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Abstract

Shape is an important phenotype of living species that contain different environmental and

genetic information. Clustering living cells using their shape information can provide a

preliminary guide to their functionality and evolution. Hierarchical clustering and

dendrograms, as a visualization tool for hierarchical clustering, are commonly used by

practitioners for classification and clustering. The existing hierarchical shape clustering

methods are distance based. Such methods often lack a proper statistical foundation to allow

for making inference on important parameters such as the number of clusters, often of prime

interest to practitioners. We take a model selection perspective to clustering and propose a

shape clustering method through linear models defined on Spherical Harmonics expansions of

shapes. We introduce a BIC-type criterion, called CLUSBIC, and study consistency of the

criterion. Special attention is paid to the notions of over- and under-specified models,

important in studying model selection criteria and naturally defined in model selection

literature. These notions do not automatically extend to shape clustering when a model

selection perspective is adopted for clustering. To this end we take a novel approach using

hypothesis testing. We apply our proposed criterion to cluster a set of real 3D images from

HeLa cell line.

Introduction 1

Shape modelling plays an important role in medical imaging and computer vision [1, 2]. There 2

is, in particular, a vast literature on cell shape analysis where the shape can often provide 3

important information about the functionality of the cell ([3, 4, 5, 6, 7]). Most of such analysis 4

employ techniques that often lack a statistical error component. Variability among shapes has 5

been studied using different approaches: active shape models [8], computational anatomy [9], 6

planar shape analysis [10, 11], etc. 7

Hierarchical clustering is one of the most commonly used methods by practitioners to find 8

unknown patterns in data [12]. There are several reasons why a tree based method is 9

preferable: i) the closest objects merge earlier, which reflects the evolution as the hierarchies 10

are built up ii) provides a visual guide through a binary tree, called dendrogram iii) For a 11

chosen number of clusters, it is only required to cut the dendrogram to achieve the 12

corresponding clustering iv) allows to choose the number of clusters visually so that 13

corresponding clustering is meaningful to an expert. 14
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The existing hierarchical shape clustering methods are distance based and often lack a 15

proper statistical foundation for making statistical inference. Borrowing ideas from model 16

selection and testing statistical hypothesis, we take a different perspective to hierarchical 17

clustering. A statistical shape model built on a set of image data, using a common coordinate 18

system, can be regarded as a random continuous curve. A 3D shape can then be represented as 19

a linear function of some basis functions. Possible noises and fluctuations can be easily 20

included in the linear model. One can therefore use the likelihood function to devise a shape 21

clustering algorithm using a convenient metric. The main advantage of such approach is to 22

acquire the probability distribution of the fitted function and to distinguish between different 23

shapes using their probability distributions. 24

Having modelled shapes using linear models, clustering can be performed on the estimated 25

coefficients of the basis functions; similar shapes are expected to have similar coefficients. 26

The problem of assigning two shapes to the same cluster will then become a hypothesis testing 27

problem. Having this formulation, choosing the optimal number of clusters can be treated as a 28

model selection problem. To this end, we use BIC and devise a criterion, called CLUSBIC, 29

whose consistency is established. 30

The rest of this manuscript is organized as follows. In Section we discuss statistical 31

modeling of shapes in three-dimensions using spherical harmonics. In Section 1 we propose a 32

new Bayesian information criterion, called CLUSBIC, for clustering shapes taking into 33

account the likelihood function of their fitted models, and establish consistency of the 34

proposed criterion. In Section 2 we apply our proposed method to 3D images from HeLa cell 35

line captured by a laser-scanning 240 microscope. Section 3 is the conclusion. Proofs of the 36

main results are given in the appendices, while the proofs of other auxiliary results and the 37

lemmas are documented in the supplementary materials. 38

sectionShape Modelling A three-dimensional (3D) shape descriptor is highly beneficial in 39

many fields such as biometrics, biomedical imaging, and computer vision. Double Fourier 40

series and spherical harmonics are widely used for representing 3D objects. Here, we discuss 41

spherical harmonics for 3D shape modelling. Spherical harmonics are a natural and convenient 42

choice of basis functions for representing any twice differentiable spherical function. 43

Let x, y and z denote the Cartesian object space coordinates, and θ, φ, and r the spherical 44

parameter space coordinates, where θ is taken as the polar (colatitudinal) coordinate with 45

θ ∈ [0, π], and φ as azimuthal (longitudinal) coordinate with φ ∈ [0, 2π]. Spherical harmonics 46

is somehow equivalent to a 3D extension of the Fourier series, which models r as a function of 47

θ and φ. The real basis for spherical harmonics Y m
l (θ, φ) of degree l and order m is defined as: 48

Y m
l (θ, φ) =







√
2
√

2l+1
4π

(l−m)!
(l+m)!P

m
l (cos θ) cos(mφ) for m ≥ 0,

√
2
√

2l+1
4π

(l−|m|)!
(l+|m|)!P

|m|
l (cos θ) sin(|m|φ) for m < 0,

(1)

where l and m are integers with |m| ≤ l, and the associated Legendre polynomial Pm
l [13]. 49

Given a spherical function r(θ, φ) and a specified maximum degree Lmax, one can write 50

r(θ, φ) as a linear expansion of Y m
l ’s with possibly some measurement errors and find the 51

coefficient of fit through the method of least squares. That is, 52

y = Xβ + ε, (2)

where

yT =
(
r1 r2 . . . rN

)
,βT =

(
β1 β2 . . . βK

)
,

X =









Y −l
l (θ1, φ1) Y

−(l−1)
l (θ1, φ1) . . . Y 0

l (θ1, φ1) . . . Y l
l (θ1, φ1)

Y −l
l (θ2, φ2) Y

−(l−1)
l (θ2, φ2) . . . Y 0

l (θ2, φ2) . . . Y l
l (θ2, φ2)

...
... . . .

... . . .
...

Y −l
l (θN , φN ) Y

−(l−1)
l (θN , φN ) . . . Y 0

l (θN , φN ) . . . Y l
l (θN , φN )









,
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where N is the number of observations, |m| ≤ l ≤ Lmax, and K = (Lmax + 1)2 is the number 53

of parameters. The quality of fit improves as Lmax increases, i.e., the larger the number of 54

expansion terms. 55

The model (2) is only suitable for surface modeling of stellar shapes. A different

parametric form for surface modeling, regardless of the type of shape, is suggested by [14, 15].

This parametric form gives us three explicit functions defining the surface of shape as xs(θ, φ),
ys(θ, φ), and zs(θ, φ), where each of the coordinates is modeled as a function of spherical

harmonic bases. Accordingly, the following three linear models are generated,

xs = Xβx + εx,

ys = Xβy + εy,

zs = Xβz + εz.

The set of expansion coefficients (βx,βy,βz) defines the shape completely. Assuming xs, ys 56

and zs to be independent of each other, the above three models are equivalent to the following 57

model 58



xs

ys

zs



 = X





βx

βy

βz



+





εx
εy
εz



 . (3)

1 Shape Clustering 59

Having characterised shapes by functional forms, we can cluster shapes according to their 60

estimated coefficients. Clustering shapes can be achieved simply by computing the Euclidean 61

distance over their parameters of the models in equation (2). However, this heuristic method 62

may not lead to proper clusters, so we aim to develop a methodology using fitted models. To 63

this end, we present a likelihood-based approach for clustering shapes in this section. From the 64

Bayesian point of view, the clustering procedure is enhanced by contemplating the distribution 65

of parameters in equation (2). We assume some prior distributions over parameters of the fit β, 66

and calculate the marginal distribution of the model by integrating the likelihood with respect 67

to the assumed prior. In this approach, the hierarchy of clusters is built up based on the 68

marginal likelihoods [16, 17, 18, 19]. Agglomerative hierarchical clustering is used to 69

establish the dendrogram in which curves are merged as long as the merge improves the 70

marginal likelihoods, as discussed in [20]. 71

This section is organized as follows. First, a brief sketch of likelihood calculation with 72

classical assumptions is provided in Subsection 1.1. In Subsection 1.2, we introduce a new 73

Bayesian information criterion for clustering curves, called CLUSBIC. In Subsection 1.3 the 74

consistency of the CLUSBIC is proved. 75

1.1 Linear Models 76

We consider the following linear model in polar coordinates 77

yN×1 = XN×KβK×1 + εN×1, (4)

where N and K indicate the number of observations and the attributes respectively. We 78

assume ε is distributed according to the Gaussian distribution with mean 0N×1 and covariance 79

matrix σ2IN , i.e. ε ∼ N (0, σ2IN ), where IN is the identity matrix of size N . 80

In case of spherical harmonic expansions, equation (3), we assume that the error terms εx, 81

εy , and εz are independent of each other and each follows the Gaussian distribution 82

N (0, σ2IN ). Subsequently, the vector 83

(εx, εy, εz) ∼ N3N (0, I3 ⊗ σ2IN ), (5)
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where the symbol ⊗ is the Kronecker product. 84

Given D distinct shapes, the model associated with this set of shapes is 85

y = Xβ + e, (6)

where

y =








y1

y2

...

yD







, X =








X1
1 02

N1×K . . . 0D
N1×K

01
N2×K X2

2 . . . 0D
N2×K

...
...

...

01
ND×K 02

nD×K . . . XD
D







, β =








β1

β2
...

βD







, e =








ε1
ε2
...

εD







,

We explain the methodology using the notation for equation (4). Similar methodology 86

applies using equation (3), taking into account the property in equation (5). 87

Suppose d = (d1, d2, . . . , dD) is a grouping vector, e.g. d = (1, 1, . . . , 1) assigns all D

shapes to one group and d = (1, 2, . . . , D) assigns each shape to a singleton. The likelihood

function for the model (6) given the grouping vector d is,

p(y | β, σ2,X,d) =

C(d)
∏

i=1

p(y(i) | β, σ2,X(i)),

where C(d) denotes the number of unique elements in d (the number of clusters) N(i), while 88

y(i) and X(i) represent, respectively, the number of observations, vector of response, and 89

matrix of covariates after combining the clusters. The vector of unknown parameters is 90

denoted by β. 91

For the sake of simplicity, we propose conjugate priors [21]. To begin with, σ2 is assumed 92

to be known. The standard conjugate prior imposed on β, conditional on σ2, is 93

β | σ2 ∼ N (β0, σ
2V 0), where β0, and V 0 are the prior mean and prior covariance matrix for 94

β respectively. For a detailed discussion of Bayesian methods see [22]. The marginal 95

likelihood of y can be computed as follows: 96

p(y) =

∫

p(y | β, σ2)p(β | σ2)dβ. (7)

In case of conjugate priors, the model appears as the multivariate Gaussian distribution with

mean Xβ0 and covariance matrix of IN +XV 0X
T, where N =

∑D
i=1 Ni denotes the

number of observations. The curves are assigned to a group with maximum p(d | y). By the

Bayes theorem,

p(d|y) = p(y | d)p(d)
p(y)

∝
C(d)
∏

i=1

p(y(i))p(d). (8)

The dendrogram exploits the marginal likelihood to build the hierarchy. It is expected that 97

the marginal likelihood reaches its maximum over a reasonable grouping. Thus, the logical 98

cut-off on the dendrogram is when the marginal likelihood is maximized over the dendrogram. 99

In order to calculate the marginal likelihood p(y | σ2) for each curve, one needs to 100

compute the inverse of the covariance matrix (IN +XV 0X
T) which is of size N , the number 101

of observations. The computation of the inverse has the computational complexity of 102

O(N2.37) [23] for the best-case scenario. To circumvent the computational complexity 103

involved in computing the inverse of the covariance matrix, we modify the Gaussian model by 104

adding σ2 to the hierarchy of parameters. Assuming an inverse-gamma distribution for σ2, 105
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transform the Gaussian model to Student’s t-model which does not require any matrix 106

inversion of size N , see [24]. If σ2 is nearly degenerate, i.e, E(σ2) = µ0, and Var(σ2) ≈ 0, 107

this model is, asymptotically, the same as the Gaussian model. The computational complexity 108

of this model is bounded by O(NK2) which is a significant improvement over the Gaussian 109

model. The proposed computational trick leads to a marginal likelihood which comes from a 110

distribution with heavier tails than the Gaussian distribution. This trick is particularly helpful 111

in modeling data containing outliers. 112

As [25] discussed, agglomerative clustering using Student’s t-distribution suffers from 113

some instabilities under the common settings of the hyper-parameters. Here, the 114

hyper-parameters of the inverse-gamma distribution are determined such that it produces a 115

nearly degenerate distribution. 116

Bayesian clustering according to the p(d | y), equation (8), requires modeling p(y | d) and

p(d). Here, we follow the structure suggested in [20]. The random vector d denotes the

possible groupings for a set of shapes. Suppose C(d) is the total number of clusters at each step

and n1, n2, . . . , nC(d) are the total number of shapes in each of the clusters. Suppose that C(d)
is uniformly distributed over the set {1, 2, . . . , D}, where D is the total number of shapes and

the nj , j = 1, 2, . . . , D, is distributed according to multinomial-Dirichlet with parameter π,

p(d | π) = 1

D

Γ(
∑C(d)

i=1 πi)
∏C(d)

i=1 Γ(ni + πi)
∏C(d)

i=1 Γ(πi)Γ(D +
∑C(d)

i=1 πi)
.

A uniform setting on the parameter vector π leads to

p(d) =
(C(d)− 1)!n1!n2! . . . nC(d)!

D(D + C(d)− 1)!
.

1.2 Clustering Bayesian Information Criterion (CLUSBIC) 117

We introduce a criterion for clustering, based on the marginal likelihoods, called Clustering 118

Bayesian Information Criterion (CLUSBIC). CLUSBIC is similar to BIC in nature, but it is 119

designed for the purpose of hierarchical clustering. When all data fall into one cluster, 120

CLUSBIC coincides with BIC. 121

[26] proposed a simple informative distribution on the coefficient β in Gaussian regression 122

models. As a prior on the parameter verctor, given the covariates, he considered 123

β ∼ N (β0, gσ
2(XTX)−1), a conjugate Gaussian prior distribution. This covariance matrix is 124

a scaled version of the covariance matrix of the maximum likelihood estimator of β. In 125

practice, β0 can be taken as zero and g is an overdispersion parameter to be estimated or 126

manually tuned. The parameter g can be set according to various common model selection 127

methods such as AIC, BIC and RIC [27]. [26, 28] suggested the use of the prior distribution 128

on g as a fully Bayesian method (see also [29]). Various other methods have been 129

recommended in the literature for finding an optimal value for g, such as the empirical Bayes 130

methods [30, 31]. Choosing the number of clusters according to the marginal probability 131

distribution is analogous to using the BIC criterion in a model selection problem if g = N 132

where N is the number of the observations. 133

Denote by M the set of all possible models. The set M contains all the possible ways that 134

one can assign D distinguishable shapes into D,D − 1, D − 2, . . . , 1 indistinguishable 135

clusters. The cardinality of M is
∑D

i=1

{
D
i

}
where

{
n
k

}
is the Stirling number of the second 136

kind. The sum is equal to the Bell number BD. 137

The testing formulation of model selection is to test the following hypothesis 138

H0 : βj1
= βj2

= . . . = βjk
= 0, vs. H1 : βj1

6= 0, . . . ,βjk
6= 0, (9)

for 1 ≤ j1 < j2 < . . . < jk ≤ D. Clustering, in contrast, is concerned with finding different 139

ways of combining the covariates. Clustering may then be formulated as testing the hypothesis 140

H0 : Tβ = 0, vs. H1 : Tβ 6= 0, (10)
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where TqK×DK is the matrix of constraints such that Tβ = 0 is a set of q linear constraints 141

on βj for 1 ≤ j ≤ D. The following theorem provides an approximation of the marginal 142

likelihood which we call CLUSBIC. 143

Theorem 1. Suppose p(y | β,X,d, σ2) is a C3 function of β. Then as Ni → ∞, ∀i, we have 144

−2 log

[
p(y | β,X,d, σ2)

p(y | β̃,X,d, σ2)

]

= KC(d) log(
C(d)
∑

i=1

Ni) +Op(||β − β̃||3),

where β̃ is the maximum likelihood estimate of β under the null hypothesis, H0 : Tβ = 0. 145

Proof. The proof is given in Section A of the Appendix. 146

Theorem 1 shows that for large sample sizes our proposed clustering method using the 147

marginal likelihood has the same premise as Ward’s linkage [32]. Ward’s linkage, ∆(A,B), is 148

a popular method in hierarchical clustering which is based on minimizing variance after the 149

merge. Ward’s method merges two clusters A and B that minimizes the sum of squares after 150

the merge. 151

Using CLUSBIC, two groups, say group i and group j, are merged together if it leads to a

decrease in the CLUSBIC. The CLUSBIC is calculated for different combination of shapes.

A pair of groupings that minimizes CLUSBIC is a merging candidate. For example, groups i

and j are merged together in the second level of the hierarchy only if the merge decreases the

total CLUSBIC compared to the level before. The following calculation shows that this idea

of merging the groups is very much aligned with likelihood maximization.

∆21(CLUSBIC) = CLUSBIC(2) − CLUSBIC(1)

=



−2{ℓ1 + ℓ2 + . . .+ ℓ(ij) + . . .+ ℓC(d)}+K

C(d)−1
∑

q=1

Nq log(

C(d)−1
∑

q=1

Nq + 1)





−



−2{ℓ1 + ℓ2 + . . .+ ℓi + . . .+ ℓj + . . .+ ℓD} −K

C(d)
∑

i=1

Ni log(

C(d)
∑

i=1

Ni + 1)



 ,

where ℓi = log{p(yi | βi,X, σ2)} and ℓ(ij) is the log-likelihood after merging group i with 152

group j. As the total number of observations is fixed at each level of hierarchy, i,e., 153

∑C(d)
i=1 Ni =

∑C(d)−1
q=1 Nq , 154

∆21(CLUSBIC) = −2{ℓ(ij) − (ℓi + ℓj)} − k log(

C(d)
∑

i=1

Ni + 1).

For Gaussian models, Ward’s linkage is closely related to CLUSBIC. Minimizing the

CLUSBIC between each two consecutive levels of the dendrogram leads to minimizing the

metric, cij = ℓi + ℓj − ℓ(ij); i, j = 1, 2, . . .D. Now, considering the model y = Xβ + ε,

log
{

p(yi | β̂i,X, σ2)
}

= −Ni

2
log(2πσ2)− 1

2σ2
||yi − Ê(yi)||22,

where Ê(yi) = Xβ̂i. Substituting the above equation in the cij metric, we have

cij =
1

2σ2
{||y(ij) − Ê(y(ij))||22 − ||yi − Ê(yi)||22 − ||yj − Ê(yj)||22},

≈ ∆(i, j)

When XTX is a diagonal matrix, cij equals ∆(i, j). 155
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1.3 Consistency of CLUSBIC 156

In this section, we show that the CLUSBIC criterion is consistent in choosing the true 157

clustering as Ni → ∞ for i = 1, 2, . . . , C(d) . Assuming that there exists a model m0 ∈ M 158

that represents the true clustering, the CLUSBIC, developed in Theorem 1, is said to be a 159

consistent criterion if 160

lim
N→∞

pN (m0) = lim
N→∞

pN (m̂ = m0) = 1, (11)

where m̂ is the model selected by CLUSBIC. 161

In a regression setting, the space of models M can be partitioned into two sub-spaces of

under-specified and over-specified models in a rather straightforward fashion. The space of

under-specified models M1 contains all models that mistakenly exclude the attributes of the

true models. On the other hand, the space of over-specified models M2 contains all models that

include more attributes besides the true model’s attributes. In other words, the sub-spaces M1

and M2 can be effortlessly established considering the presence or the absence of the attributes

of the true model. Therefore, more formally, we have

M1 = {m ∈ M | m + m0}, and M2 = {m ∈ M | m ⊇ m0}.
Consequently, for each model that belongs to M2, the dimension of the model, K , is always 162

greater than the true model. 163

The definition of under-specified and over-specified models needs to be adjusted for the 164

clustering context. By definition, the over-specified models must include the attributes of the 165

true model. The question that arises here is how the notion of attributes can be interpreted for 166

the clustering problem. Suppose that each column of X represents an attribute; more clusters 167

mean more attributes. There is some confusion as to whether the over-specified models should 168

include the clusters of the true model (i.e., smaller number of clusters compared to the true 169

model) or disjoint the clusters of the true model (i.e., having more number of clusters). 170

Consider the general linear model y = Xβ + e in equation 6. Let N =
∑C(d)

i=1 Ni and

Kd = KC(d) be the total number of observations and the number of parameters in the model

respectively. One can approach the problem of defining the model space of M2 from the

hypothesis testing point of view (10). In this approach, the over-specified model is the one that

the null hypothesis for that model holds true considering the assumptions on the true model.

More formally, we define M1 and M2 as follows for the clustering problem,

M1 = {m ∈ M | Tmβ 6= 0}, and M2 = {m ∈ M | Tmβ = 0},
where Tm is the matrix of constraints for the model m ∈ M . To establish the consistency of 171

CLUSBIC, we need to prove the following statements, 172

a) limN→∞ pN (m) = 0 for m ∈ M1. 173

b) limN→∞ pN (m) = 0 for m ∈ M2 − {m0}. 174

We in fact prove a stronger version of the first statement ( a). We’ll show that 175

a*) limN→∞ NhpN (m) = 0 for m ∈ M1, and for any positive h. 176

The consistency of the BIC in model selection has been developed in the literature

considering different assumptions, see [33, 34, 35]. Estimating the number of parameters

under the null hypothesis in (10) leads to constrained least squares. Consequently,

β̃ = β̂ − (XTX)−1T[T(XTX)−1TT]−1Tβ̂,

ŷ = Xβ̃

= {X(XTX)−1XT −X(XTX)−1TT[T(XTX)−1TT]−1T(XTX)−1XT}y
= {Q1 −Q2}y
= Qy.
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The matrix Q is the projection matrix which is symmetric and idempotent. 177

In the following theorem, we show that CLUSBIC is a consistent clustering measure for 178

any arbitrary distribution on model (4). To prove the consistency of CLUSBIC, we rely on a 179

quadratic approximation to the logarithm of the likelihood suggested by [36]. It can be shown 180

that results can be exact for Gaussian models, see Section B. 181

Theorem 2. The CLUSBIC is a consistent clustering criterion. 182

Proof. The proof is given in Section B of the Appendix. 183

2 Application 184

In this section, we apply our proposed method to the biological cell data obtained from the 185

Murphy lab 1 ([37]). The database includes 3D images from HeLa cell line captured by a 186

laser-scanning microscope. For this study, we consider images which are labeled as 187

monoclonal antibody against an outer membrane protein of mitochondria. There are fifty data 188

folders each representing the data from a distinct cell. Each folder contains four sub-folders 189

and the data corresponding to the cell and crop image folders are used for this study. The cell 190

folder has various images of a specific cell, taken at different depths called the confocal plane. 191

To better illustrate our proposed method of clustering, we start by an example of shape 192

clustering in a two-dimensional (2D) space. For this purpose, a single stack, common over all 193

cells, is selected. The chosen stack, thereafter, is segmented using the designed crop image 194

such that there is only one cell per image. To obtain a true representation of a shape from each 195

image, location, scale, and rotational effects should be filtered out. For this purpose, we 196

aligned cells such that their centroids are located in the centre of images. In addition, the cells 197

are rotated in the direction of their main principal component axes to assure a rotation-free 198

analysis. Consequently, the coordinate of pixels on the boundary of the cell is extracted for 199

modeling. We use MATLAB standard methods including segmentation, boundary detection 200

and Savitzky–Golay smoothing filter functions from MATLAB toolboxes [38, 39] for 201

detecting the boundary of the cell. We call the associated line the oracular boundary since it, 202

supposedly, represents the true boundary for each cell. Besides, we propose another method 203

for boundary detection which enables us to take into account the associated uncertainty. 204

For each observation on the oracular boundary, the uncertainty (variance) is calculated

based on the data points on the lower and the upper boundaries in polar coordinates. Lower

and upper boundaries are treated as a 95% confidence interval and

σ̂i ≈
UCLi − LCLi

4
, for i = 1, 2, . . . , N,

gives an estimation of the standard deviation for point i, where UCLi and LCLi represent the 205

lower boundary and upper boundary values at point i respectively. Then the median of the σ̂i is 206

treated as the common standard deviation to be used for all the computations throughout our 207

clustering algorithm. A Gaussian sample centered around each observation on the oracular 208

boundary with the so-called common variance is generated. 209

Note that in the case of 2D shape modeling, one can employ basis functions such as 210

Fourier, splines or wavelets and then follow the same procedure for shape clustering as in 211

Section 1. For the sake of readability, in Figure 1, the dendrogram is reported for only ten 212

random cells. Each cell is assigned a number corresponding to its order in the database. 213

In order to obtain the 3D Cartesian coordinates associated to each voxel on the surface, we 214

do as follows. First, the boundary data for each image stack is extracted separately. Second, 215

the 2D coordinates of each stack are combined all together to create the 3D coordinates of the 216

cell shapes depicted in Figure 2. We then take the image spacing information into acccount. 217

1http://murphylab.web.cmu.edu/data/#3DHeLa
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Fig 1. Top panel, dendrogram of the marginal likelihood associated with each cell using Fourier basis functions with K = 33 expansion terms. In this

example, D = 10, Ni = 1000 for i = 1, 2, . . . , 10, d = (1, 3, 6, 11, 22, 28, 32, 37, 41, 44) and C(d) = 10. Black lines, in dendrogram, represent the

improvement in the marginal likelihood and gray lines depict the deterioration in the marginal likelihood. The dashed blue line indicates the maximum a

posteriori cutting point for the dendrogram, d = (1, 3, 6, 11, 22, 28, 11, 37, 1, 22) and C(d) = 7. Middle panel, the fitted curves to each of ten random selected

cells used in dendrogram in 2D space. The gray points represent the boundary data used in modeling. Bottom panel, the same curves as the middle panel are

depicted a in 1D space.
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Fig 2. The raw images of fifty cells(D=50) used for clustering throughout this work. The

number assigned to each cell matches with its order in the dataset.

For this dataset, the voxel spacing is (0.049µm, 0.049µm, 0.203µm) [40]. It should be noted 218

that the final extracted data must be within a sphere of unit radius to be suitable for modeling 219

using spherical harmonics. 220

As image data involve noise, the least squares equation (3) is ill posed. A regularization 221

approach can then be taken to estimate the model parameters. See [41] for details and further 222

discussion. The result of clustering for D = 10 random cells is reported in Figure 3. 223

We repeat the same procedure considering all D = 50 cells. The clustering result is 224

reported in Figure 4. 225

As we discussed in Section 1.2, the number of all possible groupings is
∑50

k=1

{
50
k

}
≈ 1047. 226

In practice, it is not feasible to explore all possible groupings when D is relatively large. We 227

ran the random Gibbs sampling for 8000 cycles as an example. The convergence behavior of 228

the sampling throughout the 8000 cycles is reported in Figure 5. 229

The grouping generated from random Gibbs sampling after the 8000 cycles is as follows,

Cluster 1 = {4, 12, 33, 38},Cluster 2 = {1, 13, 26, 48},Cluster 3 = {5, 8, 11, 21, 22, 32},
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Fig 3. Top panel, dendrogram of the marginal likelihood associated with each cell using spherical harmonics with Lmax = 12. In this example, D = 10,

Ni = 2000 for i = 1, 2, . . . , 10, d = (1, 3, 6, 11, 22, 28, 32, 37, 41, 44) and C(d) = 10. Black lines represent the improvement in the marginal likelihood and

gray lines depict the deterioration in the marginal likelihood. The dashed blue line indicates the maximum a posteriori cutting point for the dendrogram,

d = (1, 3, 6, 1, 22, 22, 3, 6, 41, 41) and C(d) = 5. Bottom panel, the 3D data and the corresponding fit in the Cartesian coordinates.
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spherical harmonics with Lmax = 12. Black lines represent the improvement in the marginal

likelihood and gray lines depict the deterioration in the marginal likelihood. The dashed blue

circle indicates the maximum a posteriori cutting point for the dendrogram.
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Fig 5. The result of random Gibbs sampling for the same cells as in Figure 4. The Rand index

between the grouping suggested at each cycle of random Gibbs sampling with the grouping

produced by the dendrogram in Figure 4.

Cluster 4 = {2, 3, 14, 18, 20, 24, 27, 29, 30, 34, 35, 40, 43, 44, 45, 46, 47},
Cluster 5 = {6, 7, 9, 10, 15, 17, 19, 23, 25, 28, 31, 36, 37, 39, 41, 42, 49, 50}.

3 Conclusion 230

Having regarded the surface of a shape as a continuous function, rather than discrete 231

landmarks, we have proposed a simple method for surface modelling of shapes such as 232

biological cells. We have also proposed a new information criterion, called CLUSBIC, for 233

model-based clustering and have shown that the proposed criterion is consistent. 234

In this work, we considered the Gaussian conjugate priors to favor computational 235

simplicity. We proved the consistency of CLUSBIC in clustering. Note that in our settings, the 236

increase in number of observations N does not necessarily imply the increase in the number of 237

clusters C(d) contrary to the classical clustering problem. Therefore, the consistency of 238

CLUSBIC remains valid. 239

Investigation of the physical structure of cells, as simple closed shapes, can be highly 240

useful in biology, specifically for the diagnosis of cancer. The result, in this preliminary work, 241
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shows that our proposed methodology is quite applicable and can produce promising results. 242
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A 246

Proof of Theorem 1. Consider the marginal posterior for a set of D shapes

p(y | X,d, σ2) =

∫

β

p(y | β,X,d, σ2)p(β | d, σ2)dβ.

For simplicity, we use the notation p(y | β, σ2) instead of p(y | β,X,d, σ2). In order to 247

obtain an approximation to this integral, we take a second order Taylor expansion of the 248

log-likelihood at β̃, the solution to the following constrained optimization problem, 249

max log{p(y | β, σ2)}, subject to Tβ = 0. (12)

The solution β̃ can be found using the method of Lagrange multipliers. The Lagrangian 250

function for this problem is 251

L(β,λ) = log{p(y | β, σ2)} + λTTβ, (13)

where λ is the vector of Lagrange multipliers. Expanding L(β,λ) about β̃ and λ̃.

L(β,λ) = L(β̃, λ̃) +
[

(β − β̃)T (λ − λ̃)T
]





∂ log{p(y|β,σ2)}
∂β

∣
∣
∣
∣
β=β̃

+TTλ

Tβ̃





+
1

2

[

(β − β̃)T (λ − λ̃)T
]

[
∂2 log{p(y|β,σ2)}

∂β∂βT TT

T 0

] [
β − β̃

λ − λ̃

]

(14)

+Op(||β − β̃||3). (15)

L(β,λ) = log{p(y | β̃, σ2)}+ (β − β̃)T
∂2 log{p(y | β, σ2)}

∂β∂βT

∣
∣
∣
∣
β=β̃

(β − β̃)

+ 2(λ− λ̃)TT(β − β̃) +Op(||β − β̃||3). (16)

Under the assumption that Tβ = 0,

log{p(y | β, σ2)} = log{p(y | β̃, σ2)} + (β − β̃)T
∂2 log{p(y | β, σ2)}

∂β∂βT

∣
∣
∣
∣
β=β̃

(β − β̃)

+Op(||β − β̃||3). (17)

Defining the average observed Fisher information matrix as

J̄(β̃,y) = − 1
∑C(d)

i=1 Ni

∂2 log{p(y | β, σ2)}
∂β∂βT

∣
∣
∣
∣
β=β̃

,
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we have

∫

β

p(y | β, σ2)p(β | σ2)dβ = p(y | β̃, σ2)

∫

β

exp{−1

2
(β − β̃)T

C(d)
∑

i=1

NiJ̄(β̃,y)(β − β̃)}

× p(β | σ2)dβ +Op(||β − β̃||3).

Considering β ∼ N (β̃, J̄−1(β̃,y)) where J̄−1(β̃,y) = σ2(XTX)−1
∑C(d)

i=1 Ni, 252

∫

β

p(y | β, σ2)p(β | σ2)dβ = p(y | β̃, σ2)

∫

β

(2π)−
KC(d)

2 |J̄(β̃,y)| 12

× exp{−1

2
(β − β̂)T(

C(d)
∑

i=1

Ni + 1)J̄(β̃,y)(β − β̃)}dβ +Op(||β − β̃||3)

= p(y | β̃, σ2)|J̄(β̃,y)| 12 |(
C(d)
∑

i=1

Ni + 1)J̄(β̃,y)|− 1
2 +Op(||β − β̃||3)

= p(y | β̃, σ2)(

C(d)
∑

i=1

Ni + 1)−
KC(d)

2 |J̄(β̃,y)| 12 |J̄(β̃,y)|− 1
2 +Op(||β − β̃||3).

The desired result then follows upon noticing that β̃
p−→ β [42] and 253

log(
∑C(d)

i=1 Ni) ≈ log(
∑C(d)

i=1 Ni + 1) for large value of
∑C(d)

i=1 Ni. 254

B 255

Proof of Theorem 2. The proof comprises two steps. First, the consistency of CLUSBIC is 256

established for Gaussian models. We then extend the result to smooth non-Gaussian models 257

where by “smooth ” we generally mean the likelihood is a C3 function of the unknown 258

parameter. The second step essentially follows from step one upon applying a quadratic 259

approximation to the logarithm of the likelihood. 260

Step 1. Gaussian Model: 261

Suppose the error terms, (4), are distributed according to the Gaussian distribution, one can

easily show that the CLUSBIC has the following form, similar to the BIC, see [43],

CLUSBIC(m) = N log σ̂2(m) +Kd(m) logN

= N log
βTXT{I−Q(m)}Xβ + eT{I−Q(m)}e+ 2eT{I−Q(m)}Xβ

N

+Kd(m) logN. (18)

The estimate of the variance matrix for model m is,

σ̂2(m) =
yT{I−Q(m)}y

N
.

Suppose Kd and D are fixed, we follow the same setting as in [34] by modifying constraints 262

of the form Tβ = 0. The following two assumptions are required for the proof, 263

1. XTX is positive definite. 264

2. H = limN→∞
XTX
N

is positive definite. 265

The validity of these two assumptions relies on the validity of the following two assumptions 266

for all models, i.e. ∀i ∈ {1, 2, . . . , D} 267
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1. HT

i Hi is positive definite. 268

2. Hi = limNi→∞
HT

i
Hi

Ni
is positive definite. 269

Lemma 1. For m ∈ M1, and for any positive h, limN→∞ NhpN(m) = 0, using CLUSBIC. 270

Proof. The proof is given in Supplementary Material. 271

Lemma 2. Here, we follow a similar approach as in Lemma 1. For m ∈ M2 − {m0}, 272

limN→∞ pN (m) = 0, using CLUSBIC. 273

Proof. The proof is given in Supplementary Material. 274

Having established the above lemmas, the following theorem can be established for 275

Gaussian models. 276

Theorem 3. The CLUSBIC is a consistent clustering measure for Gaussian models. 277

Proof. The proof is given in Supplementary Material. 278

Step 2. non-Gaussian Model: 279

First note that for a general smooth likelihood we have

CLUSBIC(m) = −2 log{pm(y | β̃)}+Kd(m) log(N).

We need to show that limN→∞ pN (m) = 0 for m ∈ M1 and m ∈ M2 − {m0} or equivalently,

lim
N→∞

p[CLUSBIC(m0) < CLUSBIC(m)] = 1,

for m ∈ M1 and m ∈ M2 − {m0}. We now note that 280

CLUSBIC(m0)− CLUSBIC(m) = −2 log{pm0(y | β̃)}+Kd(m0) log(N) + 2 log{pm(y | β̃)}
−Kd(m) log(N)

= −2[log{pm0(y | β̃)} − log{pm(y | β̃)}] + [Kd(m0)−Kd(m)] log(N). (19)

For any m ∈ M and the true value of parameter β0, one can write the following decomposition 281

log{pm(y | β̃)} = log{pm(y | β̃)} − log{pm(y | β0)}
︸ ︷︷ ︸

1

+ log{pm(y | β0)} −NE (log{pm(y | β0)})
︸ ︷︷ ︸

2

+NE (log{pm(y | β0)})
︸ ︷︷ ︸

3

. (20)

Applying the second order Taylor expansion to log{pm(y | β0)} at the point β̃,

equation (17),

log{pm(y | β̃)} − log{pm(y | β0)} = −1

2
(β̃ − β0)

T
∂2 log{pm(y | β)}

∂β∂βT

∣
∣
∣
∣
β=β̄

(β̃ − β0)

= −1

2

√
N(β̃ − β0)

T
1

N

∂2 log{pm(y | β)}
∂β∂βT

∣
∣
∣
∣
β=β̄

×
√
N(β̃ − β0).
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Under the usual regularity conditions, see [44, page 209]), we have 282

1

N

∂2 log{pm(y | β)}
∂β∂βT

∣
∣
∣
∣
β=β0

p−→ E{∂
2 log{pm(y | β)}

∂β∂βT } = −I(β0), (21)

283

1√
N

∂ log{p(y | β, σ2)}
∂β

∣
∣
∣
∣
β=β0

d−→ N (0, I(β0)) (22)

where I(β0) is the Fisher information matrix. On the other hand, by the definition of 284

constrained optimization problem equations (12), and (13), 285





∂ log{p(y|β)}
∂β

∣
∣
∣
∣
β=β̃

+TTλ

Tβ̃



 = 0. (23)

Expanding the score function around the point β0, and λ0 = 0, we have

0 =





∂ log{p(y|β)}
∂β

∣
∣
∣
∣
β=β0

+TTλ0

Tβ0



+





∂2 log{p(y|β)}
∂β∂βT

∣
∣
∣
∣
β=β̄

TT

T 0





[
β̃ − β0

λ̃− λ0

]

√
N

[
β̃ − β0

λ̃

]

= −
√
N





∂2 log{p(y|β)}
∂β∂βT

∣
∣
∣
∣
β=β̄

TT

T 0





−1 



∂ log{p(y|β)}
∂β

∣
∣
∣
∣
β=β0

0





=







(
A−1 −A−1T(TTA−1T)−1TTA−1

)
1√
N

∂ log{p(y|β)}
∂β

∣
∣
∣
∣
β=β0

(TTA−1T)−1TTA−1 1√
N

∂ log{p(y|β)}
∂β

∣
∣
∣
∣
β=β0






,

where A = ∂2 log{p(y|β)}
∂β∂βT

∣
∣
∣
∣
β=β̄

. Taking into account equations (21) and (22), one can show that

√
N(β̃ − β0)

d−→ N (0, I−1(β0)− I−1(β0)T(TTI−1(β0)T)−1TTI−1(β0)),

d−→ N (0,Σβ̃), (24)

where I−1(β0) is the inverse of the Fisher information matrix. By equations (24) and (21), and 286

the fact that I(β0)Σβ̃ is an idempotent matrix, one can conclude that 287

−1

2

√
N(β̃ − β0)

T
1

N

∂2 log{pm(y | β)}
∂β∂βT

∣
∣
∣
∣
β=β̄

√
N(β̃ − β0)

d−→ 1

2
χdim(β0)

, (25)

where χ has a chi-squared distribution with dim(b0) degrees of freedom. As the convergence 288

in distribution implies boundedness in probability, component 1 in (20) is of order Op(1). 289

As for component 2 in (20), by the central limit theorem, 290

1√
N

[log{pm(y | β0)} −NE(log{pm(y | β0)})]
d−→ N(0,Σ∗), (26)

where Σ∗ = Var
{

1√
N
[log{pm(y | β0)} −NE(log{pm(y | β0)})]

}

. Accordingly, 291

component 2 in (20) is of order Op(
√
N). 292
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Now coming back to the equation (19), for both m ∈ M1 and m ∈ M2 − {m0},

CLUSBIC(m0)− CLUSBIC(m) = −2[Op(1) +Op(
√
N) +N [E (log{pm0(y | β0)})

− E (log{pm(y | β0)})] + [Kd(m0)−Kd(m)] log(N).
(27)

Using Jensen’s inequality,

E (log{pm(y | β0)})− E (log{pm0(y | β0)}) = E

(

log{ pm(y | β0)

pm0(y | β0)
}
)

≤ log

{

E

(
pm(y | β0)

pm0(y | β0)

)}

≤ log

{∫

pm(y | β0)dy

}

≤ 0

and hence 293

CLUSBIC(m0)− CLUSBIC(m) = −O(N). (28)

Therefore, as N tends to infinity

Pr{CLUSBIC(m0) < CLUSBIC(m)} = 1,

for models in both M1 and M2 − {m0}. This completes the proof. 294

C Supplementary Material 295

Here, we provide some supplementary technical materials useful in the proof of the Lemma 1, 296

Lemma 2, and Theorem 3 in the Section B. 297

(i) The column space of a matrix A is denoted by C(A), and defined as the space spanned 298

by the columns of A. 299

(ii) The rank of A is defined to be the dimension of C(A), dim{C(A)}, i,e, the number of

linearly independent columns of A.

rank(A) = rank(AT) = rank(ATA) = rank(AAT).

(iii) Orthogonal complement of the sub-space is defined as

V⊥ = {v ∈ Rn | v⊥V}.

(iv) If V ⊂ W, then V⊥ ∩W = {v ∈ W | v⊥V} is called the orthogonal complement of

V with respect to W.

rank(W) = rank(V) + rank(V⊥ ∩W).

(v) QX = X(XTX)−1XT is called projection matrix onto C(X). The matrix QX is 300

symmetric (QX = QT

X) and idempotent (QXQX = QX). 301

(vi) If Q1
X and Q2

X are projection matrices with C(Q1
X) ⊂ C(Q2

X), then Q2
X −Q1

X is also a 302

projection matrix onto the orthogonal complement of C(Q1
X) with respect to C(Q2

X). 303
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(vii) Let A be k × k matrix of constants and y ∼ N (µ, σ2I). If A is idempotent with rank p,

then
yTAy

σ2
∼ χ2

p,λ,

where λ = µTAµ
σ2 . 304

of Lemma 1 . In order to prove the lemma, we work with the difference between the

CLUSBIC of the true model and any arbitrary model in M1. We decompose this difference

into several random variables. Taking into account the properties of multivariate Gaussian

distribution and the quadratic forms from the same family, we proceed with the proof. Let

m ∈ M1,

pN (m) = Pr{CLUSBIC(m) < CLUSBIC(m∗);m
∗ ∈ M }

≤ Pr{CLUSBIC(m) < CLUSBIC(m0)}
= Pr{X + YN +N

1
2 cN − σ2(λNN)−

1
2 bN ≤ ZN}, (29)

where,

X = 2(λNN)−
1
2 eTQ∗Xβ,

YN = (λNN)−
1
2 eTQ∗e,

ZN = bN(λNN)−
1
2N−1[eT{I−Q(m0)}e− σ2N ],

cN = λ
− 1

2

N N−1βTXTQ∗Xβ,

λN = 4σ2N−1βTXTQ∗2

Xβ,

bN = N

{

exp

(
log(N)p

N

)

− 1

}

,

and p = Kd(m0)−Kd(m), Q∗ = Q(m0)−Q(m). Since e ∼ N (0, σ2I), the following 305

properties can be easily verified. 306

1.

eTQ∗Xβ ∼ N (0, σ2β
T
XTQ∗2

Xβ) =⇒ X ∼ N (0, 1).

2. YN is a quadratic form from the Gaussian distribution. 307

3. Since {I−Q(m0)} is a symmetric, idempotent matrix,

eT{I−Q(m0)}e
σ2

∼ χ2
N−[D−q(m0)]K

,

where χ2
b is the chi-squared distribution with b degrees of freedom. 308

The validity of equation (29) can be easily verified through the definition of CLUSBIC in

equation (18). By the Fréchet inequality,

max{0, p(A1) + . . .+ p(An)− (n− 1)} ≤ p(A1 ∩ . . . ∩An) ≤ min{p(A1), . . . , p(An)},

where Ai’s are some events, the equation (29) is bounded by, 309

Pr(X ≤ −N
1
2 cN + σ2(λNN)−

1
2 bN + 2N

1
4 ) + p(−YN > N

1
4 ) + p(ZN > N

1
4 ). (30)
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Using the assumptions 1 and 2,

lim
N→∞

λN = 4σ2(H
1
2β)T{Q∗

H}2H 1
2β,

= λ,

lim
N→∞

cN = λ− 1
2 (H

1
2β)TQ∗

HH
1
2β

= c,

bN = O(logN),

where Q∗
H = QH(m0)−QH(m), and

QH(m) = H
1
2 (m0){H(m0)}−1H

1
2 (m0)−H

1
2 (m0){H(m0)}−1TT(T{H(m0)}−1TT)−1T

{H(m0)}−1H
1
2 (m0), for m ∈ M .

Let dN = cN − 2N− 1
4 − σ2(λN )−

1
2N−1bN . One can easily show that dN = O(1) as

limN→∞ cN = c and σ2(λN )−
1
2N−1bN = O(1). Using the characteristics of the standard

Gaussian distribution function,

Pr(X ≤ −N
1
2 cN + σ2(λNN)−

1
2 bN + 2N

1
4 ) = p(X ≤ −N

1
2 dN )

≤ N− 1
2 d−1

N φ(N
1
2 dN )

= O

(

exp

{

−Nc2N
2

})

, (31)

where φ(.) is the density function of the standard Gaussian distribution. 310

Given that YN is a quadratic form, using the definition of moment generating functions for

quadratic forms [45], we have

Pr(−YN > N
1
4 ) ≤ exp{−N

1
4 }E(exp{−YN}),

= exp{−N
1
4 }|I+ 2σ2(NλN )−

1
2Q∗|− 1

2

= O(exp{−N
1
4 }). (32)

By the property 3,

Pr(ZN > N
1
4 ) ≤ exp{−N

1
4 }E(exp{ZN}),

= exp{−N
1
4 − σ2bN (λNN)−

1
2 }[1− 2σ2bNλ

− 1
2

N N− 3
2 ]−

N−K
d
(m0)

2

= O(exp{−N
1
4 }). (33)

The equations (31), (32) and (33) complete the proof. 311

of Lemma 2 . For m ∈ M2 − {m0},

pN (m) ≤ Pr{CLUSBIC(m) < CLUSBIC(m0)}
= Pr(χ ≥ N−1bNχN )

≤ Pr

(

χ ≥ bN

[

1− 1√
logN

])

+ Pr

(

χN ≤ N

[

1− 1√
logN

])

, (34)

where

χ =
N{σ̂2(m0)− σ̂2(m)}

σ2
=

eT{Q(m)−Q(m0)}e
σ2

χN =
Nσ̂2(m)

σ2
=

eT{I−Q(m)}e
σ2

.
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By definition, we have

Q(m)−Q(m0) = Q1 −Q2(m)− [Q1 −Q2(m0)]

= Q2(m0)−Q2(m)

= X(XTX)−1TT

m0
[Tm0(X

TX)−1TT

m0
]−1Tm0(X

TX)−1XT

−X(XTX)−1TT

m
[Tm (X

TX)−1TT

m
]−1Tm(X

TX)−1XT.

Under H0, for an arbitrary model we have, Tβ = 0,

=⇒ T(XTX)−1(XTX)β = 0

T(XTX)−1XTµ = 0

T∗T

µ = 0.

Under H0, µ ∈ C(X) = V and µ⊥C(T∗), or µ ∈ C(T∗)⊥ ∩ C(X) = V0 which is the

orthogonal complement of C(T∗) with respect to C(X).

rank(T∗) = rank(T∗T

) ≥ rank(T∗T

X) = rank(T(XTX)−1XTX) = rank(T) = qK,

rank(T∗) = rank(T∗T

T∗) = rank(T(XTX)−1TT) ≤ qK.

Therefore, rank(T∗) = qK . By definition of projection matrix (v),

QV0 = QC(X) −QC(T∗).

312

dim(V0) = dim{C(X)} − dim{C(T∗)} = rank(X)− rank(T∗) = DK − qK. (35)

By the property (vi), Q(m)−Q(m0) is a projection matrix. Thus, using equation (35), χ has

chi-squared distribution with p degrees of freedom,

p = rank(Q(m) −Q(m0)) = DK − qmK − [DK − qm0K]

= [qm0 − qm ]K > 0,

since qm0 > qm . Similarly, χN has chi-squared distribution with N − [DK − qmK] degrees of 313

freedom. 314

Back to equation (34), since limN→∞ bN [1− 1√
logN

] = ∞,

Pr

(

χ ≥ bN

[

1− 1√
logN

])

= O(1).

For the second term in equation (34), one can show that

Pr

(

χN ≤ N

{

1− 1√
logN

})

≤ exp

{

−1

4

N

logN

}

,

using an inequality on chi-squared distribution, see [46]. This completes the proof. 315

of Theorem B 3. The equation (11) follows from Lemma 1 and Lemma 2. 316

The risk, or expected loss, for the model is

RN = E||Xβ −Xβ̂||2
= β

T
XT{I−Q(m)}Xβ.pN (m) + E[eTQ(m)e.Im̂=m ]

= A1 +A2,
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where Im̂=m is the indicator function. By the Cauchy-Schwartz’s inequality,

A2 ≤
√

E{eTQ(m)e}2
√

pN (m)

= σ2
√

2(D − qm )K + (D − qm)2K2
√

pN (m).

For m ∈ M1

lim
N→∞

1

N
β

T
XT{I−Q(m)}Xβ = β

T{H−H
1
2
T

QH(m)H
1
2 }β > 0.

Equivalently,

βTXT{I−Q(m)}Xβ = O(N).

Therefore, A1 and A2 tend to 0 as N → ∞ by condition (a). 317

For m ∈ M2 − {m0}, A2 → 0 as N → ∞ by condition (b). In addition,

A1 = βTXT{I−Q(m)}Xβ

= βTXT{I−Q1 +Q2(m)}Xβ,

= βTXT{Q2(m)}Xβ

= βTTT

m
[Tm (X

TX)−1TT

m
]−1Tmβ

= 0,

since Tm = 0 for models in M2. 318

Consequently, limN→∞ RN = 0 for both m ∈ M1 and m ∈ M2 − {m0}. Therefore, if

conditions (a) and (b) are satisfied,

lim
N→∞

RN = lim
N→∞

RN (m0) = σ2[D − qm0 ]K.

319

This completes the proof of Theorem. 320
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