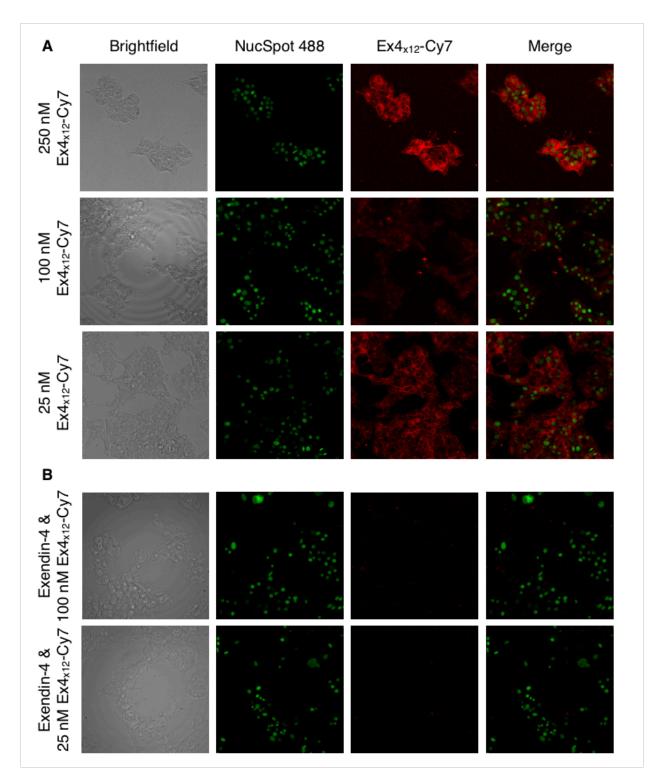
SUPPLEMENTARY INFORMATION FOR

Optoacoustic imaging of GLP-1 Receptor with a near-infrared exendin-4 analog

Sheryl Roberts¹, Eshita Khera², Crystal Choi¹, Tejas Navaratna², Jan Grimm^{1,3,4,5}, Greg M. Thurber^{2,6}, Thomas Reiner^{1,4,7*}

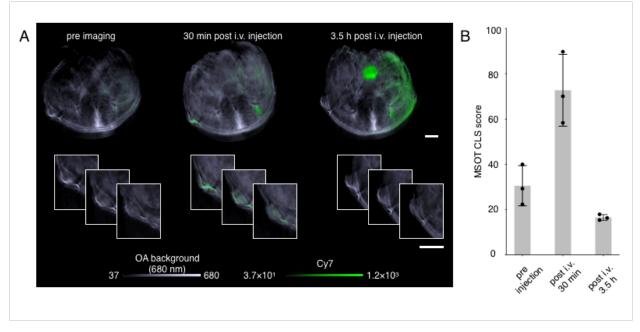
¹ Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA

² Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States


³ Department of Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York, USA

⁴ Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York.

⁵ Pharmacology Program, Weill Cornell Medical College, 1300 York Avenue, New York, New York, 10065, USA


⁶ Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, Unites States
⁷ Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065

* corresponding author: reinert@mskcc.org, +1-646-888-3461

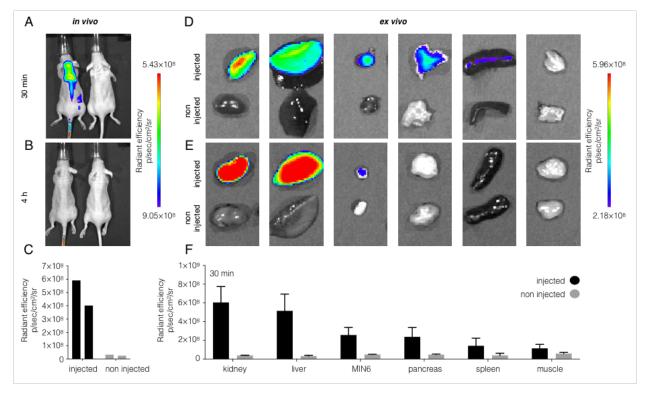


Figure S1. *In vitro* binding and inhibition studies. (A) Confocal microscopy imaging experiments using MIN6 cells following the addition of $E4_{x12}$ -Cy7 (red) at different concentrations: 250 nM (*top row*), 100 nM (*middle row*) and 25 nM (*bottom row*).

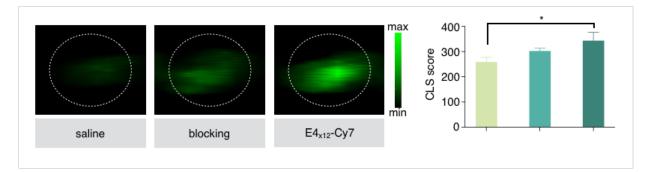

Columns from *left* to *right:* brightfield (1st column), nuclear staining with NucSpot 488 (green, 2nd column), E4_{x12}-Cy7 staining (red, 3rd column) and the corresponding composite image (4th column). (B) Coincubation of E4_{x12}-Cy7 at 100 nM (*top*) and 25 nM (*bottom*) with excess exendin-4.

Figure S2. *In vivo* multi-spectral optoacoustic evaluation of E4_{x12}-Cy7 at different timepoints. (A) Optoacoustic image reconstruction showing transverse 2D projection of mice at the region of interest before and 30 min after intravenous injection of E4_{x12}-Cy7 (6.7 mg/kg) before (*left*), 30 min post-i.v. injection (*middle*) and 3.5 h post-i.v. injection (*right*). Overall optoacoustic signal at 680 nm (*greyscale*) is overlaid on top of multi-spectrally unmixed signals showing, E4_{x12}-Cy7 channel (*green channel*). Both scale bars are 2.5 mm. (B) Optoacoustic signal quantification after multi-spectral unmixing.

Figure S3. *In vivo* and *ex vivo* kinetics and biodistribution validation of $E4_{x12}$ -Cy7 using fluorescence IVIS imaging. (A) Representative *in vivo* fluorescent images of $E4_{x12}$ -Cy7 30 min post-i.v. injection, (B) 4 h post-i.v. injection and (C) quantifications (n = 3). (D) Corresponding *ex vivo* fluorescent images from left to right of kidney, liver, MIN6, pancreas, spleen and muscle tissues excised at 30 min and (E) 4 h post-i.v. injection of $E4_{x12}$ -Cy7. (F) Quantification of the *ex vivo* organs by drawing regions of interest (ROIs) around the tissue outlines using the white field images.

Figure S4. The ex vivo optoacoustic signal of kidneys between non injected, blocking and injected. From left to right are the MSOT images of the kidney from a mouse that was injected with saline, exendin-4 (151 µg) followed by the injection of E_{4x12} -Cy7 (57 µg, 20 mins time interval (blocking), and 57 µg of E_{4x12} -Cy7 (*left*) and the corresponding quantification (*right*). There is a statistically significant differences between mice that were injected with saline and E_{4x12} -Cy7 (p* = 0.0178).