1 Effects of agricultural systems on the anuran diversity in the Colombian

2 amazon

3

4	Juan C. Diaz-Ricaurte ^{1, 2, 4*} , Nayra Camila Arriaga-Villegas ³ , Juan David López-
5	Coronado ³ , Gina Ximena Macias- Garzón ³ , Bruno F. Fiorillo ^{1, 4}

6

7	¹ Laboratório de Ecología,	Evolução e Conservação d	le Anfibios e Répteis,	Departamento de

8 Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 05508-090

- 9 São Paulo, SP, Brasil.
- ²*Grupo de Investigación en Biodiversidad y Desarrollo Amazónico (BYDA), Programa de*

Biología, Facultad de Ciencias Básicas, Universidad de la Amazonía, Florencia, Caquetá,
 Colombia.

³Universidad de la Amazonía, Facultad de Ciencias Básicas, Programa de Biología,

14 *Florencia, Caquetá.*

⁴Escola Superior de Agricultura Luiz de Queiroz, Programa de Pós Graduação em Ecologia
 Aplicada, Universidade de São Paulo, Piracicaba, SP, Brazil.

- 17
- 18 * Corresponding author. E-mail: juan.diaz@usp.br

20 Abstract

21	We provide information on the diversity of anurans from agroforestry systems in the
22	Colombian Amazon. This area is inserted at the tropical rainforest ecosystem and consists
23	mainly of secondary forest remnants surrounded by crops, grasslands, and agroforestry
24	systems. From February to May 2015, we sampled anurans mainly with visual and auditory
25	surveys. We recorded a total of 1096 individuals of 20 species of anurans from six families
26	at the study area. The relictual forest was the richest environment, followed by Achapo and
27	Cacao agroforestry systems. The Achapo system showed great similarity in species
28	composition with relictual forest, however, the latter presented the highest number of
29	exclusive species, whereas the first presented only two and Cacao system didn't have any
30	exclusive species. Our results show that the richness can vary between the different types of
31	agroforestry systems and highlight their importance as management tool for anurans
32	conservation in the Colombian Amazon.

33

Keywords: Agricultural landscapes, conservation, frogs, human-modified landscapes,
habitat use.

36

37

38 Introduction

Deforestation and consequent loss of biodiversity have considerably increased throughout
the world in the last decades (Myers et al. 2000; Hansen et al. 2010, 2013). Such anthropic
disturbances aim mostly to provide a proper structure for croplands (e.g. Lavelle et al. 1992,
Mboukou-Kimbatsa et al. 1998; Barros et al. 2002). In this way, ecological studies in

human-modified landscapes are extremely relevant for a major understanding of these
environments as well as promoting more sustainable practices (Chazdon et al. 2009). The
establishment of the agroforestry system is an alternative way for the traditional agriculture
system that intents balancing agricultural development and natural landscapes' maintenance
(Izac & Sanchez 2001). Moreover, it enhances the exchange between habitat remnants
(Asare et al. 2014).

49

Although to reduce deforestation successfully, agroforestry depends largely on local 50 51 features (e.g. social and technological issues), profitability and demand of what is being produced (Angelsen & Kaimowitz, 2004), some studies have shown that shaded Cacao 52 (Theobroma cacao) contributes to slow down the deforestation (Ruf & Schroth 2004). 53 Moreover, this system usually presents a greater diversity of both plant and animal (Argôlo 54 2004; Schroth & Harvey 2007; Teixeira et al. 2015) than other agricultural land uses 55 56 (Schroth & Harvey 2007). The same has been found for shaded coffee plantations, which can harbor a wide variety of animals, including birds, bats, and other mammals, insects, and 57 reptiles (Somarriba et al. 2004). Despite those evidences, there is a few number of studies 58 comparing agro-forests with other types of disturbed landscapes (Schroth & Harvey 2007). 59

60

Anurans are highly affected by habitat loss and fragmentation (mainly due to risky breeding migrations; Becker et al. 2007). In terms of land use, some systems may lead to a decrease in populations resilience and to increase extinction risks, particularly for habitat specialists (Yandi et al. 2016, Fiorillo et al. 2018). Although some species can benefit from man-made structures such as artificial water bodies, since they provide potential sites for refuge and reproduction (Brand & Snodgrass 2010; Fiorillo et al. 2019) it does not prevent

67	that intrinsic features of disturbed habitats will affect the abundance and temporal
68	distribution (Silva & Rossa-Feres 2011) likewise richness and composition (Wanger et al.
69	2010; Fiorillo et al. 2018) of anuran communities.

70

Piedmont region is situated located at the transition zone between the Andes mountain range and the Amazon basin, presenting high levels of biodiversity. Nevertheless, it has been the target of human settlements and thus, consequent landscape changes (Myers et al. 2000; Ricaurte et al. 2014). Considering that most amphibian species are affected in some way by habitat fragmentation and other types of disturbing, the aim of the present study was to assess the variation in anurans diversity at different agroforestry structures.

77

78 Materials and methods

79 Study area

80 The present study was carried out at the Amazonian Research Center Macagual - Cesar Augusto Estrada González of University of the Amazon (380 ha). It is located at 20 km from 81 the municipality of Florencia, south of the Department of Caquetá, Colombia, (1.616667, 82 83 75.61; Datum WGS84; 300 m a.s.l; Figure 1). The mean precipitation is 3793 mm and mean annual temperature is 25.5 °C. The area is inserted at the tropical rainforest ecosystem and 84 85 consists mainly of secondary forest remnants surrounded by crops, grasslands, and agroforestry systems (see below). In addition, the area remains temporarily flooded during 86 the rainy season, a feature that partially determines the vegetation cover (Arriaga-Villegas et 87 al. 2014). We sampled three types of agroforestry systems with different levels of 88 complexity (vertical stratification, amount of vegetation's cover and floristic richness and 89 90 productivity (Table 1). In these sites, the floristic composition varies from timber to fruit

91 species from the families Fabaceae, Melastomataceae, Lauraceae, Sapotaceae, Moraceae,

92 Myristicaceae, with low presence of stubble or open areas (authors, *pers. obs*).

93

94 Sampling

Data were gathered by four researchers along 8 days per month, from February to May 2015,
for a total sample of 33 field trips and 26 days. At each agroforestry system, three quadrants
of 70 x 20 m were randomly distributed. Within those quadrants we performed visual
searches during the day (0700-1200h) and at night (19:00 - 24:00 h), totalizing a sampling
effort of 99 person-hours of visual search. All individuals found were counted, identified and
released.

101

102 Data analysis

Sampling sufficiency for the different agroforestry systems was estimated through sampling 103 coverage analysis, performed on the virtual platform iNEXT (Chao et al. 2016). This method 104 prevents potential biases, caused by differences in species composition and/or in sampling 105 effort of traditional species accumulation curves by random sampling. To provide the species 106 composition and abundance distribution in all agroforestry systems we constructed a Venn 107 diagram and abundance diagram (containing the total number of individuals observed in the 108 field). A modification was made in the abundance diagram to include the total number of 109 individuals captured of the species Ameerega hahneli (which presented a much larger 110 number of individuals than the other species). Regarding the relative abundance of the 111 species they were classified as abundant (more than 30 individuals found), of intermediate 112 abundance (between 20 and 30 individuals), and rare (less than 10 individuals). To compare 113

 analysis, using the Simple Matching Coefficient as a measure of similarity and the Pa Group Average Method (UPGMA) as the clustering method (Sneath & Sokal 1973; N 	114	the species abundance from different agroforestry systems we performed a principal
 Group Average Method (UPGMA) as the clustering method (Sneath & Sokal 1973; N 1994). This analysis is useful in situations where there are more variables (species) th 	115	coordinates analysis (PCoA), using the Bray-Curtis' similarity coefficient, and a cluster
118 1994). This analysis is useful in situations where there are more variables (species) th	116	analysis, using the Simple Matching Coefficient as a measure of similarity and the Pair
	117	Group Average Method (UPGMA) as the clustering method (Sneath & Sokal 1973; Manly
119 cases (assemblages; Sawaya et al. 2008).	118	1994). This analysis is useful in situations where there are more variables (species) than
	119	cases (assemblages; Sawaya et al. 2008).

120

121 **Results**

A total of 1096 individuals of 20 species of anurans from six families were recorded in the 122 study area (Table 2). Any of those is currently classified as threatened according to 123 International Union for Conservation of Nature (IUCN), Colombian's red list and literature 124 (e.g. Acosta-Galvis 2000; Rueda-Almonacid et al. 2004). Most species were found in the 125 relictual forest (RF), followed by Achapo (15 species) and Cacao (11 species) systems. 126 Dendrobatidae was the most abundant family (500 individuals from a single species, A. 127 hahneli), followed by the Leptodactylidae (252 individuals from six species) and 128 129 Craugastoridae (22 individuals from two species) (Figure 2A). The Families with greatest species richness were Hylidae (seven species) and Leptodactylidae (six species), followed by 130 Bufonidae (three species), Craugastoridae (two species), Aromobatidae and Dendrobatidae 131 (each one with a single species; Table 2). 132

133

The species richness of Achapo and RF was similar, varying from 15 to 18 species respectively. We found all species of the study area in these two environments, where *L. leptodactyloides* and *L. pentadactylus* were exclusive from Achapo, while *P. conspicillatus, P. altamazonicus, B. punctata* and *O. planiceps*, were exclusive from RF. However, despite

138	of most species had been found at both, they presented great contrast in terms of abundance
139	(Figure 2B). The species <i>D. parviceps</i> was almost exclusively found in Achapo (more than
140	98% of individuals) showing high affinity for this type of agroforestry system. Only nine
141	species shared all the three systems, whereas three species were common in RF and Achapo
142	(D. parviceps, B. cinerascens, B. lanciformis), one in Achapo and Cacao (S. ruber) and one
143	in Relictual forest and Cacao (R. marina). The system with the highest number of exclusive
144	species was the RF (P. altamazonicus, P. conspicillatus, O. planiceps, B. punctata), whereas
145	only two species were exclusive of Achapo (L. leptodactyloides and L. pentadactylus) and
146	none was exclusive in Cacao.
147	
148	The sampling coverage analysis indicates that our sampling effort was enough to
149	sample nearly all species that occur in the region, as well as in each system (Figure 3).
150	Sampling in the different systems reached coverage of 0.97 in the forest, 0.97 in the Cacao
151	and 0.99 in the Achapo (Figure 4).
152	
153	The first two axes of the Principal Coordinate Analysis (PCoA; Figure 5) together
154	explained 46.95 % of the total data variance (axis 1: eigenvalue = 1.69 and 23.36 % of
155	variance; axis 2: eigenvalue = 1.51 and 23.59 % of variance). The PCoA axis 1 ordinated
156	species associated with the RF from those associated to Achapo, where generalist species
157	(including those found at the Cacao system) remained at the center. The PCoA axis 2
158	ordinated rare and abundant species (Figure 5).
159	
4.60	

161 **Discussion**

162	We found a higher species richness of anurans in RF, followed by Achapo and Cacao,
163	the former with the largest number of exclusive species. The Achapo system is
164	composed by timber and fruit species and presents small flooded areas which might
165	provide a variety of microhabitats, food, shelter and potential breeding sites for
166	anurans and other animals. Furthermore, local climatic conditions are known to be
167	correlated with anurans diversity, what can be related to their eco-physiological
168	constraints (Valdujo et al. 2013). Some studies have shown that the shading and variety
169	of soil types in agroforestry systems affect local climatic conditions (Lin 2007). This
170	suggests that features related to system structure, such as vertical stratification can
171	indirectly affect anurans diversity.
172	

The Cacao system was the wettest site and presented the greatest degree of anthropic disturbance (near built areas). According to that, the most abundant species in this environment was *L. mystaceus* which is considered a generalist species, known by its great capacity to adapt to altered habitats (Heyer & Bellin 1973; IUCN 2015). Although *S. ruber* is relatively rare (N = 11) in the community, it was more abundant at the Cacao System either. This species is known to occur from open to forested environments and even urban-rural areas (Duellman 1978; Duellman & Wiens 1993).

180

Ameerega hahneli was the most abundant species in the three agroforestry systems. This species is primarily terrestrial and inhabits primary and secondary forests. It uses mainly palm branches and fallen leaves as microhabitats (Carvalho 2011). The Achapo system was where it the largest number of individuals of this species was found, what may be due to this system provide a thick leaf-litter layer, favoring species foraging behaviour

and reproduction (Rodríguez & Duellman 1994; Haddad & Martins 1994; Duellman 2005; 186 Lötters and Mutschmann 2007; Vásquez et al. 2013). The same seems to be the case of the 187 188 bufonid species A. minuta (Miranda et al. 2015; Rojas et al. 2015). The Craugastoridae family showed the lowest abundance and richness (only 22 individuals of two species at the 189 community, both exclusive from RF system, see Table 1). This is probably related to the 190 low capacity of some species to adapt in disturbed environments (Guo 2000; Lips et al. 191 2005). The Hylidae family was the richest one at the study area (seven species). This family 192 is considered one of the most diverse among the anurans (Frost 2020) and presents a great 193 194 number of reproductive modes associated from the vegetation to floor, reflecting adaptations toward habitat occupation (e.g. Haddad & Prado 2005). In contrast, Leptodactylids (second 195 most diverse family of the study area with six species), are frequently associated with the 196 floor, generally lacking arboreal adaptations (Haddad & Prado 2005). Species of this family 197 were usually associated to exposed water bodies (temporary or permanent). These 198 199 microhabitats are often used by species of this family for reproduction and are common at the three environments of the study area. These results show how anurans life history from 200 Department of Caquetá can be determinant regarding their colonization at altered 201 environments (Rodriguez & Duellman 1994). 202

203

Although no threatened species has been found at the study area, the replacement of natural forests by agricultural landscapes (e.g. pastures, palm plantations; (Etter et al. 2006; Garcia-Ulloa et al. 2012), contributes to both extinguish forest specialists (such as *O. planiceps*, *P. altamazonicus*, *P. conspicillatus*, *B. punctata*, and *B. cinerascens*, found exclusively in relictual forests) as well as to facilitate the occupation by generalist ones (Marvier et al. 2004). Forest habitats present a great structural complexity (arboreal and understory remains) which provides a variety of microhabitats (Urbina & Pérez 2002; Jose

2012; Palacios et al. 2013). Both Achapo and Cacao seem to work as transition 211 environments, which arise from forest fragmentation. Fiorillo et al. (2018) found that 212 213 anurans diversity from peach palm plantations and secondary forests that surrounded it was very similar. On the other hand a site of banana plantation from the same study presented 214 lesser richness than both environments (peach palm plantations and secondary forests) and 215 none exclusive species. These results are very similar to that showed at the present study and 216 indicate that anurans diversity of disturbed habitats could be related to the interplay between 217 populations source (natural landscapes) and intrinsic traits of disturbed habitats (e.g. crops, 218 219 agroforestry systems).

220

We conclude that the agroforestry systems can be important management tools for 221 anurans conservation. Their multi-stratified structures are able to provide shelter and suitable 222 reproductive conditions for a great number of species. However, it is important to have in 223 224 mind that, some of those systems can harbor richest communities than others. Additionally, the effectiveness of biological conservation depends largely on the agricultural matrix and 225 how it is managed (Perfecto & Vandermeer 2008; Jose 2009). The assessment of landscape 226 changing on biodiversity and species natural history can be critical for promoting more 227 sustainable practices. 228

229

230 Acknowledgements

We thank University of Amazon for allowing our fieldwork at Amazonian Research Center
Macagual - Cesar Augusto Estrada González. We thanks to Maykol Olarte, Ricardo
Rodriguez, Rolland D. Díaz-Morales and Karen Garcia for assistance in field work. This
study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível

235	Superior – Brasil (CAPES) – Finance Code 001. Finally, we thank Maria Juana Parada
236	Sierra for the English revision.
237	
238	Disclosure statement: No potential conflict of interest was reported by the authors.
239	Author contributions: JCDR planned the study; JCDR, NCAV and JDLC collected the
240	data; GXMG financed fieldwork; JCDR and BFF analyzed the data; JCDR led the writing of
241	the manuscript. JCDR wrote the original draft; JCDR and BFF contributed critically to the
242	manuscript. All authors approved the final version of this manuscript for publication.
243	
244	References
245	Acosta-Galvis AR. 2000. Ranas, salamandras y caecilias (Tetrapoda:Amphibia) de
246	Colombia. Biota Colomb. 1(3): 289–319.
247	Angelsen A, Kaimowitz D. 2004. Is Agroforestry Likely to Reduce Deforestation?
248	In: Agroforestry and Biodiversity Conservation in Tropical Landscapes. Schroth G
249	da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN, editors.
250	Washington, Island Press. p. 87–106.
251	Arriaga-Villegas NC, Obregón-Paz N, Ruiz-Valderrama D. 2014. Diversidad de
252	anuros en humedales del centro de Investigaciónes Amazónicas Macagual,
253	Florencia, Caquetá. Biodivers Neotrop. 4(1): 42–48.
254	Argôlo AJS. 2004. As serpentes dos cacauais do sudeste da Bahia. Ilhéus: Editus.
255	Editora da UESC.

256	Asare R, Afari-Sefa V, Osei-Owusu Y, Pabi O. 2014. Cacao agroforestry for
257	increasing forest connectivity in a fragmented landscape in Ghana. Agrofor Syst.
258	88(6): 1143–1156.
259	Barros E, Pashanasi B, Constantino R, Lavelle P. 2002. Effects of land-use system
260	on the soil macrofauna in western Brazilian Amazonia. Biol Fert Soils. 35(5): 338–
261	347.
262	Becker CG, Fonseca CR, Haddad CF, Batista RF, Prado PI. 2007. Habitat split and
263	the global decline of amphibians. Science 318: 1775–1777.
264	Brand AB, Snodgrass JW. 2010. Value of artificial habitats for amphibian
265	reproduction in altered landscapes. Conserv Biol. 24(1): 295–301.
266	Carvalho MAOD. 2011. Estratégia e comportamento reprodutivo de Ameerega
267	hahneli (Anura, Dendrobatidae) na Amazônia Central [Master's thesis].
268	[Manaus(AM)]: Instituto Nacional De Pesquisas Da Amazônia - Inpa.
269	Chazdon RL, Harvey CA, Komar O, Griffith DM, Ferguson BG, Mart G, Nigh R,
270	Soto-Pinto L, van-Breugel M, Philpott SM. 2009. Beyond Reserves: A Research
271	Agenda for Conserving Biodiversity in Human-modified Tropical Landscapes.
272	Biotropica 41(2): 142–153.
273	Chao A, Ma KH, Hsieh TC. 2016. iNEXT (iNterpolation and EXTrapolation)
274	Online: Software for Interpolation and Extrapolation of Species Diversity. Program
275	and User's Guide published at
276	http://chao.stat.nthu.edu.tw/wordpress/software_download/.

277	Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake E, Hahn N,
278	Palminteri S, Hedao P, Noss R, et al. 2017. An ecoregion-based approach to
279	protecting half the terrestrial realm. BioScience. 67(6): 534–545.
280	Duellman WE. 1978. The biology of an equatorial herpetofauna in Amazonian
281	Ecuador (Vol. 65). Lawrence: University of Kansas.
282	Duellman WE. 2005. Cusco Amazónico. Comstock Pub. Associates.
283	Duellman WE, Wiens JJ. 1993. Hylid frogs of the genus Scinax Wagler, 1830, in
284	Amazonian Ecuador and Peru. Occas pap Mus Nat Hist. 153: 1–57.
285	Etter A, McAlpine C, Wilson K, Phinn S, Possingham H. 2006. Regional patterns of
286	agricultural land use and deforestation in Colombia. Agric Ecosyst Environ. 114(2-
287	4): 369–386.
288	Fiorillo BF, Faria CS, Silva BR, Martins M. 2018. Anurans from preserved and
289	disturbed areas of Atlantic Forest in the region of Etá Farm, municipality of Sete
290	Barras, state of São Paulo, Brazil. Biota Neotrop. 18(4): 1–15.
291	Fiorillo BF, Nali RC, Prado PCA. 2019. Habitat use and reproductive activity of
292	anurans from a Cerrado area in Minas Gerais state, southeastern Brazil. Herpetol
293	Notes. 12: 565–575.
294	Frost DR. 2020. Amphibian species of the World 6.0. New York (NY): American
295	Museum of Natural History. an Online Reference; [cited 2020 Apr 25]. Available
296	from: https://amphibiansoftheworld.amnh.org

297	Garcia-Ulloa J, Sloan S, Pacheco P, Ghazoul J, Koh LP. 2012. Lowering
298	environmental costs of oil-palm expansion in Colombia. Conserv Lett. 5(5): 366–
299	375.
300	Guo Q. 2000. Climate change and biodiversity conservation in Great Plains
301	agroecosystems. Global Environ Chang. 10(4): 289–298.
302	Haddad CF, Martins M. 1994. Four species of Brazilian poison frogs related to
303	Epipedobates pictus (Dendrobatidae): taxonomy and natural history observations.
304	Herpetologica. 282–295.
305	Haddad CFB, Prado CPA. 2005. Reproductive Modes in Frogs and Their
306	Unexpected Diversity in the Atlantic Forest of Brazil. Bioscience 55: 207–217.
307	Hansen MC, Stehmanb SV, Potapov PV. 2010. Quantification of global gross forest
308	cover loss. PNAS 107: 8650–8655.
309	Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A,
310	Thau D, Stehman SV, Goetz SJ, Loverland TR, et al. 2013. High-Resolution Global
311	Maps of 21st-Century Forest Cover Change. Science 342: 850–853.
312	Heyer WR, Bellin MS. 1973. Ecological notes on five sympatric Leptodactylus
313	(Amphibia, Leptodactylidae) from Ecuador. Herpetologica. 66–72.
314	IUCN SSC Amphibian Specialist Group. 2019. Leptodactylus mystaceus. The IUCN
315	Red List of Threatened Species 2010: e.T57146A11591629. an Online reference;
316	[cited 2020 Apr 25]. Available from: https://dx.doi.org/10.2305/IUCN.UK.2010-
317	2.RLTS.T57146A11591629.en.

318	Izac AMN, Sanchez PA. 2001. Towards a natural resource management paradigm
319	for international agriculture: the example of agroforestry research. Agric Syst.
320	69(1-2): 5–25.
321	Jose S. 2009. Agroforestry for ecosystem services and environmental benefits: an
322	overview. Agrofor Syst. 76(1): 1–10.
323	Jose S. 2012. Agroforestry for conserving and enhancing biodiversity. Agrofor Syst.
324	85(1): 1-8.
325	Lavelle P, Blanchart E, Martin A, Spain AV, Martin S. 1992. The impact of soil
326	fauna on the properties of soils in the humid tropics. In: Myths and science of soils
327	of the tropics. Sanchez PA, Lal R, editors. Madison, Wis. p 157–185.
328	Lin BB. 2007. Agroforestry management as an adaptive strategy against potential
329	microclimate extremes in coffee agriculture. Agric For Meteorol. 144(1-2): 85–94.
330	Lips KR, Burrowes PA, Mendelson IIIJR, Parra-Olea G. 2005. Amphibian Declines
331	in Latin America: Widespread Population Declines, Extinctions, and Impacts 1.
332	Biotropica. 37(2): 163–165.
333	Lötters S, Mutschmann F. 2007. Poison Frogs: Biology, Species & Captive Care.
334	Edition Chimaira.
335	Manly BF. 1994. 10 Ecological statistics. Handbook of statistics. 12: 307–376.
336	Marvier M, Kareiva P, Neubert MG. 2004. Habitat destruction, fragmentation, and
337	disturbance promote invasion by habitat generalists in a multispecies
338	metapopulation. Risk Anal. 24(4): 869–878.

339	Mboukou-Kimbatsa IMC, Bernhard-Reversat F, Loumeto JJ. 1998. Change in soil
340	macrofauna and vegetation when fast- growing trees are planted on savanna soils.
341	For Ecol Manage 110:1–12.
342	Miranda DB, Albuquerque S, Turci LCB, Bernarde OS. 2015. Richness, breeding
343	environments and calling activity of the anurofauna of the lower moa river forest,
344	state of Acre, Brazil. Zoologia 32: 93–108.
345	Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000.
346	Biodiversity hotspots for conservation priorities. Nature 403: 853–858.
347	Palacios CP, Agüero B, Simonetti JA. 2013. Agroforestry systems as habitat for
348	herpetofauna: is there supporting evidence?. Agrofor Syst. 87(3): 517-523.
349	Perfecto I, Vandermeer J. 2008 Biodiversity conservation in tropical
350	agroecosystems: a new conservation paradigm. Year Ecol Conserv Biol. 1134: 173–
351	200.
352	Ricaurte LF, Wantzen KM, Agudelo E, Betancourt B, Jokela J. 2014. Participatory
353	rural appraisal of ecosystem services of wetlands in the Amazonian Piedmont of
354	Colombia: elements for a sustainable management concept. Wetl Ecol Manag. 22:
355	343–361.
356	Rodríguez LO, Duellman WE. 1994. Guide to the frogs of the Iquitos Region,
357	Amazonian Peru. Univ Kans publ Mus Nat. 23.
358	Rojas RR, Carvalho VT, Ávila RW, Farias IP, Gordo M, Hrbek T. 2015. Two new
359	species of Amazophrynella (Amphibia: Anura: Bufonidae) from Loreto, Peru.
360	Zootaxa 3946: 79–103.

361	Rueda-Almonacid JV, Lynch JD, Amézquita A. 2004. Libro rojo de los anfibios de
362	Colombia. Conservación Internacional, Colombia.
363	Ruf F, Schroth, G. 2004. Chocolate Forests and Monocultures: A Historical Review
364	of Cacao Growing and Its Conflicting Role in Tropical Deforestation and Forest
365	Conservation. In: Agroforestry and Biodiversity Conservation in Tropical
366	Landscapes. Schroth G, da Fonseca, GAB, Harvey, CA, Gascon C, Vasconcelos HL,
367	Izac AMN, editors. Washington, Island Press. p. 107–134.
368	Sawaya RJ, Marques OA. V, Martins M. 2008. Composição e história natural das
369	serpentes de Cerrado de Itirapina, São Paulo, sudeste do Brasil. Biota Neotrop.
370	8(2): 127–149.
371	Schroth G, Harvey CA. 2007. Biodiversity conservation in Cacao production
372	landscapes: an overview. Biodiver Conserv. 16(8): 2237–2244.
373	Silva FR, Rossa-Feres DC. 2011. Influence of terrestrial habitat isolation on the
374	diversity and temporal distribution of anurans in an agricultural landscape. J Trop
375	Ecol. 27(3): 327–331.
376	Sneath PH, Sokal RR. 1973. Numerical Taxonomy: the Principles and Practice of
377	Numerical Classification, WH. Freeman and Company, San Francisco.
378	Somarriba E, Harvey CA, Samper M, Anthony F, Gonzy F, GonStaver C, Rice RA.
379	2004. Biodiversity Conservation in Neotropical Coffee (Coffea arabica) Plantations.
380	In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac
381	AMN, editors, Island Press. 198–226 p.

382	Teixeira RL, Ferreira RB, Silva-Soares T, Mageski MM, Pertel W, Rödder D, de
383	Barros EH, Engler JO. 2015. Anuran community of a cocoa agroecosystem in
384	southeastern Brazil. Salamandra 51(2): 1–4.
385	Urbina Cardona JN, Pérez-Torres J. 2002. Dinámica y preferencias de microhábitat
386	en dos especies del género <i>Eleutherodactylus</i> (Anura: Leptodactylidae) de bosque
387	andino. In Memorias del Congreso Mundial de Páramos. Gente Nueva, Bogotá,
388	Colombia. pp. 278-288.
389	Valdujo PH, Carnaval ACOQ, Graham CH. 2013. Environmental correlates of
390	anuran beta diversity in the Brazilian Cerrado. Ecography 36(6): 708–717.
391	Vásquez D, Correa C, Pastenes L, Palma RE, Méndez MA. 2013. Low
392	phylogeographic structure of <i>Rhinella arunco</i> (Anura: Bufonidae), an endemic
393	amphibian from the Chilean Mediterranean hotspot. Zool Stud. 52(1): 35.
394	Wanger TC, Iskandar DT, Motzke I, Brook BW, Sodhi NS, Clough Y, Tscharntke
395	T. 2010. Effects of Land-Use Change on Community Composition of Tropical
396	Amphibians and Reptiles in Sulawesi, Indonesia. Conserv Biol. 24(3): 795–802.
397	Yandi B, Carlos E, Gómez Díaz MA, Gómez Figueroa A, Velásquez Trujillo DA,
398	Bolivar García W. 2016. Ensamblaje de anfibios presentes en un bosque seco y en
399	sistemas productivos, Valle Medio del Magdalena, Victoria y La Dorada, Caldas,
400	Colombia. Revista de Ciencias. 20(2): 81–93.

402 Legends for figures

Figure 1. Ecoregions map of Colombia, showing the location of the Caquetá department in
Colombia. Ecoregions were adapted from Dinerstein et al. (2017). Red star indicates study
area location.

Figure 2. A) Distribution of abundances of anurans sampled. (absolute numbers are shown

407 above each bar) and B) proportion of the abundance in each agroforestry system sampled at

408 Amazonian Research Center Macagual, Department of Caquetá, Colombia.

409 Figure 3. Venn diagram of the intersections between the composition of each of the three

410 agroforestry systems sampled (Achapo, Cacao, and relictual forests). Aand: Adenomera

411 andreae, Ahah: Ameerega hahneli, Amar: Allobates marchesianus, Amin: Amazophrynella

412 *minuta*, Bcin: *Boana cinerascens*, Blan: *Boana lanciformis*, Blan: *Boana punctata*, Dpar:

413 *Dendropsophus parviceps*, Llep: *Leptodactylus leptodactyloides*, Lmys: *Leptodactylus*

414 *mystaceus*, Lpen: *Leptodactylus pentadactylus*, Lwag: *Leptodactylus wagneri*, Llin:

415 *Lithodytes lineatus*, Oplan: *Osteocephalus planiceps*, Palt: *Pristimantis altamazonicus*, Pcon:

416 Pristimantis conspicillatus, Sgar: Scinax garbei, Srub: Scinax ruber, Rmar: Rhinella

417 margaritifera, Rmri: Rhinella marina. Obs: when more than 90% of given species was found

418 in a single system (e.g. *Boana cinerascens*), it was considered as exclusive in the diagram.

419 Figure 4. Sampling coverage curves for each agroforestry systems. Black: Relictual forest,

420 Red: Cacao, Green: Achapo.

421 Figure 5. Principal coordinate analysis (PCoA) of anuran abundance, for each species

422 recorded at Amazonian Research Center Macagual, Department of Caquetá, Colombia.

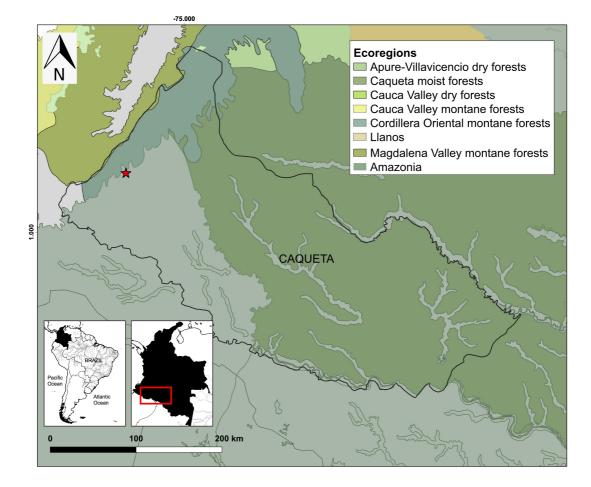
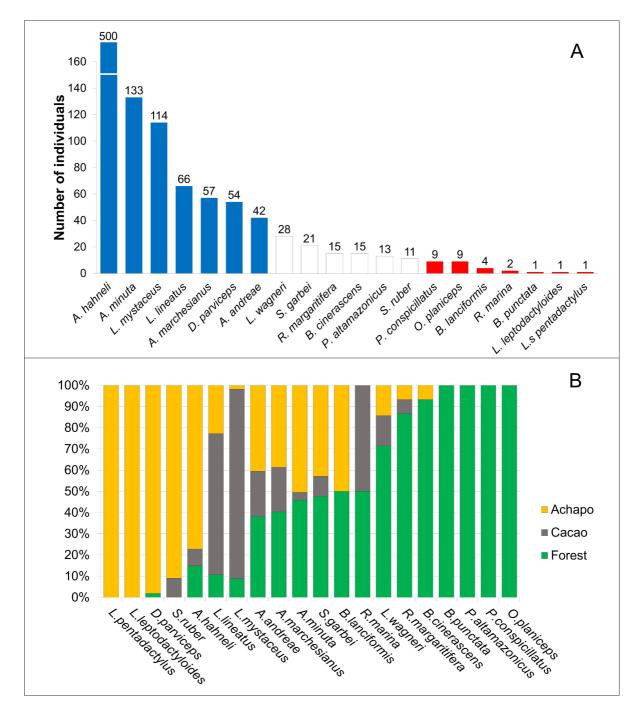
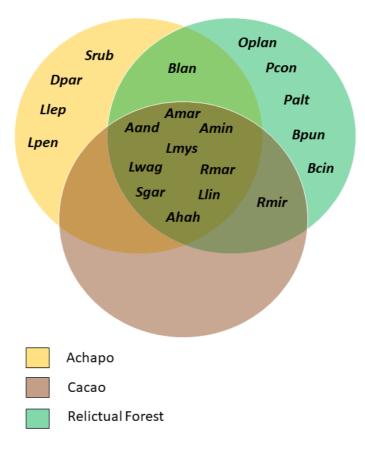
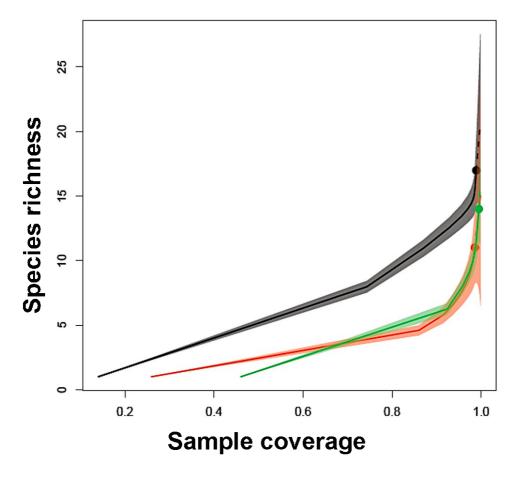


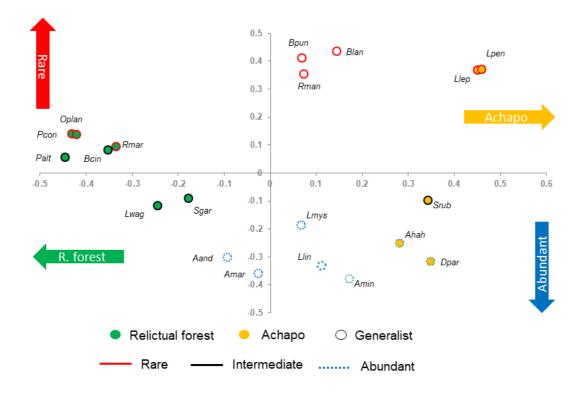
Figure 1. Ecoregions map of Colombia, showing the location of the Caquetá department in
Colombia. Ecoregions were adapted from Dinerstein et al. (2017). Red star indicates study
area location.


Figure 2. A) Distribution of abundances of anurans sampled. (absolute numbers are shown
above each bar) and B) proportion of the abundance in each agroforestry system sampled at
Amazonian Research Center Macagual, Department of Caquetá, Colombia.

430

435


Figure 3. Venn diagram of the intersections between the composition of each of the three 436 agroforestry systems sampled (Achapo, Cacao, and relictual forests). Aand: Adenomera 437 andreae, Ahah: Ameerega hahneli, Amar: Allobates marchesianus, Amin: Amazophrynella 438 minuta, Bcin: Boana cinerascens, Blan: Boana lanciformis, Blan: Boana punctata, Dpar: 439 440 Dendropsophus parviceps, Llep: Leptodactylus leptodactyloides, Lmys: Leptodactylus mystaceus, Lpen: Leptodactylus pentadactylus, Lwag: Leptodactylus wagneri, Llin: 441 Lithodytes lineatus, Oplan: Osteocephalus planiceps, Palt: Pristimantis altamazonicus, Pcon: 442 Pristimantis conspicillatus, Sgar: Scinax garbei, Srub: Scinax ruber, Rmar: Rhinella 443 margaritifera, Rmri: Rhinella marina. Obs: when more than 90% of given species was found 444 in a single system (e.g. Boana cinerascens), it was considered as exclusive in the diagram. 445

447

Figure 4. Sampling coverage curves for each agroforestry systems. Black: relictual forest,

449 Red: Cacao, Green: Achapo.

451

452 Figure 5. Principal coordinate analysis (PCoA) of anuran abundance, for each species

453 recorded at Amazonian Research Center Macagual, Department of Caquetá, Colombia.

454

455

457 List of tables

- **Table 1.** Description of the sampled agroforestry systems in Amazon foothils, Department of
- 459 Caquetá, Colombia.
- 460 **Table 2.** Abundance of anuran species recorded in relictual forest, Achapo and Cacao
- 461 systems in the Amazonian Piedmont, Department of Caquetá, Colombia.

463 **Table 1.** Description of the sampled agroforestry systems in Amazon foothils, Department of

464 Caquetá, Colombia.

Agroforestr y system	Coordinates	Elevation (m)	Vegetation		
Cacao	1.497578, - 75.664791	235	Agrosystem composed mostly by fruit crops, such as Azara (<i>Eugenia stipitata</i>) and Cupuassu (<i>Theobroma grandiflorum</i>), and Peach Palm (<i>Bactris gasipaes</i>).		
Achapo	1.500946, - 75.662211	240	Agroforestry system composed mainly by timber species, such as: Abarco (<i>Cariniana pyriformis</i>), Azara (<i>Eugenia stipitata</i>), Bilibil (<i>Guarea</i> sp.), Brazilian orchid tree (<i>Bauhinia forficata</i>), Common cedro (<i>Cedrela odorata</i>), Cupuassu (<i>Theobroma grandiflorum</i>). Pink poui (<i>Tabebuia rose</i>), Pink shower tree (<i>Cassia grandis</i>) and the rain tree (<i>Samanea saman</i>).		
Relictual forest	1.497562, - 75.672103	243	Forest remanent which has undergone certain transformation processes, due to deforestation for cattle breeding		

466 **Table 2.** Abundance of anuran species recorded in Relictual forest, Achapo and Cacao

467	systems in the	Amazonian Piedmont,	Department of Ca	quetá, Colombia.
-----	----------------	---------------------	------------------	------------------

	Agroforestry System				
FAMILY/SPECIES	Relictual Forest	Achapo	Cacao	Total	
AROMOBATIDAE					
Allobates marchesianus	23	22	12	57	
BUFONIDAE					
Amazophrynella minuta	61	67	5	133	
Rhinella marina	1	0	1	2	
Rhinella margaritifera	13	1	1	15	
CRAUGASTORIDAE					
Pristimantis altamazonicus	13	0	0	13	
Pristimantis conspicillatus	9	0	0	9	
DENDROBATIDAE					
Ameerega hahneli	74	386	40	500	
HYLIDAE					
Dendropsophus parviceps	1	53	0	54	
Boana cinerascens	14	1	0	15	
Boana lanciformis	2	2	0	4	
Boana punctata	1	0	0	1	
Osteocephalus planiceps	9	0	0	9	
Scinax garbei	10	9	2	21	
Scinax ruber	0	10	1	11	
LEPTODACTYLIDAE					
Adenomera andreae	16	17	9	42	
Leptodactylus leptodactyloides	0	1	0	1	
Leptodactylus mystaceus	10	2	102	114	

TOTAL	284	591	221	1096
Lithodytes lineatus	7	15	44	66
Leptodactylus wagneri	20	4	4	28
pentadactylus	0	1	0	1
Leptodactylus	0	1	0	1