non-specific background binding and
should be similarly distributed on the hypersphere. We
have chosen the consensus reference point z to be the Rie-
mannian mean of the aggregated human cells from three
samples for which the point clouds of human cells mostly
overlap, namely EtOH1, EtOH3, and OXA3 [Fig. 4(a)].
The points transported to this reference point z repre-
sent the immunophenotypes of cells after the batch cor-
rection. The same rotation on the hypersphere is now
applied to the mouse cells to remove systematic biases
between samples.

As an approximate inverse of (10), we calculate the
corrected fractions of surface proteins from the corrected
coordinates on the hypersphere, and restore the count
data by multiplying the fractions by the total number of
UMI counts and rounding the results to nearest integers.
It is possible that after the batch correction, some points
on the hypersphere could have small negative coordinate
components; i.e., some points may be moved out of the
positive orthant after the rotation. As the components
of a probability vector can never be negative, we force
the negative components in (x1, . . . , xD) to be zero, and
rescale other components so that the probability normal-
ization still holds. In our experience, this thresholding
has a negligible effect on the downstream analysis. We
see in Fig. 4(c) and (d) that our batch correction method
has successfully removed the differences between spiked-
in human cells, and also aligned the mouse samples ac-
cording to the treatment conditions. We showcase the
successful removal of batch effects using four surface pro-
teins, CD69, TCR γ/δ, CD90.2 and I-A/I-E, in Fig. 5.
Before the correction is applied, it can be seen that biases
found in the distribution of the spiked-in human cells in
an outlier sample is often replicated in that of the mouse
cells in the same sample – e.g., CD69 in EtOH2, TCR γ/δ
in EtOH2 and OXA2, CD90.2 in OXA1, and I-A/I-E in
EtOH3 and OXA1. These systematic biases are largely
removed in both human and mouse cells by our batch
correction method.

C. Fitting the null model and performing
statistical tests on count data

We now present a statistical framework for testing the
significance of enrichment of a specific surface protein in
the sequencing of a native cell, compared to the null dis-
tribution of read counts for that protein in the population
of spiked-in cells. For the j-th surface protein, we build
the null model on the j-th column, {c1,j , c2,j , . . . , cN,j},
of the count matrix for spiked-in cells. In the following,
we will focus on one surface protein at a time and omit
the subscript j indexing surface proteins to simplify no-
tation.

When the number of zero counts is small for the sur-
face protein under consideration, we propose to model
the null distribution by a generalized form of negative bi-
nomial (NB) model, with cell-specific relative size factors
{t1, t2, . . . , tN} capturing differences in individual cells’
sequencing depths. The idea is similar to that described
in [4] for analyzing scRNA-seq UMI counts, but instead
of regressing a generalized linear model (GLM), we will
utilize the expectation-maximization (EM) algorithm to
estimate the parameters in the NB model [13]; we will
subsequently show that the algorithm can also be mod-
ified to estimate the paramters of zero-inflated models
that are suitable for sparse data. Once the model param-
eters are determined, we will then use the null model to
perform statistical tests on the count data of surface pro-
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teins in native cells, distinguishing “signal” from “noise”
while keeping the false discovery rate (FDR) under con-
trol.

For the i-th cell, we denote the surface protein count
random variable as yi and its actual observed value as
yobsi = ci,j . (This notation is not to be confused with the
previous section’s Cartesian coordinates y = (y1, . . . , yD)
on the hypersphere.) The relative size factor ti is a mea-
sure of the cell’s sequencing depth covering all surface
proteins, relative to a typical sequencing depth among all
N cells. The calculation of ti is discussed in Appendix D,
where we offer two choices of definition, (D6) and (D7).
We use the expression of ti defined in (D7) in this paper,
unless stated otherwise.

The NB probability distribution for a count random
variable yi with a predetermined relative size factor ti is

NB(yi;µi = tiρ, α)

=
Γ(yi + α)

Γ(α) yi!

(
tiρ

tiρ+ α

)yi( α

tiρ+ α

)α
,

(18)

parametrized by a cell-specific mean µi and a univer-
sal ‘stopping-time’ parameter α, with the mean being
E[yi] = µi = tiρ, and the variance Var(yi) = µi + µ2

i /α.
For our EM implementation, it is instructive to view the
NB distribution as an infinite mixture of Poisson dis-
tributions with mixing coefficients given by the Gamma
distribution. This paper uses the following conventions:

Gamma(λi;α, β) =
λα−1i βα

Γ(α)
e−βλi , (19)

Poisson(yi;λiti) =
(λi ti)

yi

(yi!)
e−λiti . (20)

The shape parameter α and rate parameter β for the
Gamma distribution are the same for all N cells in the
set. In the mixture model, once λi is sampled from the
Gamma distribution for the i-th cell, the mean of the
Poisson distribution is determined by the product of λi
and the cell-specific size factor ti, independent of the pa-
rameters (α, β); we get the NB probability distribution
under a reparametrization ρ = α/β, as

P (yi|ti, α, β) =

∫ ∞
0

P (yi|λi, ti, α, β) p(λi|ti, α, β) dλi

=

∫ ∞
0

Poisson(yi;λi ti) Gamma(λi;α, β) dλi

=
Γ(yi + α)

Γ(α)(yi!)

(
ti

ti + β

)yi( β

ti + β

)α
≡ NB(yi;µi = tiα/β, α).

(21)

In this formulation, the NB probability distribution arises
by marginalizing the hidden variable λi from the joint
distribution of (yi, λi). In this paper, we use P to denote
both probability mass functions of discrete random vari-
ables and joint distributions of discrete and continuous

random variables. To apply the EM algorithm to infer α
and β, we need not only the joint distribution

P (yi, λi|ti, α, β) = Poisson(yi;λi ti) Gamma(λi;α, β),
(22)

but also the posterior density of λi, computed by apply-
ing the Bayes’ rule as

p(λi|yi, ti, α, β) =
Poisson(yi;λi ti)Gamma(λi;α, β)

NB(yi;µi = tiα/β, α)
,

(23)
which is also Gamma distributed. Once the maximum
likelihood estimation (MLE) of the parameters (α, β) is
attained, we can interpret the mean of this posterior dis-
tribution as the expected surface protein levels of single
cells.

For the set of N homogeneous spiked-in cells, with
count variables y = {y1, y2, . . . , yN}, their observed
values being yobs =

{
yobs1 , yobs2 , . . . , yobsN

}
, and cor-

responding size-factors t = {t1, t2, . . . , tN}, we have

P (y|t, α, β) =
∏N
i=1 P (yi|ti, α, β). Denoting λ =

{λ1, λ2, . . . , λN} to be the set of hidden variables for the
N cells, the full joint distribution is P (y,λ|t, α, β) =∏N
i=1 P (yi, λi|ti, α, β), and we have

logP (yobs,λ|t, α, β) =
N∑
i=1

log Gamma(λi;α, β)

+
N∑
i=1

log Poisson(yobsi ;λi ti).

(24)

By taking expectation of (24) with respect to the pos-
terior distribution of λ given in (23), we then apply an
implementation of the EM algorithm to obtain the maxi-
mum likelihood estimates of the model parameters α and
β (see Appendix B for details) [13].

When an experiment produces
{
yobs1 , yobs2 , . . . , yobsN

}
containing a relatively large number of zero counts, we
use a zero-inflated negative binomial (ZINB) model, de-
fined by

P (yi|ti, α, β, ω)

= ω δyi,0 + (1− ω) NB(yi;µi = tiα/β, α),
(25)

where δy,0 = 1 for y = 0, and 0 otherwise. The new
parameter ω is the probability of a “dropout” event in the
measurement. Upon some modification, the above EM
algorithm can be used to obtain the maximum likelihood
estimates of α, β, and ω (see Appendix C).

Note that the NB distribution is a special case of the
ZINB distribution with ω = 0. We have observed that
if the NB model is sufficient for modeling the observed
counts, then fitting a ZINB model will give ω → 0. How-
ever, fitting a ZINB model will take longer time, and
one may wish to choose a particular model based on the
data at hand. The human CBMC dataset is not sparse,
with only a few zero counts; we have thus chosen to fit a
NB model for each of the M = 13 surface proteins. By

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.28.067306doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.067306
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
en

si
ty

(a) CD3
Density = 1
MOUSE
HUMAN

0.0 0.2 0.4 0.6 0.8 1.0
Adjusted p-value

0

5

10

15

20

25

30

35

40

D
en

si
ty

(b) CD3

FDR = 0.05
MOUSE
HUMAN

0 500 1000 1500 2000
E[λ]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

(c) CD3
Mouse 0.99 quantile
MOUSE
HUMAN

1.0 1.5 2.0 2.5 3.0
log10E[λ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
D

en
si

ty
(d) CD3

FIG. 6. Fitting the NB model on spiked-in mouse cells
in the CBMC data set, and performing statistical tests and
data transformation with the estimated model parameters.
The surface protein is chosen to be (human) CD3, with the
fitted model paramters α = 10.30, β = 0.2074 estimated from
the mouse data, and ω = 0 fixed for the NB model. (a) The
distribution of p-values for mouse and human cells calculated
from the fitted model. The horizontal dashed line indicates
a uniform distribution with constant density 1. (b) The dis-
tribution of adjusted p-values. The vertical red dashed line
indicates the FDR threshold of 0.05; cells to the left of this
line are considered as CD3+, and they are all human cells.
(c) The distribution of the posterior mean E[λ] for mouse and
human cells calculated from the model parameters. (d) The
distribution of log10 E[λ] for mouse and human cells. In (c)
and (d), the vertical dashed line indicates the 0.99 quantile of
the spiked-in mouse data.

contrast, the count data of mouse skin cells are sparse,
with the rates of zeros sometimes as high as 70%, and we
have chosen to fit a ZINB model for each of the M = 42
proteins.

Fitting the NB or ZINB distribution on the count data
of each surface protein from spiked-in cells yields a null
model, from which we can compute the p-values for the
observed counts in native cells and thus distinguish po-
tential “signals” from “noise” in native cells. In Fig. 6(a),
we show the null model fitted on the count data of hu-
man CD3 observed on the spiked-in mouse cells, with the
distribution of p-values being nearly uniform and thus
indicating a reasonable fit. The p-values of the human
cells show a clear distinction from the null model and
show an enrichment of cells having a significant signal of
CD3 (small p-values). Comparing the count data from
native cells to the null distribution of spiked-in cells intro-
duces a problem of multiple hypothesis testing. To con-
trol for the false discovery rate (FDR), we use the Ben-

jamini–Hochberg (BH) procedure [14], as implemented
in the r package ‘stats’ [15]. The adjusted p-values for
mouse and human data are shown in Fig. 6(b). We
would decide a cell as having a significant signal for a
surface protein when the corresponding adjusted p-value
is smaller than the chosen FDR threshold.

The model fitting also provides a method of trans-
forming the count data in a way compatible with the
statistical model. The transformed data can be used for
downstream analysis, such as correlation analysis, dimen-
sion reduction, and unsupervised clustering. With the
ZINB parameters (α, β, ω) estimated from a given set of
(yobs, t), we can transform a pair (y′, t′) of observed UMI
count and size factor, either used in the model fitting or
previously unseen, as

Eλ′|y′,t′,α,β,ω[λ′] =

1− ω δy′,0

ω + (1− ω)
(

β
t′+β

)α
y′ + α

t′ + β
,

(26)
which is roughly the posterior expected Poisson mean
of the UMI-count random variable in the ZINB model.
For the NB model, we simply need to take ω = 0, and
the expectation value reduces to (y′ + α)/(t′ + β). The
transformed CD3 count data in the CBMC data set are
shown in Fig. 6(c) and (d), where the human data are
clearly seen to have a mode with high E[λ] signals, well
separated from the background distribution of spiked-in
mouse cells. Taking the logarithm of E[λ] results in a bet-
ter visualization, as seen in Fig. 6(d), clearly capturing
the bimodal distribution of the CD3 expression level on
the surface of human blood cells. For CD3, the number of
human cells above the 0.99 quantile of the mouse control
distribution approximately coincides with the number of
human cells passing the statistical test at the adjusted
p-value threshold of 0.05 in Fig. 6(b).

III. DISCUSSION

Inspired by the techniques of differential geometry and
stochastic processes often used to model physical sys-
tems, we proposed a series of methods for analyzing the
count data of surface proteins from CITE-seq. Mapping
the count data to a Riemannian manifold, we used the
Riemannian center of mass to find an exemplar point that
best represents each set of homogeneous control cells on
the manifold. We then removed potential batch effects
between multiple samples by aligning their center of mass
on the Riemannian manifold and built a null model in or-
der to separate significant signals in the count data from
the noise of non-specific antibody binding.

To date, CITE-seq analysis lacked a rigorous statisti-
cal framework for testing the significance of ADT counts
and adjusting for multiple hypothesis testing. Our prob-
abilistic modeling of ADT sequencing addresses this gap
and also provides an appealing data representation based
on the posterior mean E[λ], which can be used for down-
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FIG. 7. Data transformation applied to human CBMC with
spiked-in mouse cells. (a) tSNE plot of the single-cell tran-
scriptomic (scRNA-seq) data. The RNA count data have
been log-normalized, as described in Eq. (D1), and com-
pressed using a dimensional reduction method (Appendix A).
The indicated color scheme for cell types is carried over to
(b,c,d,e). NK and DC denote natural killer cells and dendritic
cells, respectively. CD14+ monocytes, CD16+ monocytes,
megakaryocytes, and plasmacytoid dendritic cells (pDCs) are
grouped into the category “Other” and omitted in other pan-
els. (b) A version of the centered log ratio (CLR) transforma-
tion of the single-cell immunophenotype data, as described
in Eq. (D2). (c) Another version of the CLR transforma-
tion of the single-cell immunophenotype data, as described
in Eq. (D3). (d) Our data transformation method using the
relative size factor ti = ai/a0, with ai being the arithmetic
mean of count per protein, as described in Eq. (D6). (e)
Our data transformation method using the relative size fac-
tor ti = gi/g0, with gi being the geometric mean of count
(plus one pseudocount) per protein, as described in Eq. (D7).

stream analyses such as clustering and visualization. In-
heriting the parameters from the (ZI)NB model fitting
makes the transformation easily interpretable and com-
patible with the proposed statistical hypothesis testing
framework. Further details and comparison with other
data transformation (normalization) methods are dis-

cussed in Appendix D.
Unlike the original approach [1], some CITE-seq data

may lack a spike-in control from another species. In those
cases, we recommend first finding a set of non-immune
cells (e.g., erythrocytes in the blood, and keratinocytes
in the skin [16, 17]) that are transcriptomically distinct
from the rest of the cells, and then using the set to build
the null model for immunophenotype profiling. If this
strategy is not feasible, then an unsupervised method
could be developed to distinguish signal from noise by
fitting bimodal or multimodal distributions.

As previously mentioned, parallel transporting the im-
munophenotypes of cells on the hypersphere might move
some cells slightly out of the positive orthant. We here
addressed the issue by setting the small negative compo-
nents to zero and rescaling the rest of the components to
preserve the normalization condition. Even though this
simple correction method did not noticeably affect the
neighborhood structure of the point clouds in our data,
future studies would be needed to develop a more rigor-
ous geometric construction that can handle these cells.

Our method of batch correction, upon some modifica-
tion, may be also applicable to other types of count data;
e.g., other multi-omics count data that complement the
scRNA-seq assay, and count data used for topic model-
ing in text mining. A potentially interesting direction for
future investigation would be integrating the geometric
and statistical methods directly on a Riemannian data
manifold.
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Appendix A: Data set preparation

The CITE-seq data set of human CBMC and spiked-
in mouse cells was obtained from the Gene Expression
Omnibus under the accession number GSE100866. For
the scRNA-seq data, we followed the suggested proce-
dures of normalization, feature selection, dimensional re-
duction, and Louvain clustering in Seurat v3 [18]. The
cell labels were determined from the list of biomarkers
detected for each cluster using Seurat, as in [1]. Further-
more, we summed up the RNA counts mapping to the
mouse genome, and calculated the percentage of mouse
gene counts with respect to the total RNA counts; the
putative single cells with a percentage of mouse genes
from 5% to 95% were filtered out, as they might be dou-
blets of cells from the two species. The cells with larger
than 95% mouse genes were labeled as mouse cells. A
tSNE plot of the transcriptomic data with labeled cells
is shown in Fig. 7(a). For a clear demonstration of our
analysis, we have chosen human cells with labels only
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from the following eight cell types: B cells, memory
CD4+ T cells, naive CD4+ T cells, CD8+ T cells, natural
killer (NK) cells, dendritic cells (DCs), CD34+ cells and
erythrocytes. The cells labeled as CD14+ monocytes,
CD16+ monocytes, megakaryocytes, plasmacytoid den-
dritic cells (pDCs), and multiplets were all filtered out.
The full list of 13 cluster of differentiation (CD) proteins
measured in the experiment is {CD3, CD4, CD45RA,
CD56, CD16, CD10, CD11c, CD14, CD19, CD34, CCR5
(CD195), CCR7 (CD197)}, all of which are shown on the
x-axis in Fig. 2.

Processed tables of ADT counts in murine skin cells
and spiked-in human embryonic kidney 293 (HEK293)
cells [6] are available at https://github.com/jssong-
lab/SAGACITE. The samples OXA1, 2, and 3 were
from the ear skin of three different mice treated with
inflammation-inducing oxazolone, while EtOH1, 2, and 3
were from the ear skin of three different mice treated with
ethyl alcohol as control. The immune cells in each skin
sample were isolated after enzymatic digestion and then
cell sorting using flow cytometry. The HEK293 cells were
then spiked in, just before CITE-seq was performed. For
each cell, we calculated the percentage of RNA counts
mapping to the mouse genome with respect to the to-
tal amount of RNA counts; a cell with the percentage
greater than 99% was classified as a mouse cell, and a
cell with the percentage smaller than 5% was classified
as a human cell. No further sub-classification of mouse
cells based on the transcriptome was performed.

Appendix B: EM algorithm for NB model fitting

The posterior density p(λi|yi, ti, α, β) of λi defined in
(23) satisfies

Eλi|yi,ti,α,β [λi] =

∫ ∞
0

λi p(λi|yi, ti, α, β) dλi =
yi + α

ti + β
(B1)

and

Eλi|yi,ti,α,β [log λi] =

∫ ∞
0

log λi p(λi|yi, ti, α, β) dλi

= Ψ(yi + α)− log(ti + β),
(B2)

where Ψ(z) = d
dz log Γ(z) is the digamma function.

For a dataset (y, t) of N independent samples, we de-
fine the following sample averages of expectation values:

Eλ|y,t,α,β [1] = 1, (B3)

Eλ|y,t,α,β [λ] =
1

N

N∑
i=1

yi + α

ti + β
, (B4)

Eλ|y,t,α,β [logλ] =
1

N

N∑
i=1

[Ψ(yi + α)− log(ti + β)].

(B5)

Given the current estimate of (α, β), we need to update
them as

(αnew, βnew) = arg max
α∗,β∗

Eλ|y,t,α,β [logP (y,λ|t, α∗, β∗)]

= arg max
α∗,β∗

N∑
i=1

Eλi|yi,ti,α,β [logP (yi, λi|ti, α∗, β∗)]

= arg max
α∗,β∗

N∑
i=1

∫ ∞
0

log Gamma(λi;α
∗, β∗)

× p(λi|yi, ti, α, β) dλi

= arg max
α∗,β∗

`NB(α∗, β∗),

(B6)

where

`NB(α∗, β∗) ≡ (α∗ − 1) Eλ|y,t,α,β [logλ]− β∗ Eλ|y,t,α,β [λ]

+ α∗ log β∗ − log Γ(α∗).
(B7)

Solving ∂
∂β∗ `NB(α∗, β∗) = 0 for β∗, we get β∗ =

α∗/Eλ|y,t,α,β [λ]. Substituting this expression of β∗ into
`NB(α∗, β∗), we define a new function depending only on
α∗:

˜̀
NB(α∗) = (α∗ − 1) Eλ|y,t,α,β [logλ]

− α∗ log Eλ|y,t,α,β [λ] + α∗ logα∗ − α∗ − log Γ(α∗).

(B8)

Maximizing this function, we finally obtain the updates

αnew = arg max
α∗

˜̀
NB(α∗), βnew = αnew/Eλ|y,t,α,β [λ].

(B9)
In each iterative step, we compute the optimization of
αnew numerically using a generalized version of Newton’s
method which enables faster convergence [13, 19].

Appendix C: EM algorithm for ZINB model fitting

For the ZINB model, the joint probability function is

P (yi, zi, λi|ti, α, β, ω) = ω δzi,0 δyi,0 δ(λi)

+ (1− ω)δzi,1Poisson(yi;λi ti)Gamma(λi;α, β),
(C1)

where zi ∈ {0, 1} is a latent Bernoulli random variable
modeling the “dropout” event (zi = 0). The posterior
probability function is

P (zi, λi|yi, ti, α, β, ω) = δzi,0 δ(λi)hi(α, β, ω)

+ δzi,1(1− hi(ω, α, β)) p(λi|yi, ti, α, β),
(C2)

where the posterior density p(λi|yi, ti, α, β), for zi = 1, is
defined in (23), and

hi(α, β, ω) ≡ ω δyi,0
ω δyi,0 + (1− ω) NB(yi;µi = tiα/β, α)

.

(C3)
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Given the current estimate of (α, β, ω), we need to update
them as

(αnew, βnew, ωnew)

= arg max
α∗,β∗,ω∗

Ez,λ|y,t,α,β,ω[logP (y, z,λ|t, α∗, β∗, ω∗)]

= arg max
α∗,β∗,ω∗

`NB(α∗, β∗, ω∗),

(C4)

where `ZINB(α∗, β∗, ω∗), collecting only the terms involv-
ing α∗, β∗, ω∗, is given by

`ZINB(α∗, β∗, ω∗)

≡ 1

N

N∑
i=1

[
hi(α, β, ω) logω∗ + (1− hi(α, β, ω)) log(1− ω∗)

]
+

1

N

N∑
i=1

(1− hi(α, β, ω))

×
∫ ∞
0

p(λi|yi, ti, α, β) log Gamma(λi;α
∗, β∗) dλi

=
1

N

N∑
i=1

[hi(α, β, ω) logω∗ + (1− hi(α, β, ω)) log(1− ω∗)]

+ (α∗ − 1)Elogλ − β∗Eλ + [α∗ log β∗ − log Γ(α∗)]E1.
(C5)

In the last line, E1, Eλ, and Elogλ are defined as follows,
similar to (B3), (B4), and (B5):

E1 ≡
1

N

N∑
i=1

(1− hi(ω, α, β)), (C6)

Eλ ≡
1

N

N∑
i=1

(1− hi(α, β, ω))

∫ ∞
0

dλi fi(α, β)λi

=
1

N

N∑
i=1

(1− hi(α, β, ω))
yi + α

ti + β
,

(C7)

Elogλ ≡
1

N

N∑
i=1

(1− hi(α, β, ω))

∫ ∞
0

dλi fi(α, β) log λi

=
1

N

N∑
i=1

(1− hi(α, β, ω))[Ψ(yi + α)− log(ti + β)].

(C8)

Solving ∂
∂ω∗ `ZINB(α∗, β∗, ω∗) = 0 for ω∗, we obtain

ωnew =
1

N

N∑
i=1

hi(α, β, ω). (C9)

From ∂
∂β∗ `ZINB(α∗, β∗, ω∗) = 0, we have α∗/β∗ = Eλ/E1.

Keeping only those terms involving α∗ and β∗ in (C5)
and substituting β∗ = α∗E1/Eλ, we can define a function
that depends only on α∗ as follows

˜̀
ZINB(α∗)/E1 ≡(α∗ − 1)Elogλ/E1 − α∗ log (Eλ/E1)

+ α∗ logα∗ − α∗ − log Γ(α∗).
(C10)

The update now reads

αnew = arg max
α∗

{
˜̀
ZINB(α∗)/E1

}
, βnew = αnewE1/Eλ.

(C11)
With the ratios Elogλ/E1 and Eλ/E1 calculated using
(C6), (C7), and (C8), the resulting optimization is the
same as in (B8).

Appendix D: Comparison of data transformation
methods

The log normalization with a fixed scale factor s0, com-
monly used to process scRNA-seq data, transforms the
count data (ci,1, . . . , ci,D) within the i-th cell as

ci,j 7→ log

(
ci,j
si
× s0 + 1

)
= log

(
ci,j
si/s0

+ 1

)
, (D1)

where si ≡
∑D
k=1 ci,k is the total sequencing depth in the

i-cell, and s0 can be chosen to be a typical value of si.
Some common choices are s0 = 1000, 10000, or 100000,
depending on the data. We also find it reasonable to
choose s0 as either the arithmetic or the geometric mean
of si’s.

The centered log ratio (CLR) is a related transforma-
tion method that is previously used to process the CITE-
seq count data [1], and is defined as

ci,j 7→ log

(
cij + 1

gi

)
= log (ci,j + 1)− 1

D

D∑
k=1

log (ci,k + 1),

(D2)

where gi =
[∏D

k=1(ci,k + 1)
]1/D

is the geometric mean of

the D surface protein counts, each adjusted by one pseu-
docount. It can be interpreted as row mean-centering the
table of pseudocount-adjusted log counts, log (ci,j + 1).
Another version of the CLR transformation, imple-
mented in Seurat v3 [18], is given by

ci,j 7→ log

(
ci,j
gi

+ 1

)
, (D3)

which is not row-centered. Unlike the expression defined
in (D2), the alternative form given in (D3) always yields
nonnegative values.

We here propose a new data transformation method
using the posterior E[λi,j ] computed using the MLE of
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ZINB model parameters (αj , βj , ωj) for the j-th protein,
as given in (26); we take the logarithm for better visu-
alization of the data, the effect of which is clear when
we compare Fig. 6(c) with Fig. 6(d). When the zero-
inflation mixing coefficient ωj = 0, our transformation is

ci,j 7→ log

(
ci,j + αj
ti + βj

)
; (D4)

when ωj 6= 0, it is

ci,j 7→ log

1−
ωj δci,j ,0

ωj + (1− ωj)
(

βj

ti+βj

)αj

ci,j + αj
ti + βj

.
(D5)

We provide two choices regarding how to compute the
relative size factor ti for the i-th cell: the first definition
is

ti = si/s0 = ai/a0, ai ≡
1

D

D∑
k=1

ci,k, (D6)

where the ratio si/s0 is the same as that used in the log
normalization method (D1), ai is the arithmetic mean
of the D surface protein counts, and a0 = s0/D is some
choice of typical value of ai; the other definition is

ti = gi/g0, gi =

[
D∏
k=1

(ci,k + 1)

]1/D
, (D7)

where gi is the geometric mean as in the two versions of
CLR transformation (D2) and (D3), and g0 is some choice
of typical value of gi. Although (D6) capturing the differ-
ences in total count might seem more intuitive, we recom-
mend (D7), as the geometric mean is more robust against

outliers than the arithmetic mean. Transformation re-
sults for the two choices are shown in Fig. 7(d) and (e),
respectively, where it is apparent that the second conven-
tion ti = gi/g0 better separates the CD8+ T cells from
spiked-in mouse cells along the CD3+ direction. This
phenomenon may be attributed to the fact that CD8+ T
cells have high CD8 counts and, thus, inflated size fac-
tors under the former definition, thereby suppressing the
transformed CD3 values. Consistent with this observa-
tion, performing statistical tests on the CD3 level shows
that the CD8+ T cells are correctly classified as being
CD3+, when (D7), but not when (D6), is used to calcu-
late the size factors.

In each of the transformation methods described
above, the argument of the logarithm can be considered
as a normalized version of the raw count ci,j . In our
transformation, the argument is E[λ], and the normal-
ization adds a data-driven pseudocount αj to the raw
count and βj to the relative size factor ti ∼ 1, which cor-
rects the sum ci,j + αj for different sequencing depths.
Similarly, the term containing ωj corrects for the case of
an inflated zero count. Compared with the log normal-
ization (D1) and the CLR transformation (D2,D3), our
approach utilizes the model parameters inferred from the
data, rather than adding an arbitrary pseudocount of 1.
It is also specific to a particular surface protein and has
the ability to address a potential dropout effect in the
measurement.

In our implementation, we have chosen g0 to be the
geometric mean of all gi’s. However, a different choice of
g0 would merely translate the distribution of the trans-
formed data by a constant. That is, under rescaling
ti → b ti by a fixed constant b, the mixture probabili-
ties of the NB and ZINB models remain invariant under
the compensating redefinitions λi,j → λi,j/b, αj → αj ,
βj → b βj , (ci,j+αj)/(ti+βj)→ (1/b)(ci,j+αj)/(ti+βj),
and ωj → ωj ; hence, the only effect of choosing a differ-
ent g0 is to rescale E[λi,j ] by a multiplicative constant
for all i, resulting in translating log E[λi,j ] by a global
constant for all cells.
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dans un espace distancié, in Annales de l’institut Henri
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