bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065532; this version posted May 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

A Bayesian neural network for toxicity prediction

Elizaveta Semenova!, Dominic P. Williams?, Avid M. Afzal', and
Stanley E. Lazic?

Data Sciences and Quantitative Biology, Discovery Sciences, R&D,
AstraZeneca, Cambridge, UK
?Functional and Mechanistic Safety, Clinical Pharmacology and

Safety Sciences, R&D, AstraZeneca, Cambridge, UK
3Prioris.ai Inc, Ottawa, Canada

Abstract

Predicting the toxicity of a compound preclinically enables better
decision making, thereby reducing development costs and increasing
patient safety. It is a complex issue, but in vitro assays and physico-
chemical properties of compounds can be used to predict clinical toxi-
city. Neural networks (NNs) are a popular predictive tool due to their
flexibility and ability to model non-linearities, but they are prone to
overfitting and therefore are not recommended for small data sets. Fur-
thermore, they don’t provide uncertainty in the predictions. Bayesian
neural networks (BNNs) are able to avoid these pitfalls by using prior
distributions on the parameters of a NN model and representing uncer-
tainty about the predictions in the form of a distribution. We model
the severity of drug-induced liver injury (DILI) to provide an example
of a BNN performing better than a traditional but less flexible pro-
portional odds logistic regression (POLR) model. We use appropriate
metrics to evaluate predictions of the ordinal data type. To demon-
strate the effect of a hierarchical prior for BNNs as an alternative to
hyperparameter optimisation for NNs, we compare the performance of
a BNN against NNs with dropout or penalty regularisation. We reduce
the task to multiclass classification in order to be able to perform this
comparison. A BNN trained for the multiclass classification produces
poorer results than a BNN that captures the order. To our knowledge,
this is the first BNN applied to toxicity prediction. The current work
lays a foundation for more complex models built on larger datasets,
but can already be adopted by safety pharmacologists for risk quan-
tification.

Keywords: Bayesian neural networks, drug-safety, drug-induced
liver injury, in silico toxicity prediction
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Introduction

Drug-induced liver injury (DILI) is the most frequent cause of acute liver
failure in most Western countries [1] and may require discontinuation of
treatment or hospitalisation. As a consequence, early drug development
focuses on characterising the safety profiles of compounds to avoid adverse
effects in humans and costly drug withdrawal at the post-marketing stage.

Predicting clinical hepatotoxicity is difficult due to its multi-mechanistic
nature: drugs are taken up from the circulation into the liver, where they can
be metabolised by cytochrome P450-mediated enzymatic reactions. These
reactions can produce reactive metabolites that can bind to and alter the
function of proteins, or form haptens, which can initiate an immune re-
sponse. Both of these processes can contribute to liver injury. Additionally,
some drugs or their metabolites can block the export of bile from hepato-
cytes, leading to intracellular damage from bile. Finally, drug-induced cel-
lular changes can lead to hepatocyte death or promote an immune response,
leading to liver injury. Chemical properties of the drug and unknown con-
tributors within the biology of patients also play a role.

A range of in vivo [2] and in silico [3, 4] approaches have been developed
to estimate human DILI risk. However, retrospective analyses have shown
that preclinical animal studies fail to make correct predictions in about 45%
of clinical trials [5, 6]. In turn, classical statistical and machine learning
models require a sufficient amount of data for adequate use, and collecting
information about toxicological properties of compounds is resource con-
suming, e.g. some adverse effects become known only after a long period of
a drug being on the market. As a result, the datasets available for analysis
contain few observations. Traditional models, which have been applied for
DILI prediction, such as linear discriminant analysis, artificial neural net-
works [7], and support vector machine [8], may struggle to analyse small
amounts of data reliably, and they provide no information about the uncer-
tainty of the predictions. A Bayesian approach to model formulation and
analysis offers a toolset to resolve these shortcomings and provides consid-
erable flexibility: a broad range of models can be formalised with the help
of probabilistic programming languages, prior knowledge can be taken into
account, and multiple sources of uncertainty can be incorporated and prop-
agated into the estimates and predictions. Bayesian models have been used
to predict the presence or absence of DILI, but few studies distinguish be-
tween different levels of severity [9, 10]. In our previous work [10] we used a
Bayesian proportional odds logistic regression (POLR) model that included
pair-wise interactions of predictors to allow for more complex relationships.
It would be possible to add higher order interactions but the number of
parameters grows quickly and overfitting becomes more of a problem.

Deep neural networks (DNNs) have recently been achieving state of the
art results in many fields and have been used to predict toxicity for both
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a single target and multiple targets (multitask learning) [7, 11, 12]. NNs
are popular due to their flexibility, but are prone to overfitting [13] and do
not capture uncertainty. This might lead to overconfident predictions even
when they are erroneous. Bayesian neural networks (BNNs) use priors to
avoid overfitting and provide uncertainty in the predictions [14, 15]. They
represent each estimated parameter as a distribution, rather than as a single
point. Unlike some other Bayesian models where prior information about
individual parameters can be used explicitly, the role of priors for BNNs
is in regularisation. Bayesian Deep Learning — a field following the Bayes
approach for neural network models — is rapidly developing [16]. Inference
methodology for BNNs is being actively researched, but computational lim-
itations remain a bottleneck, and real-life applications are rare. Due to the
computational difficulties, deep BNNs are often inferred using variational
inference — an approximate method that makes strong assumptions about
the posterior (that it is a multivariate Gaussian). Our model uses Markov
Chain Monte Carlo sampling as we have a small dataset and a small net-
work (it is not deep and has only one hidden layer). By separating model
and inference from each other, modern probabilistic programming languages
make inference for Bayesian models straightforward [17]. They provide an
intuitive syntax to define a model, and a set of sampling algorithms to run
the inference. Hence, only a generative model needs to be defined by a user
to estimate parameters and make predictions.

In the current paper we propose a Bayesian neural network to predict
clinical severity of liver injury from preclinical in wvitro assay results and
physicochemical properties of compounds. Based only on these data, along
with the clinical dose, the model enables drug safety scientists to better
predict liver toxicity. In this way, we extend the recently proposed POLR
model [10] and model different levels of severity by accounting for poten-
tial non-linear relationships. We use performance measures appropriate for
imbalanced and ordinal data to evaluate the models.

In addition, we compare the performance of traditional and Bayesian
NNs on the given dataset. Our results suggest that hierarchical priors pro-
vide a natural tool to work with hyper-parameters: for standard NNs hyper-
parameter tuning is required, but BNNs learn hyper-parameters as part of
the model fitting.

Materials and methods

Data

Data used for the analysis are described in [9], where information on the
compounds is provided, including labels, assay results and physicochemical
properties as detailed below. The dataset contains 237 labelled compounds
and the DILI severity labels are: "no-DILI”, ”less-DILI” | ” most-DILI”, ” am-
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biguous” and ”clinical development”. Records belonging to the first three
categories were used to train and evaluate the model. The DILI severity
labelling was created by encoding the verbally expressed categories into nu-
merical ordinal data: compounds of the most DILI concern were attributed
to category 3, compounds of moderate concern were attributed to category
2, and safe compounds were attributed to category 1. The split into train-
ing and test sets was created to match the proportions of each of the three
categories to avoid imbalances. The training and test sets contained 147
and 37 compounds, correspondingly. The data, classified as ambiguous,
was not used. Assay data included IC50 values for bile salt export pump
(BSEP) inhibition, cytotoxicity (THP1, THLE), HepG2 Glucose cytotox-
icity, HepG2 Glucose-Galactose cytotoxicity ratio (mitochondrial toxicity)
and carbon bond saturation (Fsp?), i.e. the number of sp? hybridized car-
bons divided by the total carbon count. The assay readouts were available as
continuous censored values. Lipophilicity (cLogP) as well as the maximum
plasma concentration in humans (total Cp,ax) were available as non-censored
continuous variables. A graphical description of the predictors and severity
of liver injury is shown in Figures 1 and 2.

ClogP Log10 Cmax Fsp3 BSEP

4 -3 -2 -1 0 1 2 -1 0 1 2 -1 0 1 2
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Figure 1: Predictors: assay data, physicochemical properties, and Ciax.

Models

We propose a BNN to predict toxicity and compare it to our previous POLR
model, which is used as a baseline. The input of both models is the assay
readouts, physicochemical properties, and Chyax. These covariates (and their
interactions in case of the POLR model) comprise a design matrix, i.e. the
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Figure 2: Severity score distribution of the data.

list of predictors. Both models can be viewed as networks: POLR has no
hidden layer, only an input and output layer (Figure 3), while the BNN has
an additional intermediate hidden layer (Figure 4). Each node of the hidden
layer is connected with all of the input covariates and with the output node.
Due to the Bayesian formulation of the model, any uncertainty present in
the predictions of the latent layer is propagated into the uncertainty of the
output.

The ordering of DILI categories induces a specific structure; neighbour-
ing categories need to be more highly correlated than distant categories.
This structure is achieved on the level of the latent continuous variable 7 :it
is computed by the models from the design matrix and is then thresholded
to yield the ordinal classes. The severity of liver injury y is governed by such
an unobserved continuous variable called the linear predictor. Three sever-
ity classes are defined using two thresholds ¢y, ca, which are estimated from
the data. Consequently, the outcome y is modelled via a proportional odds
logistic regression, also known as a cumulative logit or ordered logit model:
the predicted value equals 1 if the unbounded latent variable is smaller than
c1, 3 if the latent variable is larger than ca, and 2 otherwise. If needed, both
the linear predictor and the thresholds can be mapped to the probability
scale by the inverse logit transformation.

The Bayesian model formulation consists of two parts: a likelihood and
preliminary information, expressed as prior distributions of parameters. The
likelihood reflects the assumptions about the data generating process and
allows to evaluate a model against observed data. The inference is made
by updating the distributions of the parameters according to how well the
model and the data match. We have used zero-mean Gaussian priors for the
weights which is a common approach [18, 19, 20, 21]. The POLR and BNN
models are described in more detail below.
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Proportional odds logistic regression (POLR)

Under the POLR, model associations between the predictors and the out-
come are estimated directly (Fig. 3). All 8 main effects and 21 pair-wise
interactions (excluding interactions with Cpax) were used as predictors. In-
teractions with Cax were excluded following [10]: since this is not an ex-
perimentally measured quantity, there is a lot of uncertainty in its values
and we want to minimise its influence in the model.

Predictors (X)

DILI severity (y)

Figure 3: POLR model structure.

The hierarchical Bayesian POLR, model is therefore formulated as

n=Xw,
w ~ Normal(0, o%),
o ~ Normal™ (0, 1),

¢ =[e1, ),
¢ ~ N(0,20),
y ~ OrderedLogistic(n, ¢),

where 1 denotes the linear predictor, w denotes the set of coefficients with
shared variance o2, which is a hyper-parameter of the model. All of the
parameters - w, o and ¢ - are inferred from data.

Bayesian Neural Network (BNN)

Neural networks (NNs) are built by including hidden layers between input
and output layers. Each hidden layer consists of latent nodes applying a
predefined computation on the input value to pass the result forward to the
next layers. If there is more than one hidden layer in the network, it is
considered to be deep. The number of nodes and activation functions need
to be defined to complete the NN specification. A NN is governed by a
set of parameters: weights and biases. In traditional NNs, all parameters
are defined as single numbers which need to be estimated. Training is done
via optimisation, i.e. a learning algorithm aims to find a single optimal set
of parameters. In the Bayesian setting each parameter is described by a
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distribution and the task of Bayesian inference is to learn that distribution
from data given some initial assumption about the distribution. The param-
eter space is explored by a learning algorithm and results are obtained via
marginalization. The hierarchical BNN model is formulated as presented in
Figure 4 and described by formula (2). The thresholds separating the classes
¢, the variance hyper-parameter o2, and the weights w, are estimated from
data.

Hidden layer (h)

Predictors (X)

DILI severity (y)

Figure 4: BNN model structure: purple nodes are observed and grey nodes
are hidden.

h = ReLU(Xwq 1),
n = hwi g,

w = [wo,1,w1,.2],

w ~ Normal(0, 0%),
o ~ Normal ™ (0, 1),

y ~ OrderedLogistic(n, c), ¢ = [c1,cal.

Here, ReLU is the rectified linear unit function, wo 1 is a set of parameters
connecting the input and the hidden layer, and w; 2 is a set of parameters
connecting the hidden and the output layer.

Evaluation measures

To evaluate the models, several of its properties need to be taken into ac-
count: Bayesian model formulation, ordered outcome, class imbalances, and
the continuous nature of the latent prediction. A set of metrics that ad-
dress these properties were used to compare the baseline and the proposed
models: Watanabe-Akaike Information criterion, balanced accuracy, ordered
Brier Score, and Brier Skill Score.


https://doi.org/10.1101/2020.04.28.065532
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065532; this version posted May 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Watanabe-Akaike Information criterion (WAIC) [22] serves as a tool
for Bayesian model selection. It is applicable to models with non-normal
posteriors and models with smaller WAIC are preferred.

Accuracy. Calculated as the ratio of the number of correct predictions
to the number of all examples, is frequently used to evaluate performance of
predictive models: if TP, TN, N, P are the numbers of true positives, true
negatives, all negatives and all positives, correspondingly, the expression for
accuracy is (T'P + TN)/(P + N). Applications of this measure are lim-
ited when the observed data is imbalanced and/or ordered. For imbalanced
data high accuracy can be easily achieved when the model, potentially erro-
neously, frequently predicts the dominant class. Sensitivity and specificity
suffer from similar issues. A better solution, accounting for imbalances, is
given by the balanced accuracy (BA) [23]: in case of three classes, given the
confusion matrix in Table 1, it is calculated as shown in Formula (3).

observed
1 2 3

1lan1 a2 ais
2 | a1 azx a3
3| azr azx ass

predicted

Table 1: Confusion matrix for an ordinal variable with three classes.

1 a a a
BA - L < 11 n 22 n 33 > (3)
3\ai1+ag +a31  ajgtage+asx a3+ ass + ass

Balanced accuracy addresses imbalances in data but is not able to cap-
ture the ordered nature of the data: predicting the safety class as 1 or 2
should be penalised differently, if the observed class is 3. To take the or-
dering into account we apply the ordered Brier Score (OBS) [24], which
measures the distance from the predicted probability to the true class, ac-
counting for the ordered nature of the data; this measure is more suitable
than balanced accuracy for ordered outcomes. Models with smaller OBS are
preferred. OBS is calculated as

. =
OBS = N EBSn where BS,, = -1 (pfll,li? - Ozl,llrcn)Q
n=1 k=1

Here p7*i" is the cumulative predicted probability for the n—th observation

to be in the k—th class (i.e. it is the probability to lie within the first k
classes), of'\" is the cumulative true outcome (0 or 1), i.e. it is the outcome

of the event ”to lie within the first k classes”. Since each of the summands
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lies between 0 and 1, so will the OBS. An example of the OBS calculation
is given in the Supplement. OBS is a multiclass generalisation of the Brier
score [25] for binary outcomes BS = Zjlv (pn — 0n)?, where oy, is the 0 or
1 outcome and p,, is the predicted probability of 0,. The smaller the value
of the BS or its cumulative version, the closer is the model’s prediction to
the observed data. In the Bayesian setting the posterior distribution of the
probabilities p7*" can be used to derive the distribution of the BS.

Brier Skill Score (BSS) [25] is an intuitive metric to compare a model in
question to a baseline model and models with larger BSS are preferred. The
baseline model can be, for instance, set to predict the observed frequencies
of classes and yield the Brier score BSP. If BS™ is the score given by the
proposed model, then the BSS can be computed as BS;‘%. Closeness of
the BSS to 0 means that the proposed model is not much better than the
baseline, and closeness to 1 means that predictions made by the model are
good.

Comparing Bayesian and non-Bayesian neural networks

Inference for NNs with ordered outcomes is not a standard task and does
not have out-of-the-box tools, and so we reduced the task to multiclass clas-
sification, i.e. we ignore the order in the outcome variable. We compare two
models with the same architecture, i.e. a multilayered perceptron with the
classification task. The Bayesian Neural Network uses a hierarchical prior to
prevent overfitting. The NN is initially trained without regularisation, and
then we explore two regularisation techniques: dropout [26] and quadratic
penalty. The two problems are formulated as follows:

NN, inference via optimisation :
n = NNg(X),
y ~ Categorical(n),
0 = argmin (softmax(y, 7)),
where g is the prediction made by the model,
BNN, inference via marginalization :
n = BNNy(X),
y ~ Categorical(n),
0 ~ N(0,0%),0 ~ NT(0,1).
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The BNN was tested both under common priors for all weights and biases
in the model, i.e.

0 = (w,b),
0 ~ N(0,0?),
o~ NT(0,1),

as well as with separate priors for weights and biases, i.e.

N(0,07,)
N(0,07),
~ N+<o 1),
o, ~ NT(0,1).

)

We have also tried separating weights of different layers, i.e.
wo1 ~ N (0,02
w2 ~ N(0, aw12)

b~ N(0, Ub)7
Ouwoy ~ NT(0,1),
Ow, ~ NT(0,1),
o, ~ NT(0,1).

wo, 1)

The neural network was trained using the ADAM optimizer. We started
with a NN without any regularisation. Consequently, we have added a
Dropout layer and tested a grid of dropout probabilities from 0.1 to 0.9
with step 0.1. Finally, we have explored the effect of the Lo penalty for a
set of values of the regularising parameter. For the ADAM algorithm, we
have explored several learning rates (o =0.0001, 0.001, 0.01 and 0.1). The
presented results are for a« = 0.001 since it has shown the best evaluation
measures. The number of epochs was chosen as when results have converged
to stable estimates. To account for random effects in the process of NN
optimisation (such as the Glorot, a.k.a. Xavier, initialisation of the starting
values), we have repeated each of the NN experiments 100 times and report
average metrics.

We have performed several additional tests to study the POLR and BNN
models: one more way to demonstrate that a model is not overfitting is to
apply a random permutation to the labels and fit the model on this new data
with broken correlations between inputs and outputs. The model should not
be able to predict better than chance.

The computational workflow was implemented in Julia [27] and we used
the No-U-Turn sampler in Turing [17] for Bayesian inference. The Flux.jl
package was used to specify the architecture of neural networks. Trace plots
and R-hat statistics were used to evaluate model convergence.

10
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Results

Table 2 presents the metrics for the BNN and POLR models: WAIC is
smaller for BNN, which indicates that it should generalise better to un-
seen examples. Mean and median test and train OBS are smaller for BNN
showing that the error made on the continuous scale is smaller for BNN.
Moreover, mean and median train and test BSS are larger for BNN showing
that BNN is performing better than POLR when both models are compared
to the model predicting class frequencies.

Mean OBS | Median OBS | Mean BSS [ Median BSS BA
Model | WAIC | Train / Test | Train / Test | Train / Test | Train / Test | Train / Test
POLR | 272.0 | 0.14 /0.16 0.10 / 0.12 0.27 / 0.19 0.38 / 0.35 0.64 / 0.62
BNN 253.1 0.12 / 0.14 0.08 / 0.10 0.36 / 0.29 0.45 / 0.37 0.71 / 0.67

Table 2: Model comparison according to performance measures

Predictions, together with the uncertainty profiles, were computed for
each compound. For example, Figure 5 displays results for a safe compound
(Folic acid) by the two models: each of the panels — (a) and (b) — show the
continuous predictor on the left and the posterior predictive distribution on
the right. Ideally, we would like the most probable class to coincide with the
true value, since this would mean that our model has made a correct pre-
diction. More uncertainty in the continuous predictor translates into higher
uncertainty of the predicted class. Posterior predictive distributions visu-
alise the uncertainty of the predictions. For this example, we can see that
the POLR prediction is less certain than the BNN even though they make
the same prediction. The ordered Brier score is sensitive to these differences.
Figure 6 compares the profiles of three compounds that are structurally sim-
ilar but have different DILI severities: Rosiglitazone and Pioglitazone are
class 2 and Troglitazone is class 3. Figure 7 shows the posterior predictive
distributions for the same three compounds. The BNN is able to better
separate these structurally similar compounds: the continuous predictors of
the three compounds obtained by POLR are closer to each other than those
obtained by BNN (Fig. 6). POLR misclassifies Rosiglitazone and Piogli-
tazone, while BNN misclassifies only the latter. Misclassification would be
reflected in the balanced accuracy, and the confidence of this misclassifica-
tion will be reflected in the OBS. The overview of all predictions made by the
two models is graphically presented in Figure 8. Predicted severity on the
continuous probability scale (the point estimate is obtained as the median
of the posterior distribution) on the y-axis is plotted against the true class
on the x-axis. The horizontal dashed lines display the estimated thresholds.
The BNN displays sharper separation between categories. Figure 9 presents
the posterior distribution of the ordered Brier score for training and test
sets. All distributions are skewed towards zero, which indicates the model’s

11
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good predictive ability. Despite the similarity of the OBS plots for POLR
and BNN on the training data, the OBS on test data has overall lower values
for BNN. Similarly, the BSS is shifted towards 1 for the BNN (Figure 10).
Table 3 compares the BNN and NN models for the multiclass classification
task. Separating the priors for the weights and biases for the BNN has not
led to improved results compared with common priors. BNN trained for
multiclass classification task produces poorer results than the BNN model
capturing the order. Test balanced accuracy is the highest for BNN with
common priors for weights and biases. Among the NN models the best test
balanced accuracy was achieved by the NN via penalty regularisation. How-
ever, it does not exceed the BNN result and it required a grid search for
the hyper-parameter value, which might have been not an optimal strategy.
BNNs take longer to train, but hyper-parameters are inferred as a part of
model fitting.

Under permutation of labels, both POLR and BNN models do not show
signs of overfitting (Appendix C). Calibration is a useful way to evaluate
models [28], and we have performed the assessment for POLR and BNN
(Appendix D).

T
Troglitazone I Troglitazone
I

T
|
I
l l
: P:ioglitazone
| |
I I
| |
l
I

:Rosiglitazone

0.00 0.25 0.50 0.75 1.00
P(DILI)

(a) POLR (b) BNN

Figure 6: Profiles for three compounds with similar chemical structure but
different toxicity classes.
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for one compound: continuous latent prediction on the left and posterior
predictive distribution on the right

13


https://doi.org/10.1101/2020.04.28.065532
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065532; this version posted May 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

1.0 1.0 -
(0] ‘ ©
20.8} o ° 20.8} “
g ° ‘ (]>) (] 09
N R A Boef ~ "7~ e =
o] © ? o) ° ..
Q (]
© 0.4f .: & 5 0.4} ..: °
5 ) 8 S e
Co2-@ - - Co2f o 8
oY ® ° R il Sl
o ®
0.0—; 5 3 0.0—; 5 5

Figure 8: Overview of predictions made by both models on test data.

Figure 7: Posterior predictive distributions for three compounds with similar

True DILI category

(a) POLR

true category = 2
1.0

true category = 2
1.0

True DILI category

(b) BNN

true category = 3
1.0

o
o

o
Y

0.8

o
=

Predicted probability

o
N

0o 1 2 3

Rosiglitazone

true category = 2
1.0

0.6

02—

00 1 2 3

Pioglitazone

(a) POLR
true category = 2
1.0

08

0.6

0.4

0.2

00 1 2 3

Troglitazone

true category = 3
1.0

o
EY

o
o

0.8

0.8

o
IS

Predicted probability

o
o

0.0

1 2 3
Rosiglitazone

0.6

0.0

1 2 3
Pioglitazone

(b) BNN

0.6

0.4

0.2

0.0 1 2 3

Troglitazone

chemical structure but different toxicity classes.

14


https://doi.org/10.1101/2020.04.28.065532
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065532; this version posted May 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

T BNN [
B POLR

6 T BNN [
I POLR

0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0
Ordered Brier Score Ordered Brier Score

(a) Training set (b) Test set

Figure 9: Ordered Brier score for training and test sets for both models.

1.00
T BNN
Il POLR

o'0-01.0 -05 0.0 0.5

Brier Skill Score Brier Skill Score

-1.0 -0.5 0.0 0.5

(a) Training set (b) Test set

Figure 10: Brier Skill Brier score for training and test sets for both models.

15


https://doi.org/10.1101/2020.04.28.065532
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.28.065532; this version posted May 2, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Model Train accuracy | Test accuracy | Train BA | Test BA
BNN 0.71 0.65 0.71 0.64
BNN, separate priors w, b 0.71 0.64 0.71 0.64
NN without regularisation 0.91 0.55 0.91 0.56
NN Dropout p=0.1 0.79 0.56 0.79 0.57
NN Dropout p=0.2 0.76 0.58 0.75 0.56
NN Dropout p=0.3 0.73 0.59 0.72 0.57
NN Dropout p=0.4 0.70 0.58 0.70 0.57
NN Dropout p=0.5 0.68 0.59 0.67 0.57
NN Dropout p=0.6 0.65 0.58 0.63 0.57
NN Dropout p=0.7 0.61 0.57 0.58 0.54
NN Penalty 1=0.1 0.54 0.54 0.47 0.47
NN Penalty 1=0.05 0.62 0.57 0.59 0.54
NN Penalty 1=0.01 0.77 0.63 0.77 0.62
NN Penalty 1=0.007 0.80 0.61 0.80 0.61
NN Penalty 1=0.001 0.89 0.54 0.89 0.55

Table 3: Accuracy of the models with an unordered multiclass outcome
with 15 hidden nodes.

Discussion and future work

Pharmaceutical companies need to prevent attrition due to adverse drug
effects at the earliest possible stage of drug development. We have pro-
posed a Bayesian neural network model to predict toxicity from assay data
and physicochemical properties of compounds. The BNN was able to make
more accurate predictions on the test set as compared to a traditional but
less flexible POLR model and non-Bayesian NNs with the same architec-
ture. Futhermore, the BNN does not overfit on a relatively small number of
compounds (147).

When compared to a non-bayesian NN, the BNN showed more flexibility
by being able to model ordered outcomes with the off-the-shelf modelling
tools. Approaches for fitting ordered outcomes do exist in the NN literature
but are not implemented in common deep learning software packages [29].
In the multi-class classification task, the target vector is set via the one-hot
encoding to t = (0,..,0,1,0,0,...,0) and the goal is to obtain a probability
distribution vector (01,02, ..., 0k, ..., 0K ) With o being closer to 1 and other

elements being closer to zero. There is a constraint Zfi 10; = 1 and the
exp(—zi)

Zfil exp(—2;)

ordered outcomes, the target is being re-coded as t = (1,1,..,1,1,0,0,0,0)

where the components ¢;(1 < i < k) are set to one and other elements to
zero. The goal is to compute the (non-normalised) cumulative probability
distribution (01, 02, ..., 0k, ..., 0k ) where 0;(i < k) is close to 1 and 0;(i > k) is
close to 0. Each probability o; is now being predicted by a sigmoid function
. The drawback of using unordered categories is that it does not

soft-max function is used to compute the probabilities. For

1
THexp(—21)
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guarantee a monotonic relation o1 < 09 < ... < ok, which is desirable for
making predictions. Hyper-parameter search needs to be performed for NNs
with cross-validation, while in the Bayesian framework it is done as a part of
model fitting. Inference is being performed via marginalisation, which can
be thought of as an ensemble of models.

Compounds that are chemically similar might have different toxicity
properties [30]. An example is the group of Rosiglitazone, Pioglitazone and
Troglitazone: the first two compounds are moderately toxic, while the toxi-
city of the last one is more severe. BNN model was better able to distingush
the profiles than the POLR model.

Well established performance metrics such as accuracy, sensitivity, and
specificity, are limited for uncertainty quantification. Accuracy is ignorant of
the amount of error made in case of an incorrect prediction and discards the
level of certainty for correct predictions. Brier scores address the issue well
since they use continuous predictions. The version for binary outcomes has
been used, for cardiotoxicity [31], and we have used the ordered version to
handle the ordered data and predictions. Qualitatively, balanced accuracy
and Brier score agree well in terms of selecting the best model.

Some continuous variables were censored, but we did not perform mod-
elling of the censored data. Bayesian formulation could include such step as
a part of the model, while in the classical context one would need to separate
the procedure into two steps: first, the censored data needs to be imputed
without regard of the whole model, and then the NN model can be applied.

The number of nodes in the hidden layer was chosen empirically, i.e. we
have explored both the compression (e.g. 5 nodes) and expansion (e.g. 25
nodes) of data and the best results were given by the hidden layer with 15
nodes. Results for the multiclass classification task with a small number
of nodes (5) can be found in the Supplement (Table 4). The combination
of empirically chosen number of nodes and a shrinkage prior (hierarchical
normal) have produced good results. Stronger shrinkage priors, such as
horseshoe or regularised horseshoe, are known to be able to handle even
highly over-estimated number of nodes well [18].

We acknowledge that non-linearities can also be modelled in alternative
ways. The options include Gaussian Processes (GPs) and splines, which
are both more complex than the proposed model. The connection between
GPs and infinitely wide NNs has long been known: a single-layer fully-
connected neural network with independent identically distributed priors
over its parameters is equivalent to a GP [21]. The result has also been
extended to more than one-layer networks [32] and further researched [33,
34]. But since in the presented model, we do not scale the priors by the
number of nodes, our model is not a subclass of those representable by GPs.
For the decision between a BNN and a GP we used the following heuristic: as
long as the largest weight matrix has both the number of rows and columns
smaller than the number of the observations in the dataset, it is reasonable
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to chose a BNN: if n is the number of observations, complexity of a GP is
O(n?); complexity of a BNN is O(nnq(ng + n2)), where ng is the number of
input features, nj is the number of nodes in the hidden layer and ns is the
number of output nodes. Consequently, as long as O(nny(ng+nz2)) < O(n?),
BNN is computationally more efficient. In our case n = 147, ng = 8, n1 = 15,
no = 1.

There is a lot of discussion around Bayesian neural networks with the
main conclusion being that due to bad scalability there have been "no pub-
licized deployments of Bayesian neural networks in industrial practice” [35]
by early 2020. Our work demonstrates the usefulness of BNNs for applied
questions, such as toxicology. Scalability for BNNs is an issue, but research
is being done to overcome it [36]. To our knowledge, the current work pro-
vides the first application of a Bayesian neural network — a flexible predictive
model able to capture non-linearities and which generalises well to a new
data and yields information about the degree of uncertainty — to toxicology.
Furthermore, it outperforms a Bayesian POLR model which has been in
production for a year.

Supplementary

Supplementary File BNN_Julia.zip contains data and code in Julia and Tur-
ing.
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Supplementary material

A. Ordered Brier score - an example

’ Class ‘ 1 ‘ 2 ‘ 3 ‘
predicted probability 02/3]1/3
observed outcome 0] 1 0
cumulative predicted probability | 0 | 2/3 | 3/3
cumulative outcome 0] 1 1
Model 1
Class \ 1 ‘ 2 ‘ 3 ‘
predicted probability 0[0]3/3
observed outcome 110 0
cumulative predicted probability | 0 | 0 | 3/3
cumulative outcome 1)1 1
Model 2
1
CB Model 1 = 3 [(0)? + (1/3)?] = 1/18 - a good prediction,
1
CB Model 2 = 3 [(1)* + (1)*] =1 - the worst possible prediction.

We compared hierarchical and non-hierarchical BNNs with an ordinal
outcome. The hierarchical model shows better results than the non-hierarchical
model on the training data, but comparable results on the test data. We
conclude that the non-hierarchical model is overfitting.

B. Comparison of frequentist optimisation and Bayesian infer-
ence for NNs with multinomial outcome and 5 hidden nodes
in the hidden layer

We have tried different number of nodes in the hidden layer: numbers larger
than the input dimension (8) to expand the information from the inputs in
the hidden layer, and numbers smaller than the input dimension to condense
the information. Here we present results of a model with 5 hidden nodes.
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‘ model ‘ train accuracy ‘ test accuracy ‘ train BA ‘ test BA ‘
BNN 0.70 0.59 0.70 0.59
BNN, separate priors w, b 0.72 0.59 0.71 0.59
NN without regularization 0.73 0.57 0.72 0.57
NN Dropout p=0.1 0.68 0.58 0.68 0.56
NN Dropout p=0.2 0.65 0.58 0.64 0.57
NN Dropout p=0.3 0.62 0.56 0.60 0.54
NN Dropout p=0.4 0.60 0.56 0.57 0.53
NN Dropout p=0.5 0.57 0.53 0.53 0.51
NN Dropout p=0.6 0.55 0.54 0.50 0.48
NN Dropout p=0.7 0.52 0.50 0.45 0.45
NN Penalty 0.44 0.42 0.33 0.33

Table 4: Accuracy of the models with multiclass outcome, 5 hidden nodes.

C. Results on outcomes with permutation
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Figure 11: Results on the outcomes with permutation
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An additional way to demonstrate that a model isn’t overfitting is to apply
a random permutation to the labels and fit the model on this new data
with broken correlations between inputs and outputs. The model shouldn’t
be able to predict better than chance. Both models do not show signs of
overfitting.

D. Calibration

Calibration performance procedures are well established for binary out-
comes, but this is not the case for ordered outcomes. That is why we
compared category 1 cs 2 and 3, and categories 1 and 2 vs category 3.
The calibration curve for both models deviated from the diagonal line for
the 1 vs 2+3 comparison, but this was due to a few compounds that were
difficult to predict and the low number of compounds in category 1. We do
not see a difference in results for POLR and BNN.
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Figure 12: Calibration results

25


https://doi.org/10.1101/2020.04.28.065532
http://creativecommons.org/licenses/by/4.0/

