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Abstract

Over the last decades, deep learning models have rapidly gained popularity for their abil-
ity to achieve state-of-the-art performances in different inference settings. Novel domains
of application define a new set of requirements that transcend accurate predictions and
depend on uncertainty measures. The aims of this study are to implement Bayesian neu-
ral networks and use the corresponding uncertainty estimates to improve predictions and
perform dataset analysis. We identify two main advantages in modeling the predictive
uncertainty of deep neural networks performing classification tasks. The first is the possi-
bility to discard highly uncertain predictions to increase model accuracy. The second is the
identification of unfamiliar patterns in the data that correspond to outliers in the model
representation of the training data distribution. Such outliers can be further characterized
as either corrupted observations or data belonging to different domains. Both advantages
are well demonstrated on benchmark datasets. Furthermore we apply the Bayesian ap-
proach to a biomedical imaging dataset where cancer cells are treated with diverse drugs,
and show how one can increase classification accuracy and identify noise in the ground
truth labels with uncertainty analysis.

1. Introduction

Deep neural networks have seen a dramatic increase in popularity in recent years, due to
their outstanding performances in complex prediction tasks (Krizhevsky et al., 2012; LeCun
et al., 2015). The main drawback of neural networks lies in their lack of interpretability
(they are often deemed as “black boxes” (Beńıtez et al., 1997; Shrikumar et al., 2017; Lund-
berg and Lee, 2017)) and their dependence on point estimates of their parameters. Despite
their ability to outperform simpler models, a single prediction score (i.e. the accuracy of
the prediction) is not sufficient for a variety of tasks and domain applications (Ghahramani,
2015). Modeling applications such as healthcare require an additional feature to the predic-
tion score, that is a measure of confidence that reflects the uncertainty of the predictions.
For example, a neural network performing diagnosis of brain tumors by analyzing magnetic
resonance images needs a way to express the ambiguity of an image in the same way as a
doctor may express uncertainty and ask for experts help. Moreover, predictive uncertainty
provides further insights about the data because more certain predictions correspond to
cleaner data both from a technical and a contextual point of view.
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The output of neural networks is often treated as a probability distribution. However,
despite there is a correlation between the accuracy of the prediction and this confidence
score, that is the output value, this should not lead to think that it is an appropriate
measure of uncertainty as this would show that the model makes mostly overconfident
predictions (Gal and Ghahramani, 2016).

Instead of the described prediction score, we analyzed data by means of the predictive
uncertainty, that can be decomposed into epistemic uncertainty, which stems from model’s
parameters as well as the specific architecture of the model, and aleatoric uncertainty, which
depends on the noise of the observations (Der Kiureghian and Ditlevsen, 2009).

In the remaining sections of this paper we present our implementation of Bayesian neural
networks using variational inference and our confidence measure formulation (2), we briefly
analyze the most relevant alternative to our approach (3) and we show our results over
multiple datasets belonging to different domains (4). Finally, we discuss the results and the
advantages of our approach (5).

2. Methods

The idea behind Bayesian modeling is to make predictions by considering all possible values
for the parameters of the model. In order to do so, the parameters are treated as random
variables whose distribution is such that the most likely values are also the most probable
ones. The posterior distribution of the model parameters, conditioned on the training data,
is defined using Bayes theorem:

p(w|D) =
p(D|w)p(w)

p(D)
(1)

where w is the set of model parameters and D is the training set. The estimation of the
posterior requires the definition of a likelihood function p(D|w), a prior density p(w), and
the computation of the marginal likelihood p(D) that is unfeasible for complex models such
as neural networks.

2.1. Mean Field Variational Inference

Variational inference allows to avoid computing the marginal likelihood by directly approx-
imating the posterior distribution with a simpler one (Jordan et al., 1999). In order to do
so, it is necessary to minimize the Kullback–Leibler (KL) divergence between the proposed
distribution and the posterior. The KL divergence is defined as follows:

KL{q(w; θ)||p(w|D)} =

∫
q(w; θ)log

q(w; θ)

p(w|D)
dw (2)

where θ is the set of variational parameters describing the proposed distribution q of the
model’s parameters w. Since the posterior distribution is not known, we need to define a
different objective to minimize the KL divergence. Such objective function is called Evidence
Lower Bound (ELBO) and it is defined as follows:

ELBO = Eq(w;θ){log p(D|w)} −KL{q(w; θ)||p(w)} (3)
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Variational inference turns the marginal likelihood computation problem into an optimiza-
tion one: maximizing the ELBO as a function of the variational parameters so that the
proposed distribution fits the posterior (proof in Appendix A).

We approximated the posterior with a multivariate Gaussian distribution and, in order
to simplify the optimization process, we used the mean field approximation. This choice
allowed us to avoid a quadratic increase of the parameters to optimize by factorizing the
posterior approximation:

q(w; θ) =
∏
i

q(wi; θi) =
∏
i

N(µi, σi) (4)

2.2. Bayesian Neural Network Training

In order to be able to apply the backpropagation algorithm to the variational parameters
of a Bayesian neural network, we applied the local reparameterization trick (Kingma et al.,
2015) which separates the deterministic and the stochastic components of the weights, which
are random variables. Furthermore, we also reparameterized the standard deviations of the
weights using the softplus function to keep them positive.

The loss function of the Bayesian neural network is the variational objective, i.e. the
negative ELBO, where the likelihood can be divided in the sum of the contributions of all
the individual data points in the dataset (Hoffman et al., 2013; Mandt et al., 2016, 2017)
and it is possible to employ a minibatch approach (Graves, 2011; Blundell et al., 2015):

f(Di, θ) = −Eq(w;θ){log p(Di|w)}+ βKL{q(w; θ)||p(w)} (5)

where Di represents the i -th mini-batch, β = 1/M is the scaling factor of the KL divergence
due to the minibatch approach, and M is the number of mini-batches. The prior distribution
is a Gaussian distribution that is equivalent to L2 regularization (Blundell et al., 2015).

2.3. Predictive Uncertainty

The probability distribution over the parameters of the model yields a predictive distri-
bution whose mean can be approximated using Monte Carlo samples from the posterior
approximation:

p(t|x,D) =

∫
p(t|x,w)p(w|D)dw ≈ 1

S

S∑
s=1

p(t|x,w(s)), w(s) ∼ q(w; θ) (6)

where S is the number of weights samples taken, therefore the number of output samples
too. The corresponding predictive uncertainty can be computed starting from the variance
of the predictive distribution, considering both the epistemic and aleatoric components of
uncertainty (Kwon et al., 2018; Kendall and Gal, 2017):

1

S

S∑
s=1

p(ti|x,w(s))− p(ti|x,w(s))
2

︸ ︷︷ ︸
aleatoric

+
1

S

S∑
s=1

(
p(ti|x,w(s))− p(ti|x,D)

)2
︸ ︷︷ ︸

epistemic

(7)

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2020. ; https://doi.org/10.1101/824862doi: bioRxiv preprint 

https://doi.org/10.1101/824862
http://creativecommons.org/licenses/by-nc/4.0/


where i is the index of the predicted class. Finally, we used the function f(x) = 1− 2
√
x to

transform such uncertainty measure into a more intuitive Bayesian confidence score which
is also easier to compare to the standard neural networks confidence score.

3. Related work

There exist many solutions to find the posterior distribution of complex models such as
Bayesian neural networks. Among them, it is worth citing the work regarding the Laplace
approximation (Ritter et al., 2018), that approximates the posterior with a Gaussian distri-
bution, and the Markov Chain Monte Carlo methods (Neal et al., 2011), that approximate
the posterior by directly sampling from it. The most relevant of such techniques is dropout
(Hinton et al., 2012), a regularization technique that, when active both at training and test
time, has been proved to be equivalent to the approximation of a Bayesian neural network
(Gal and Ghahramani, 2016).

Dropout has been extensively used to approximate Bayesian neural networks because
of its ease of implementation and retrieval of predictive uncertainty estimates. Moreover,
dropout has shorter training and prediction times when compared to the previously men-
tioned approaches. For these reasons, dropout based Bayesian uncertainty measures have
also been used to perform biomedical image analysis and prediction (Dürr et al., 2018;
Leibig et al., 2017). However recent work has exposed the main limitations of such ap-
proach, mainly related to the use of improper priors and the correctness of the variational
objective (Hron et al., 2018).

4. Results

In this section, we compare the Bayesian approach and the standard one on the MNIST
dataset (LeCun and Cortes, 1998), we analyze the predictive uncertainty to find out-of-
distribution data from a closely related dataset (EMNIST by Cohen et al. (2017)), and we
validate our method against cellular microscopy images. The architectures of the neural
networks and the corresponding training hyperparameters are discussed in Appendix C.

4.1. Standard and Bayesian neural networks comparison

We first trained a Bayesian convolutional neural network (LeNet5) using the MNIST train-
ing set and tested the model on the corresponding test set with S = 100 output samples
(see Appendix B for discussion of the number of predictive samples). As demonstrated by
predictions for 200 example images (Figure 1(a)), some images have a consistent prediction,
while others produce more than one classification result over the range of samples, which
suggests low confidence. Overall, predictions performed using the output samples individ-
ually showed good classification accuracy with small fluctuations (Figure 1(b)). For each
image, we computed the Bayesian prediction by taking the average of the output samples
as explained in the Methods section and illustrated in Figure 1(c) and Figure 1(d).

We then compared the Bayesian prediction results with a standard neural network
trained on the same MNIST data. As shown in Figure 1(e), confidence scores from the
standard neural network tend to be close to 1 and there is no differentiation between cor-
rect and wrong predictions. In contrast, Bayesian confidence scores are high for correct
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Figure 1: (a) Predictions from 100 output samples of 200 test images; (b) Corresponding
histogram of accuracy; (c) Per class histograms of 100 output samples; (d) Cor-
responding final output for a test image of an ambiguous 4; (e) Confidence score
distribution over the MNIST test set; (f) Increasing Bayesian confidence score
cutoff increases accuracy while decreases the percentage of retained images; (g)
Comparison of Bayesian and standard confidence scores over the MNIST test
set; (h) Image samples, with related outputs, predicted with the corresponding
colored areas confidence scores.
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predictions and low for incorrect ones. Therefore it is possible to improve the overall accu-
racy by increasing the confidence threshold and retaining only high-confidence predictions
as illustrated in Figure 1(f )). We also plotted the confidence scores from the Bayesian
neural network and the standard neural network against each other for each test image
(Figure 1(g)). By examining individual images in Figure 1(h), we see that images with
high Bayesian confidence are the canonical digits while images with low Bayesian confi-
dence correspond to corrupted or ambiguous observations. The standard neural network
however is not able to distinguish them.

4.2. Out of distribution data

The EMNIST dataset is designed with the same image format as MNIST, but it expands to
include hand-written letters. In order to validate the capability of the model to identify out-
of-distribution samples — that is, images that cannot be labeled with any of the possible
classes — we performed predictions over the EMNIST dataset with the Bayesian neural
network previously trained on the MNIST dataset. As shown in Figure 2(a), the model
predicts most numbers with high confidence, while it predicts letters with low confidence as
they do not belong to the domain of the MNIST training data. We examined the confidence
score distribution of each letter and illustrated in Figure 2(b) three representative examples.
As expected, the letter “o” is predicted as 0 with high confidence while the letter “w”,
that does not resemble any of the digits, is predicted with low confidence. Interestingly,
the confidence scores of letter “i”, show a bimodal distribution. After manually checking
individual images, we realized that some “i”s are very similar to the number 1 and are
predicted with high confidence, while other “i”s are written with a dot on top, therefore
considered as out-of-distribution samples with low confidence predictions.
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Figure 2: (a) Confidence score distribution of letters and numbers in EMNIST; (b) Three
example letters: “o”, “w” and “i”.

4.3. Cellular microscopy images

As part of the Broad Bioimage Benchmark Collection (BBBC), the BBBC021 dataset is
made of microscopy images of human MCF-7 breast cancer cells treated with 113 compounds
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over eight concentrations and labeled with fluorescent markers for DNA, F-actin, and β-
tubulin (Ljosa et al., 2012; Caie et al., 2010). A subset of BBBC021 with 38 compounds
is annotated with a known mechanism of action (MoA) and it has been widely used to
benchmark diverse analysis methods (Ljosa et al., 2013; Kandaswamy et al., 2016; Godinez
et al., 2017; Ando et al., 2017). The MoA annotations come both from visual inspection
by experts as well as scientific literature, using a course-grained set of 12 MoA, with each
MoA containing multiple compounds and concentrations.

We applied the Bayesian approach, as described above, to a simplified version of the
Multi-Scale Convolutional Neural Network (MSCNN) previous designed by Godinez et al.
(2017). For validation, we adopted the rigorous leave-one-compound-out process, where
in each session, all except one compound are used to train the model and the hold-out
compound is used for validation. Figure 3(a) illustrates the predictive confidence for all
hold-out compounds. As expected, the wrong predictions distribution has a peak on the low
confidence side while the correct predictions distribution has a peak on the high confidence
side. Thus with increasing threshold, one can improve overall classification accuracy as
shown in Figure 6(a) in Appendix D.

The effects of compound treatment are complex due to how compounds interact with
one or multiple protein targets and how these interactions are reflected on cell morphol-
ogy labeled with fluorescent markers. For this reason, we further examined the Bayesian
confidence scores for each of the 12 MoA and displayed two of the most relevant ones in
Figure 3(b).

Observations belonging to the “protein synthesis” MoA (96 images and three com-
pounds) are mainly predicted correctly. As expected, the confidence score of the four
images predicted incorrectly is 0.04 ± 0.05 (median ± median absolute deviation), substan-
tially lower than the correctly predicted images at 0.92 ± 0.10. Moreover, such images are
considerably different that the rest, in fact they are mostly black, probably due to noise
during the acquisition and annotation processes.

Similarly, incorrect predictions of “microtubule destabilizers”, show a different mor-
phology than the expected one. These anomalous images correspond to cells treated with
colchicine, one of the 4 compounds associated with this MoA (see Figure 6(b) in Ap-
pendix D). This observation is consistent with the results of unsupervised approaches on the
same dataset (Godinez et al., 2018) and indicates an error in the ground truth annotations.
Furthermore, most of the 168 images of microtubule destabilizers are predicted correctly
but some of them have low confidence scores. This is due to the corrupted observations
from colchicine, that are used to train the model in order to validate the other compounds.

5. Discussion

The performance of deep neural networks in computer vision tasks has been explored for bi-
ological research and drug development. Compared with natural images, biomedical images
have various challenges, such as noisy labels and out-of-distribution samples. To address
these challenges, we have implemented a Bayesian neural network with variational infer-
ence and exploited the confidence score derived from the predictive variance of the model.
Such uncertainty measure proved to be more precise than the standard neural networks
confidence score on simple, well known, benchmark datasets, as well as complex biomedical
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Figure 3: (a) Confidence score distribution of all hold-out compounds from BBBC021; (b)
Two representative classes: protein synthesis and microtubule destabilizers, and
the corresponding example images.

ones. Moreover, we were able to identify multiple anomalies in cellular images and the
corresponding annotations, therefore we believe this Bayesian neural network approach has
added value to the field of biomedical image classification.

Ground-truth labels for biomedical images are often impossible or prohibitively expen-
sive to generate, which is why the field has moved towards unsupervised approaches. We
envision future applications of the Bayesian framework to clustering and unlabeled images
retrieval.
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Appendix A. Evidence Lower Bound derivation

Variational inference employs the exclusive version of the KL divergence. Since the poste-
rior distribution is not known, a different objective needs to be defined starting from the
logarithm of the marginal likelihood of the model:

log p(D) = log

∫
p(D,w)dw

The computation of the marginal likelihood is the core issue of Bayes theorem, in order to
proceed we use an auxiliary function which corresponds to the proposal for the posterior
approximation q(w|θ) that we write as q(w) to simplify the notation:

log p(D) = log

∫
q(w)

p(D,w)

q(w)
dw = log Eq(w)

{
p(D,w)

q(w)

}
Then, it is needed to bring the logarithm inside the expectation which can be done by
applying the Jensen’s inequality:

log Eq(w)

{
p(D,w)

q(w)

}
≥ Eq(w)

{
log

p(D,w)

q(w)

}
Since we are now using an inequality, its right term is a lower bound of the logarithm of
the marginal likelihood, also called model evidence, hence the name Evidence Lower Bound
(ELBO). The ELBO can now be reformulated in the following way:

Eq(w)

{
log

p(D,w)

q(w)

}
=

∫
q(w)log

p(D,w)

q(w)
dw =

∫
q(w)log

p(D|w)p(w)

q(w)
dw =
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=

∫
q(w)log p(D|w)dw −

∫
q(w)log

p(w)

q(w)
dw =

= Eq(w){log p(D|w)} −KL{q(w)||p(w)} = L(θ)

Maximizing this lower bound with respect to the variational parameters θ of q(w; θ) provides
a value as close as possible to the logarithm of the marginal likelihood and it is equivalent
to minimizing the initial KL divergence between q(w) and p(w|D):

KL{q(w)||p(w|D)} =

∫
q(w)log

q(w)

p(w|D)
dw =

∫
q(w)log

q(w)p(D)

p(D|w)p(w)
dw =

= −
∫
q(w)log p(D|w)dw +

∫
q(w)log

q(w)

p(w)
dw +

∫
q(w)log p(D)dw =

= −Eq(w){log p(D|w)}+KL{q(w)||p(w)}+ log p(D)

KL{q(w)||p(w|D)} = −L(θ) + log p(D)

The marginal likelihood is constant, therefore maximizing the ELBO is equivalent to mini-
mizing the KL divergence between the posterior and its approximation.

Appendix B. Number of predictive samples

The predictive distribution is approximated using Monte Carlo samples, therefore, depend-
ing on the number of outputs averaged to compute the final prediction, the corresponding
accuracy can be more or less precise. Figure 4 shows 100 accuracies per numbers of samples
used to compute the output, and the corresponding median and variance per number of
samples. As the number of samples increases we get a closer estimate of the real accuracy
value and its variance decreases. Figure 4 data correspond to a Bayesian neural network
trained on the MNIST dataset.
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Figure 4: (left) Boxplot of 100 values of the accuracy of a Bayesian neural network per
different number of samples and (right) the variance per number of samples. The
dashed line corresponds to the median of the accuracies with 1000 samples.
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Appendix C. Neural networks architectures and training
hyperparameters

The architectures used for the experiments are illustrated in Figure 5. We used the same
architecture (LeNet 5) for both the standard and Bayesian case in order to be consistent
when performing comparison. We performed the optimization of the neural networks pa-
rameters using the Adam optimizer (Kingma and Ba, 2014). The training hyperparameters
for all the architectures used are illustrated in Table 1.

In order to train the standard LeNet5 we used the cross entropy loss function and a
learning rate schedule consisting of a single step at epoch 170, decreasing the learning rate
by a factor of 10. Furthermore, we added weight decay with a factor of 5 × 10−3. It is
important to underline that this is not the best model to train on the MNIST dataset, this
implementation choice has been taken because the model is still able to perform very well
and, since the dataset is contextually simple, further improvements could lead to higher
accuracies but complicate the comparison with the Bayesian counterpart.

Given the different nature of Bayesian LeNet5 with respect to the standard version, it
has been trained with a lower batch size and for more epochs, with a single learning rate
step at 200 epochs. The loss function is the variational objective, namely the ELBO loss.
No weight decay has been applied because the regularization is already imposed by the
shape and parameters of the prior.

In order to train the MSCNN, we adopted a weighted loss function because of the
BBBC021 classes imbalance. The weights of this loss were computed as the inverse of the
number of observations for each class, so that all the classes have the same influence on the
updates of the model parameters. We finally trained the neural network using a learning
rate schedule consisting of a single step at epoch 60.

Neural network
architecture

Dataset Learning
rate

Batch
size

# Epochs

Standard LeNet5 MNIST 10−3 256 200

Bayesian LeNet5 MNIST 10−3 32 300

Bayesian MSCNN BBBC021 10−2 20 80

Table 1: Training hyperparameters of the different architectures used in the experiments.

13

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2020. ; https://doi.org/10.1101/824862doi: bioRxiv preprint 

https://doi.org/10.1101/824862
http://creativecommons.org/licenses/by-nc/4.0/


Figure 5: Neural networks architectures.
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Appendix D. BBBC021 analysis. Supplementary figures
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Figure 6: (a) Confidence score threshold analysis for BBBC021 predictions (same as Fig-
ure 1(f ); (b) Confidence score distribution of each compound belonging to the
microtubule destabilizers MoA and corresponding image samples.
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