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ABSTRACT 

Background: Hepatocellular carcinoma (HCC) is among the deadliest malignancies and 

surveillance tools for early detection are suboptimal. Extracellular vesicles (EVs) have gained 

increasing scientific interest due to their involvement in tumor initiation and metastasis, however, most 

extracellular RNA (exRNA) biomarker studies are limited to annotated genomic regions.  

Methods: EVs were isolated with ultracentrifugation and nanoDLD and quality assessed by 

electron microscopy, immunoblotting, nanoparticle tracking, and deconvolution analysis. We 

performed genome-wide small exRNA sequencing, including unannotated transcripts. We identified 

small RNA clusters (smRCs) and delineated their key genomic features across biospecimens (blood, 

urine, tissue) and EV isolation techniques. A 3-smRC signature for early HCC detection was trained 

and validated in two independent cohorts.  

Results: EV-derived smRCs were dominated by uncharacterized, unannotated small RNA and 

uniformly tiled across the genome with a consensus sequence of 20bp. A 3-smRC signature was 

significantly overexpressed in circulating EVs of HCC patients compared to controls at risk or patients 

with non-HCC malignancies (p<0.01, n=157). An independent validation in a phase 2 biomarker study 

revealed 86% sensitivity and 91% specificity for the detection of early HCC from controls at risk (i.e. 

cirrhosis or chronic liver disease, n=209) (positive predictive value (PPV): 89%, area under the ROC 

curve [AUC]: 0.87). The 3-smRC signature was independent of alpha-fetoprotein (p<0.0001) and a 

composite model yielded an increased AUC of 0.93 (sensitivity: 85%, specificity: 94%, PPV: 95%).  

Conclusion: An exRNA-based 3-smRC signature from plasma detects early stage HCC, which 

directly leads to the prospect of a minimally-invasive, blood-only, operator-independent surveillance 

biomarker. 

 

Keywords: next-generation sequencing, genomics, cancer surveillance, liver cancer 
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INTRODUCTION 

Extracellular vesicles (EVs), including microvesicles and exosomes, are nanoparticles whose 

nucleic acid payload is capable of priming receptor cells to modify key cellular functions1,2. EVs are 

heterogeneous, both in terms of biogenesis and content3. While larger EVs such as apoptotic bodies 

mostly contain fragmented DNA, smaller EVs such as exosomes are enriched in non-coding, regulatory 

small RNAs (small RNAs)2,4. In cancer, EVs are increasingly recognized as key players in tumor 

initiation and metastasis5, mainly through miRNA trafficking, prompting their evaluation as early 

detection and treatment response biomarkers6. Most studies characterizing extracellular RNA (exRNA) 

and studying EV-related biomarkers apply conventional, reference-based, RNA sequencing approaches, 

and are thus limited to known annotated genomic regions. However, small RNAs arise from thousands 

of endogenous genes and are part of the genomic ‘dark matter’ of highly abundant yet largely 

uncharacterized non-coding RNA, with emerging roles in regulating gene expression via post-

transcriptional and translational mechanisms. In fact, relatively little attention has been paid to 

characterizing the general expression landscape of circulating EV small RNA and their precursors in 

this context regardless of biotype, especially for those expressed from unannotated genomic regions.  

Here, we adopt a different approach by de novo assembly and characterization of the small 

RNA expression landscape of exRNA, specifically including unannotated genomic regions. We define 

discrete loci called small RNA Clusters (smRCs), delineate their key properties, and test their clinical 

utility as early detection biomarkers in patients with liver cancer. Projections estimate more than 1 

million deaths due to this cancer in 2030 worldwide7. With a 5-year survival of 18%, it is the second 

most lethal malignancy after pancreatic cancer. Survival in patients enrolled in early detection programs 

of hepatocellular carcinoma (HCC), the most common form of primary liver cancer, doubles that of 

those not enrolled in surveillance8. However, implementation of surveillance among patients at high 

risk of HCC in the United States is very low (20%)9 and the performance of recommended surveillance 

tools (i.e. ultrasound and serum alpha-fetoprotein (AFP)10) is suboptimal, with close to 40% of tumors 

being missed11. Using whole RNA sequencing of exRNA derived from EVs, we describe novel 

clinically-relevant smRCs in circulating EVs that can help detect HCC at an early tumor stage, which 

would allow patients to receive curative therapies.  
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RESULTS 

Our study is based on four independent cancer exRNA datasets: a prostate cancer cohort, which 

we termed the ‘smRC characterization’ cohort, to define and study the properties of smRCs in exRNA 

(9 patients, 41 samples), a ‘biomarker discovery’ cohort (n=15 patients) to identify differentially 

expressed smRCs between liver cancer patients and controls, an external dataset of patients with non-

HCC malignancies (n=142) to test the HCC-specificity of our biomarkers, and an independent 

‘biomarker validation’ cohort (n=209 patients) to confirm their clinical utility in a phase 2 biomarker 

study for detection of early stage HCC.  

 

Characterization of EV isolates 

In all cohorts we employed differential ultracentrifugation (UC) to isolate exRNA, and followed 

the recommendations of the International Society of Extracellular Vesicles12 for quality assessment of 

EV isolates. Specifically, we used transmission electron microscopy, nanoparticle tracking analysis, 

immuno-labeling with Western Blotting for intracellular (i.e., tumor susceptibility gene 101 protein, 

TSG101) and Exoview™ for transmembrane (i.e., tetraspanins CD9, CD63, CD81) vesicle proteins in 

a subset of samples (Fig. 1). This suggested an enrichment for small EVs (median size of 120 nm) with 

compatible morphology and expression of typical markers. Additionally, for the ‘smRC 

characterization’ cohort in prostate cancer, we isolated exRNA from a subset of patients (n=5) using 

the ‘lab-on-chip’ technology nanoDLD13 (DLD) for serum samples. We also isolated purely cellular 

small RNA (<300 nt) from prostate cancer and adjacent non-cancerous tissue of the same patients to 

quantify exRNA-isolation technology, biofluid, and exRNA-specific variance in small RNA profiles, 

respectively. Part of our prostate cancer dataset has been included in an exRNA-atlas based 

deconvolution analysis published earlier4. An independent analysis found that our UC and nanoDLD 

isolation methods specifically isolate low- (cargo type 1) and variable (cargo type 4) density vesicles 

with minimum contamination from lipoproteins and argonaute proteins4. For this study, we have further 

performed the same computational deconvolution analysis for our ‘biomarker discovery’ dataset to 

determine carrier types and found that cargo type 4 was preferentially enriched. In fact, cargo type 4 is 

associated with vesicles in the 60 - 150 nm size range, which were purified consistently with nanoDLD, 

and also the lowest-density OptiPrep fractions 1-3 from serum and plasma4. Cargo type enrichments 

associated with low density vesicles, lipoproteins, AGO2-positive ribonucleoproteins (RNPs), and 

AGO-2 negative RNPs were significantly depleted (Fig. 2).   

 

Identification and characterization of small RNA clusters from unannotated exRNA 

We used small RNA sequencing data from the ‘smRC characterization’ and ‘biomarker 

discovery’ cohorts to define clusters of contiguous genomic regions with sufficient alignment coverage 

(termed ‘small RNA clusters’, smRCs). This allowed us to capture the known heterogeneous genome-

wide expression of clusters of small RNA precursors14, each of which can give rise to multiple 
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functional small RNA products, by defining clusters of small RNA reads (see Fig. 3A). Adjacent smRCs 

are merged if they overlap within a minimal padding threshold, and we define the key properties of 

smRCs: a) entropy (i.e., read tiling efficiency or complexity), b) peak coverage, and c) consensus 

sequence of each smRC. The set of all smRCs, computed once for all samples, is essentially the paired 

set of all accumulation loci of small RNA expression and their peak-coverage consensus sequences 

(which range from 15 to 100 nucleotides in length), and constitutes a smoothed, de-novo assembled 

small RNA expression landscape with a standard count matrix. 

We delineated key genomic properties of smRCs in our ‘smRC characterization’ prostate 

cancer dataset due to the availability of different biological sample types (blood, urine, tumoral and 

non-tumoral adjacent tissue) and different isolation methods (ultracentrifugation and nanoDLD15,16). 

The mean genomic length of smRCs was 674 bp (Supplementary Fig. S1A), while the mean length of 

the consensus peak sequence was 20 bp. In order to profile the maximal coverage and overall 

distribution of expression within smRCs associated with exRNA, we defined two quantities. First, a 

‘peak’ coverage which is simply the ratio of reads in the smRC peak to total smRC coverage, and 

second, a tiling complexity measure which is the ratio of unique read nucleotide sequences to total 

smRC coverage. smRCs with high complexity are those with uniform tiling and few peaks (see Fig. 

3A). We found that the major contributor of smRC variable expression was RNA origin (with low 

complexity typical in exRNA- versus high complexity typical of cellular smRC origin, Supplementary 

Fig. S1C). Technical reproducibility of smRC quantification included comparing two different EV 

enrichment methods in serum (UC and nanoDLD), and different biofluid compartments (urine and 

serum) of the same patients. We found a high correlation between enrichment methods (spearman R² ~ 

0.74, p < 2.2e-16, Fig. 3B) with over 80% of smRCs detected by both methods above the 20th percentile 

of expression (Supplementary Fig. S2A). We found a modest correlation between different biofluid 

compartments (i.e. urine and plasma) using UC (spearman R² ~ 0.45, p < 1e-16, see Supplementary 

Fig. S2B+C for self-reproducibility). Well-expressed smRCs possessed a heteroscedastic count 

variance profile which facilitated usual differential expression analysis via linear modeling 

(Supplementary Fig. S1B). The total number and magnitude of overexpressed smRCs in cells was 

significantly higher than in exRNA (Fig. 3C). However, we observed a significant difference in the 

complexity of smRCs found in exRNA compared to cells (Fig. 3D). Indeed, the  bimodal pattern reveals 

a clear separation between cellular smRCs, which overwhelmingly have relatively high tiling 

complexity, and exRNA smRCs that have much stronger evidence for high relative peak coverages. 

The mean size of the peak within smRCs was slightly higher than the minimal trimmed read length, and 

was significantly different between exRNA-derived and cell-derived (16.5 bp versus 22.6 bp, p < 1 e-

16). exRNA-associated smRCs preferentially overlap unannotated small RNA species compared to 

cellular smRCs (Supplementary Fig. S3, Supplementary Table S1). Finally, we orthogonally 

validated the expression of three unannotated smRCs using RT-qPCR (Supplementary Fig. S2D). 

These data demonstrate that low-complexity, exRNA-associated smRCs preferentially capture non-
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coding small RNA compared to protein-coding RNA, but are also significantly enriched in unannotated 

genomic regions.     

 

Small RNA clusters from plasma detect curable primary liver cancer 

Given their high biological and technological independent reproducibility, tractable statistical 

properties, and unique ability to discriminate concentrations of exRNA-specific small RNA, we 

computed the smRC profile of our ‘HCC biomarker discovery’ cohort of 15 patients, including 10 

patients with HCC and 5 controls at risk for HCC matched for age, sex, and etiology of the underlying 

liver disease (Supplementary Table S2). We found that exRNA-derived smRCs were differentially 

expressed between HCC and controls. In fact, 250 smRCs were enough to distinguish them 

(Supplementary Fig. S4). This led us to hypothesize that smRCs could be useful tools for early HCC 

detection. We selected the three top differentially expressed and low-complexity smRCs (see 

Supplementary Methods) and orthogonally validated their differential expression in this ‘HCC 

biomarker discovery’ cohort using RT-qPCR. Pearson’s correlation coefficient was higher than 0.6 for 

all three smRCs when comparing data from small RNA sequencing and RT-qPCR (p<0.05, 

Supplementary Fig. S4B-D). The three smRCs were located in regions of chromosomes 3q, 8q (both 

unannotated intergenic region), and 10q (intronic region of SGPL1) (Supplementary Table S4). 

To determine the clinical relevance of smRCs in exRNA, we designed a phase 2 biomarker 

study following the recommendations from the Early Detection Research Network (EDRN) from the 

National Cancer Institute17. In detail, we aimed at assessing the role of our 3-smRC signature as a novel 

early detection biomarker in HCC. Recommended surveillance tools for early HCC detection 

(abdominal ultrasound and AFP)10 have low sensitivity (63%) and moderate specificity (83%)11. 

Improvement in this area is urgently needed by developing better read-outs of oncogenesis and 

facilitating implementation of surveillance through minimally-invasive, operator-independent tools. 

Unlike many studies in this setting18, we only enrolled patients with HCC at an early stage (Barcelona 

Clinic Liver Cancer classification7 (BCLC) stage 0 or A), who can be cured with either surgery or 

ablation7. Crucially, our control cohort is the target population for HCC surveillance as defined in 

clinical practice guidelines10,19. We included 209 patients (n=105 treatment-naive, early stage HCC, 

n=85 control patients with chronic liver disease (CLD) enrolled in HCC surveillance, and n=19 

individuals without chronic liver disease (non-CLD) (Table 1). Following EV enrichment from plasma 

and exRNA extraction, we confirmed significant overexpression of our 3-smRC signature in HCC 

patients compared to CLD controls with qRT-PCR (p<3e-5, Fig. 4A, see Fig. 5D for comparison with 

non-CLD patients). Additional analysis in a cohort of 142 patients with other malignancies further 

confirmed their HCC specificity (Fig. 5E). To leverage the collective power of all three smRCs to 

predict early HCC risk we built a logistic regression model to discriminate between early HCC patients 

and CLD controls (excluding patients without chronic liver disease). This allowed us to test if there is 

a well calibrated and predictive association between smRC expression and early HCC detection (Fig. 
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4D). We used penalized maximum likelihood techniques, bootstrap and cross-validation to estimate and 

control for model optimism20, RT-qPCR batch plate effects, and over-fitting of our 3-smRC early 

detection signature. The logistic regression model was well calibrated with a low mean absolute 

probability error (0.04) to predict early HCC (Fig. 4B), low Brier score (B = 0.15), high AUC (0.87), 

and high Gini mean difference in predicted log-odds between HCC and CLD patients (2.44) adjusted 

under bootstrap (n = 1,000) resampling (Fig. 4D). Predicted HCC risk via smRC expression can be 

visualized via a patient nomogram to provide an individual estimate of HCC risk (Fig. 5A). In order to 

estimate sensitivity and specificity measures at plausible decision points, we applied the logistic 

regression model to a 85/15 split of the biomarker validation set for training and testing respectively. 

Averaging over 1,000 iterations, we recovered 86% sensitivity and 91% specificity with a positive 

predictive value of 89% on average by maximizing the balanced accuracy of the test ROC curves 

(Supplementary Fig. S5 and Fig. 4C+D). The area under the ROC curve (AUC) for our 3-smRC 

model was 0.87. Finally, a likelihood ratio test between an AFP-only early HCC detection model and 

one incorporating both AFP and our 3-smRC early detection signature showed that our smRCs add 

significant predictive power to AFP alone (p<0.0001). As expected, AFP levels and expression of our 

3-smRC signatures were not correlated (Fig. 5B), which suggest that both capture complementary 

signals for early HCC detection. Indeed, a blood-based composite model of our 3-smRC signature and 

AFP yielded an increased AUC of 0.93, lower Brier score of 0.11, and better test performance (85% 

sensitivity, 94% specificity, positive predictive value of 95%, Fig. 3C+D). We also confirmed the EV 

origin of our smRC signal, as the expression of smRC-48615 was significantly higher using EV-

enriched isolates as opposed to EV-depleted plasma (n=30 patients, Fig. 5C). 
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DISCUSSION 

Our study provides a conceptually novel solution to a key barrier in the field of exRNA-derived 

cancer biomarkers. We strongly depart from previous exRNA characterization studies, which are 

restricted to quantifying expression of known (i.e. annotated) transcripts21. Thus, we do not discard the 

substantial component of unannotated exRNA, or simply focus on a particular RNA biotype (e.g. 

miRNA)22,23. Instead, we provide a novel, scalable, and data-driven view of the entire small exRNA 

landscape unfettered by incomplete and emerging prior knowledge. This approach allowed us to 

identify and validate novel circulating biomarkers for the detection of curable HCC.  

By de novo characterizing the unknown non-coding small exRNA landscape across EV 

isolation technologies, biofluid, and cancer type, we have defined the key properties of exRNA-

associated smRCs, including their clinical application in early cancer detection. We have used a 

comprehensive dataset from prostate cancer patients to establish an exRNA-specific smRC feature set 

from which we mine their key statistical properties and develop selection criteria. These properties 

indicate that the tractable smRC-based quantification of novel, unannotated, small RNA expression 

signatures is feasible across different EV isolation techniques applied to different biofluids, potentially 

offering a completely novel, data-driven strategy for increasing the sensitivity of EV-driven biomarker 

discovery. It is important to emphasize that multiple small functional noncoding RNA can arise from 

transcriptional post-processing of a single larger RNA precursor gene (e.g. endogenous siRNAs of 

plants24 and animals 25, miRNA hairpins yielding miRNA*26, and piRNAs27), so smRCs estimate the 

overlooked underlying expression profile of small RNA precursor genes and thereby facilitate accurate 

quantification, differential expression, and motif discovery of unknown, heterogeneous, small RNA 

dominated exRNA payloads. In this sense, smRCs might more accurately measure the information 

content of exRNA. Applying our approach to a separate HCC plasma-based exRNA dataset, we derive 

a 3-smRC (unannotated), HCC-specific signature to discriminate patients with incipient HCC from 

controls at high-risk of cancer. In line with recommendations of the International Society of 

Extracellular Vesicles12, a  thorough characterization of our isolates suggested a predominant 

enrichment for small EVs as the most likely origin of our smRC signal.  

Importantly, our exRNA-derived smRC signature was developed as a method for early HCC 

detection in the context of cancer surveillance and not as a HCC diagnostic tool. There is a subtle but 

very crucial difference between these two clinical scenarios which directly determined the patient 

population we deliberately selected for this study, as extensively outlined in clinical guidelines10,19. 

Briefly, these guidelines explicitly underscore the urgent clinical need for new tools to detect patients 

with early stage HCC, as they can be cured if diagnosed at this stage. Other malignant liver tumors (e.g. 

cholangiocarcinoma) and associated metastases rarely occur in patients with cirrhosis and are not the 

target of liver cancer surveillance programs7. Nevertheless, we have confirmed the HCC specificity of 

our 3 smRC signature in a dataset of 142 patients with other malignancies. We purposely chose to test 

our early detection biomarker candidates in the context of the hardest possible scenario of distinguishing 
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between chronic liver disease and very early, curable, HCC. Our signature is independently validated 

in more than 200 patients, where we demonstrate its ability to accurately detect patients with early stage 

HCC. We demonstrate that our 3-smRC signature not only outperforms the recommended surveillance 

tools (serum alpha-fetoprotein (AFP) combined with abdominal ultrasound)11, but is complementary to 

AFP and in combination further maximizes HCC detection rates. There are other approaches currently 

under evaluation for early HCC detection using other liquid biopsy analytes, mostly involving 

circulating DNA. Mutation28 and methylation18,29 studies have shown comparable performance to our 

3-smRC signature. The main difference with our study is that most of them included HCC patients at 

more advanced stages30 as opposed to our exclusively early-stage cohort. 

Despite not yet having a clear functional role in oncogenesis apart from suggestive enrichments 

in key RNA binding protein motifs (Supplementary Fig. 6), our findings strongly suggest that 

unannotated smRCs enable a robust, blood-based, minimally invasive, operator independent 

surveillance test for HCC, which is a major unmet clinical need in at-risk patients. While further 

validation in phase 3 biomarker studies will pave the way for its clinical implementation, this study 

highlights complex, heterogeneous, non-coding and unannotated small RNA payloads of EVs and their 

emergence as a powerful modality for biomarker discovery in cancer.  
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MATERIALS AND METHODS 

Patient enrollment 

For the prostate cancer dataset, de-identified data and biospecimens from human subjects 

consented under ongoing IRB approved protocols at the Icahn School of Medicine at Mount Sinai 

(GCO# 14-0318, 15-1135 and 10-1180) were collected from prostate cancer patients undergoing 

prostatectomy. Specifically, biospecimen included prostate cancer and adjacent prostate non-tumoral 

tissue from biopsy or prostatectomy, urine, and serum, where applicable. Each of these protocols 

involves the prospective collection of clinical data (e.g., demographics, baseline characteristics, 

treatments, and outcomes). Samples for the HCC ‘biomarker discovery’ and ‘biomarker validation’ 

cohorts were collected from consented patients enrolled in an IRB approved protocol to derive new 

HCC biomarkers from blood (HS-15-00540) or provided by the Tisch Cancer Institute Biorepository 

(HSM#10-00135) at the Icahn School of Medicine at Mount Sinai. For the phase 2 biomarker study, we 

included three patient populations: 1) HCC cases were limited to very early or early stage patients 

according to the BCLC classification7 (i.e., stages 0 or A). All HCC patients were treatment-naïve at 

the time of blood sampling, 2) Patients with liver cirrhosis or different forms of chronic liver disease 

(CLD) at risk for HCC as per clinical practice guidelines10,19, but without radiological evidence of HCC 

at the time of blood collection, 3) patients with benign liver nodules (e.g., hemangioma) without chronic 

liver disease. HCC diagnosis was made according to the criteria of the European Association for the 

Study of the Liver (EASL)19. Liver cirrhosis was diagnosed based on histology, or non-invasively 

through combined transient elastography, imaging or laboratory evidence of liver dysfunction and 

portal hypertension. Patients with concurrent malignancies were excluded. Small RNA sequencing data 

from patients with other (non-HCC) malignancies were downloaded from exRNA atlas (https://exrna-

atlas.org/, including n=100 colon cancer, n=6 pancreatic adenocarcinoma, and n=36 prostate cancer 

patients, respectively). 

 

Methods and data on Sample collection and separation of EVs from human plasma, serum, 

and urine, EV characterization, RNA extraction, small library preparation and next-generation 

sequencing, trimming, alignement, deconvolution analysis, smRC definition and properties, 

smRC overlap with known biotypes and prostate cancer motif sequences can be found in the 

supplementary material. 

 

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) 

We designed custom TaqMan® Small RNA Assays to target our candidate smRCs 

(ThermoFisher, Supplementary Table S4+S5) and purchased a catalog TaqMan® miRNA Assay 

against cel-miR-39-3p (ThermoFisher) to target the spike-in miRNA mimic which was used during the 

exRNA extraction. Three µl of extracted exRNA were used for reverse transcription (RT) to cDNA 

with the conventional TaqMan™ MicroRNA Reverse Transcription Kit (ThermoFisher) and target-
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specific RT primers, followed by quantitative real-time PCR according to the manufacturer’s protocol. 

For our 3-smRC signature, raw ct values of smRCs were corrected against ct values of the spike-in 

(∆Ct) and normalized to the average ∆Ct of all controls (∆∆Ct). Overall, the turnaround time from blood 

sampling to final test results can be achieved in less than 12 hours. 

 

Data Analysis 

Following the guidelines of the Early Detection Research Network by the National Cancer 

Institute31, we conducted a population-based case-control phase 2 biomarker study for early detection 

of HCC. Based on the largest meta-analysis on surveillance for HCC, sensitivity of the current gold-

standard for HCC surveillance (i.e., abdominal ultrasound and AFP) is 63% for early stage tumors11. 

We powered this study to detect an increase in sensitivity from 63% to 75% and specificity from 83% 

to 95%. Given an alpha of 0.05 and a power (1-ß) of 80%, the number of samples needed to detect this 

difference based on asymptotic normal distribution theory32 was 101 cases (early HCC) and 71 controls 

(patients at high risk of HCC, CLD). For descriptive statistics, continuous variables are reported as 

median and categorical variables as counts and percentages. We used the Fisher’s exact test and the 

Student’s t-test to compare differences between categorical and continuous variables, respectively. 

Pearson’s or Spearman’s correlation coefficients were computed for correlation of continuous variables 

as indicated. Boxplot center line shows median, box limits show upper and lower quartiles, whiskers 

show 1.5x interquartile range, and  points represent outliers. Error bars represent the 95% confidence 

intervals 

The analysis of the phase 2 biomarker study to test the performance of the 3-smRC signature 

for early detection of HCC was limited to early stage HCC (n=105) and controls at risk for HCC (CLD, 

n=85) to represent the optimal population of interest.17,19 We used penalized maximum likelihood 

techniques, bootstrap and cross-validation to estimate and control for model optimism, RT-qPCR batch 

plate effects,  and over-fitting, and also rigorously computed the positive and negative predictive power 

estimates of our 3-smRC early detection signature. We computed a number of indices of model 

performance, discrimination measures, and calibration measures under bootstrap resampling (n = 1000), 

as summarized in Fig. 4D, in order to demonstrate model performance and estimate generalization error 

by averaging performance across bootstrap resampling. In the first row, the key measure of 

discrimination Somers’ Dxy is the rank correlation between the observed and predicted response values, 

which in the case of logistic regression for a binary response reduces to simply Dxy = 2( c – ½ ), where 

c is Harrel’s c-statistic and equal to the AUC of the ROC for the early HCC vs. CLD prediction. In the 

case of the smRC model we immediately deduce that the bootstrap adjusted AUC is ½ + 3/8 = 7/8 = 

0.875. Modest adjusted modified R2 ~ 0.52 is observed, combined with bootstrap-adjusted slope and 

intercept indicating modest and acceptably low over-fitting. Relatively bootstrap-adjusted low Emax 

(the maximum error in predicted probabilities), modest Brier score (B), very low unreliability index 

(U), high discrimination (D), high quality (Q = D – U), also indicate a reasonably robust model. Also, 
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the bootstrap adjusted total Gini’s mean difference for based on the smRC model is a healthy 2.44, 

which robustly represents typical log-odds differences between early HCC and CLD patients predicted 

by the model. Converting this early HCC log-odds estimate to an early HCC probability prediction, we 

see that the typical predicted probability gap between early HCC and CLD patients is 38%.  Finally, we 

compute the partial mean gini-scores of the smRC model predictors and find that the smRCs themselves 

have by far the largest termwise log-odds compared to any technical variance covariates (e.g., batch). 

We note in passing that repeated cross-validation gave similar results for Dxy and adjusted Slope (Fig. 

4D, extended in Supplementary Table S5).  

We next repeated the penalized maximum likelihood estimation procedure using a model with 

both smRCs and AFP readings included, given that a log likelihood ratio test for an AFP term was 

highly significant (p < 1e-8). Computing the same indices of model performance across bootstrap 

resampling (n = 1000), we found dramatically better performance as shown in Fig. 4D, with bootstrap 

adjusted AUC ~ 0.93, lower overall error and evidence for overfitting, a much smaller Brier score of 

0.11, and a dramatic increase in the Gini indices such that a typical early-HCC – CLD predicted 

probability difference was 43% (Fig. 4D, extended in Supplementary Table S5).  

 

Finally, even though balanced accuracy is not a proper scoring rule, we estimated the 

maximized balanced accuracy landscape by subjecting the smRC logistic regression model for HCC 

risk to a cross-validation repeated 1000 times (i.e., a random 85% training, 15% testing split repeated 

1,000 times) and computing maximizing sensitivity and specificity on the test ROCs. We found strong 

evidence to suggest that sensitivity ~ 86% and specificity ~ 91% for smRC-only models, while for 

smRC + AFP models we found sensitivity ~ 85% and specificity ~ 94%. 

 

All statistical analyses were conducted on Rstudio (R version 3.5.0).  
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SUPPLEMENTARY MATERIALS 

Supplementary methods 

Supplementary Fig. S1. smRC properties of prostate cancer ‘smRC characterization cohort’.  

Supplementary Fig. S2. smRC correlation properties across different biofluids and technologies. 

Supplementary Fig. S3. Level of smRC overlap with annotated hg38 biotypes. 

Supplementary Fig. S4. smRC in ‘HCC biomarker discovery’ cohort. 

Supplementary Fig. S5. Sensitivity and specificity of smRC model. 

Supplementary Fig. S6. Motif containing smRC expression in prostate cancer ‘smRC characterization’ 

cohort across RNA origin.  

Supplementary Fig. S7. Complete image of Western Blotting analysis targeting TSG101. 

Supplementary Table S1.  

Supplementary Table S2. Clinical characteristics of the discovery cohort for HCC patients and controls. 

Supplementary Table S3. 

Supplementary Table S4. RT-qPCR assay sequences of 3-smRC signature and genomic location. 

Supplementary Table S5. RT-qPCR assay sequences for orthogonal smRC validation in prostate cancer 

dataset. 

Supplementary Table S6  
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MAIN FIGURE LEGENDS 

Figure 1. Summary and quality assessment of EV separation process for exRNA 

extractions from human plasma samples. (A) Schematic view of study flow diagram with different 

cohorts, and available specimen and separation analysis for each cohort. (B, C) Transmission electron 

microscopy image of prostate cancer serum isolate (B) and HCC plasma isolate (C). (D) Nanoparticle 

tracking analysis (Nanosight®) results in the plasma isolate of a control (left) and HCC (right) patient 

with corresponding size distribution and estimated particle concentration. (E) Western Blotting image 

of protein lysate from isolate against TSG101 (~55 kDa) in two control (left) and two HCC (right) 

patients. (F, G) Immunolabeling of the isolate with Exoview™. Isolates were captured by indicated 

antibodies (CD81, CD63, CD9, control IgG) on a chip and stained with CD9 (E) or CD81 (F) antibodies 

to visualize different EV subpopulations in one control and three HCC samples (#1.a and #1.b represent 

technical replicates from the same patient). 

 

Figure 2. Annotated exRNA expression in cargo profiles. (A) Estimated constituent cargo 

profiles (rows) are correlated using the exRNA expression in transformed transcript abundance values 

across the informative RNAs against the 6 cargo types (CTs, columns) previously identified4. CT4 is 

heavily enriched, i.e. ncRNA profiles 58-75 are heavily enriched. (B) Per-sample proportions of 

estimated constituent cargo profiles. Heatmap of the per-sample proportions (columns) for each 

estimated constituent cargo profile (rows) numbered 1 through k. 

 

Figure 3. Key properties of small RNA clusters (smRCs). (A) Minimum coverage and sub-

read length minimal spacing define smRCs. Read tiling complexity captures heterogeneity of smRC 

read distribution. (B) Correlation of smRC expression across different EV extraction methods (i.e., 

ultracentrifugation, UC, and nanoDLD). (C) Volcano plot for differential expression between smRC of 

cellular versus exRNA origin. (D) smRC complexity as a function of peak coverage colored by 

differential smRC expression between cellular and exRNA origin. smRCs enriched in exRNAs (purple) 

present with low complexity and higher peak coverage, whereas cellular smRCs (red) are more 

frequently of high complexity and lower peak coverage.  

 

Figure 4. Performance of 3-smRC signature in a phase 2 biomarker study. (A) Expression 

for each smRC between HCC patients and chronic liver disease controls (CLD) (center line, median; 

box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers). (B) 

Calibration curve for penalized smRC logistic regression model to predict early HCC, with mean error 

0.04. (C) ROC curve for maximized gain-of-certainty across repeated cross validation. Each point 

represents a pair of sensitivities and specificities that maximize gain-in-certainty (i.e. sensitivity + 

specificity) from a test validation ROC curve, whose AUC colors the point. The loess curves trace the 

best density fit of points across this space, with 95% confidence intervals shown in gray. (D) Bootstrap 
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validation parameters for smRC and smRC+AFP model. Dxy: Somers’ rank correlation between the 

observed HCC status and predicted HCC probabilities; Emax: maximum absolute calibration error on 

probability scale; B: Brier score; g: Gini’s mean difference of log-odds between HCC and CLD; gp: 

Gini’s mean difference in probability scale; AUC: Area Under the Receiver Operating Curve.  

 

Figure 5. smRC in ‘HCC biomarker validation’ cohort. (A) Nomogram for 3-smRC 

signature to predict early stage HCC. (B) AFP and smRC correlation plot. (C) Expression for each 

smRC between HCC patients, chronic liver disease controls (CLD), and patients without chronic liver 

disease (noCLD). (DC) Expression of smRC-48615 in EV-enriched isolates and EV-depleted plasma. 

Displayed are samples from HCC and CLD controls. Triangles indicate HCC samples with relatively 

high expression, rectangles indicate samples with lower expression. (D) Expression for each smRC 

between HCC patients (n=105), chronic liver disease controls (CLD, n=85), and patients without 

chronic liver disease (noCLD, n=19) (RT-PCR data). (E) Expression for each smRC between chronic 

liver disease controls (CLD, n=5), HCC patients (n=10), and patients with other non-HCC malignancies 

(n=142) (HCC ‘biomarker discovery’ cohort, RNAseq data).  
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MAIN TABLE 

Table 1. Clinical characteristics of early stage HCC patients and controls. 

 Early Stage HCC 
(n=105) 

CLD, risk for HCC 
(n=85) 

Healthy liver (n=19) 

Age (years) 65.5 62 52 

Sex (male) 82 (80%) 47 (55%) 6 (32%) 

Cirrhosis (Yes) 68 (67%) 61 (72%) 0 

Bilirubin (mg/dL) 0.7 1.0 0.6 

Albumin (g/dL) 3.7 3.9 3.7 

Platelets (count/mm3) 152.5 122.5 243 

Etiology       

  HCV 44 (43%) 22 (41%) n.a. 

  HBV 18 (18%) 15 (28%) n.a. 

  Alcohol 9 (9%) 12 (22%) n.a. 

  NASH 13 (13%) 2 (4%) n.a. 

  Other 18 (18%) 3 (6%) n.a. 

Tumor stage (BCLC)       

  Very Early (Stage 0) 22 (21%) n.a. n.a. 

  Early (Stage A) 83 (79%) n.a. n.a. 

Single nodule 92 (90%) n.a. n.a. 

Largest nodule (cm) 2.9 n.a. n.a. 

AFP (ng/mL*) 8.3 3.8 ** 

Continuous variables are displayed as median. *Upper limit of normal 9 ng/mL. **available data 
not representative of group (n=3). AFP, alpha fetoprotein, BCLC, Barcelona Clinic for Liver 
Cancer, HBV/HCV, chronic hepatitis B/C, NASH, non-alcoholic steatohepatitis, n.a., not 
applicable. 
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SUPPLEMENTARY FIGURE LEGENDS 

Supplementary Fig. S1. smRC properties of prostate cancer ‘smRC characterization 

cohort’. (A) Density plot of smRC length. (B) Mean-variance profile across all samples. (C) smRC 

axis of variation. The relative contribution of each axis of expression variation is displayed  across the 

training prostate cancer dataset in order of magnitude. RNA origin (i.e., EV-derived or cellular) 

contributed the most to the observed variance. (D) Principal component analysis (PCA). (E) Maximum 

value logFC among all significant smRCs as a function of the length of the smRC peak consensus 

sequence. (F) Mapping uniqueness of smRC as a function of the length. 

Supplementary Fig. S2. smRC correlation properties across different biofluids and 

technologies. (A) Percentage of smRC captured by both UC and nanoDLD EV isolation. (B) 

Correlation plot across prostate cancer samples. (C) Correlation plot for EV-derived smRC expression 

across different biofluids (i.e., serum versus urine) using UC. (D) Correlation of single smRC 

expression between RNAseq and RT-PCR in the prostate cancer cohort. 

Supplementary Fig. S3. Level of smRC overlap with annotated hg38 biotypes. (A) 

Distribution of percentage overlap of smRCs onto all known hg38 RNA biotypes. Low overlap (<<1) 

indicates smRC does not contain whole RNA bioptype, high or total overlap (~1) indicates RNA biotype 

contained within smRC. (B) Plot of given RNA biotype abundance percentage (among all RNA 

biotypes in hg38 annotation) versus smRC overlap percentage as above. Abundance percentage 

quantifies the frequency of a given RNA biotype among all others. (C) Same as (B), only with curves 

derived from a random genomic distribution matching number and size of smRCs.  

Supplementary Fig. S4. smRC in ‘HCC biomarker discovery’ cohort. (A) Principal 

component analysis (PCA) for HCC biomarker discovery cohort. (B-D) Correlation of 3-smRC-

signature expression between RNAseq and RT-PCR in the HCC discovery cohort. 

Supplementary Fig. S5. Sensitivity and specificity of smRC model. Balanced 

accuracy−maximizing sensitivity (A) and specificity (B), respectively, versus kernel 

density estimation of all [sens, spec] simulation pairs (with n = 30 moving average) for the smRC model 

to discriminate early stage HCC from controls at high risk.  

Supplementary Fig. S6. Motif containing smRC expression in prostate cancer ‘smRC 

characterization’ cohort across RNA origin. Expression profile of exRNA smRCs enriched in either 

of the motifs (A, YCCACC, B, KKGAAR) reveals over-expression in exRNA compared to cellular 

smRCs (true by definition) with a bimodal downregulated expression of motif-enriched cellular smRCs. 

Supplementary Fig. S7. Complete image of Western Blotting analysis targeting TSG101. 

The section included in the manuscript is highlighted in red.  
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SUPPLEMENTARY METHODS 

Sample collection and separation of EVs from human plasma, serum, and urine 

For the prostate cancer dataset, human serum was collected using BD Vacutainer blood 

collection tubes (i.e., serum separation tubes). First, whole blood was centrifuged at 2,000g for 30 

minutes at 4ºC followed by another centrifugation of the serum at 12,000g for 45 minutes at 4ºC to 

remove larger EVs (e.g. microvesicles and apoptotic bodies). The supernatant was carefully transferred 

to ultracentrifugation tubes (Beckman coulter, thick wall polypropylene tube, Cat. #355642) and 

ultracentrifuged for two rounds at 110,000g for 2 hours at 4ºC. The pellet was finally resuspend in 1 

mL PBS and stored at -80C for further analysis. EVs from human urine were collected with the above 

mentioned protocol.  

For the HCC ‘biomarker discovery’ and ‘biomarker validation’ dataset, peripheral venous 

blood was collected in EDTA containing vacutainer (BD Vacutainer), stored on ice, and processed 

within 4 hours of collection. On the day of collection, we performed two centrifugation steps to separate 

plasma from other blood components and minimize cellular debris from our final isolate. First, whole 

blood was centrifuged at 1,600g for 10 minutes at 4ºC followed by another centrifugation of the plasma 

at 16,000g for 10 minutes at 4ºC to remove larger EVs (e.g. microvesicles and apoptotic bodies). The 

supernatant was then stored at -80°C until the ultracentrifugation was performed. For this, samples were 

thawed on ice and 0.5 - 1 mL of plasma was diluted in ~25 mL PBS and centrifuged at 120,000g for 2 

hours at 4°C with a Type 50.2 Ti Fixed-Angle Titanium rotor (Beckman Coulter, k-factor = 69). Isolates 

were directly used for RNA extraction (see below) or resuspended in PBS and stored at -20°C until 

further analysis. 

 

EV characterization 

EV characterization procedures followed the recommendations by the International Society for 

Extracellular Vesicles (ISEV)12. After differential ultracentrifugation, the PBS-resuspended isolate was 

evaluated with transmission electron microscopy (TEM) in a Hitachi 7000 transmission electron 

microscope operating at 80 kV. Briefly, equal volumes of the isolate and 3% Glutaraldehyde were 

mixed and kept at room temperature for 1 hour. Two µl of osmium tetroxide was added to the mixture 

and incubated at room temperature for 1 hour. The solution was then transferred to formvar coated TEM 

grids and observed under the electron microscope. To estimate the size and concentration of the isolate, 

we conducted nanoparticle tracking analysis (NTA) on a NanoSight NS300 (Malvern Instruments Ltd, 

Malvern, UK) and analyzed the samples with the NTA 3.2 software (Malvern). For this, PBS-

resuspended isolates were diluted 1:50 in PBS.  

For immuno-labeling of the isolate, we performed Western Blotting for the intracellular marker 

TSG101 and Exoview™ analysis for colocalization of tetraspanins CD9, CD63, and CD81. For Western 

Blotting, we quantified protein concentration (Bradford assay, Biorad) and 20 µg of protein were 

separated by sodium dodecyl sulfate–polyacrylamide electrophoresis under reducing conditions and 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.04.29.066183doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.066183
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

transferred to PVDF membranes (Life Technologies). Unspecific binding sites were blocked with 5% 

nonfat dry milk and membranes were incubated with mouse monoclonal TSG101 antibody (ab83, 

Abcam) at 4°C overnight followed by goat anti-mouse secondary antibody (A0447, Agilent 

Technologies) for 1 hour at room temperature. Chemiluminescence was detected using the ECL™ Prime 

Western Blotting System (RPN2232, GE Healthcare). The uncropped Western Blot image for TSG101 

is displayed in Supplementary Fig. S7. Exoview™ experiments were carried out on an ExoView™ 

R100 imaging platform (NanoView Bioscience). With the Exoview™ Tetraspanin kit, 35 µl of PBS-

resuspended isolate was incubated overnight on a microarray chip which has been functionalized with 

antibodies against CD9, CD63, CD81, plus IgG negative control to detect EVs expressing these surface 

markers. After washing off unbound particles, chips were stained with fluorescence-conjugated 

antibodies against CD9 (Alexa 647) or CD81 (Alexa 555) to identify subpopulations based on maker 

profiles. Analysis was done with the NanoViewer 2.4.5 (NanoView Bioscience). 

 

RNA extraction, small library preparation and next-generation sequencing 

For the prostate cancer dataset, total RNA was extracted from the serum/urine bump fraction 

(nanoDLD, serum only), UC isolates, or bulk tissue using the Total Exosome and Protein Isolation Kit 

(Invitrogen 4478545) by following the protocol. For the HCC biomarker discovery and biomarker 

validation datasets, RNA was extracted from the UC isolate on the same day of ultracentrifugation using 

the miRNeasy Plasma/Serum kit (Qiagen) according to the manufacturer's recommendations including 

the spike-in C. elegans miR-39 miRNA mimic and stored at -80°C until further use. RNA quantitation 

and quality was assessed on a 2100 Bioanalyzer Instrument (Agilent) with the RNA 6000 Pico Kit 

(Agilent). Indexed Illumina Small RNA libraries were prepared with the SMARTer® smRNA-Seq Kit 

(Clontech Laboratories, Inc.) and sequenced on an Illumina HiSeq 4000 (prostate cancer dataset) or 

HiSeq2500 (liver cancer dataset) platform.  

 

Trimming 

The SMARTer™ smRNA-Seq kit yields reads are flanked on the 5’ end by a leading triad of 

three bases from SMARTer™ template switching activity, and on the 3’ end by the Illumina adapter 

and extra bases from the oligo dT (which are exactly 15 bp in length). We used Cutadapt33 to remove 

the first 3 nucleotides of all reads, specify the homopolymer adapter sequence AAAAAAAAAA to 

remove along with any sequence 3’ of it, and finally discard all reads that are smaller than 15 bp long 

after these filters are applied. The exact command used, as recommended by the (strand-sensitive) 

SMARTer™ smRNA-Seq kit,  is 

cutadapt -m 15 -u 3 -a AAAAAAAAAA input.fastq > output.fastq   

Therefore our set of initial small RNAs are at least 15 bp long, and are trimmed from positions 1-3 and 

also from the oligo dT 3’ through to the adapter. We note in passing that although template switching 
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at low frequencies can add more than 3 nucleotides to the 5’ end, we did not trim any further on the 5’ 

end.  

 

Deconvolution analysis  

EV carrier deconvolution analysis was performed as a post-processing step to the standard 

exceRpt pipeline40, which was applied to the entire HCC smRC discovery dataset (n=15). The output 

of exceRpt is collated (using mergePipelineRuns.R from https://github.com/rkitchen/exceRpt) to form 

summary data of count matrices for key annotated, noncoding RNA biotypes (piRNA, circRNA, 

miRNA, tRNA counts), aggregated QC data, adapter sequence data, and diagnostic plots. At this point 

we applied their deconvolution algorithm on the summarized data. Briefly, this consists of two key 

stages: In the first stage, constituent cargo profiles are estimated using a modified version of a 

methylation deconvolution technique in Onuchic et al.41. Next, deconvolution is performed using the 

Read Counts or RPM sample profiles from the exRNA Atlas and the per-sample proportion enrichments 

of each profile are estimated.  

 

 

smRC overlap with known RNA biotypes 

We next investigated if well-expressed exRNA and cellular smRCs preferentially capture 

(enclose) any key known RNA biotypes, as we would expect with both exRNA and cellular smRCs for 

miRNA for example, and to what extent they do so across all key biotypes. Indeed, for a specific RNA 

biotype we first computed the smRC capture percentage (i.e., whether or not the smRC completely or 

only partially enclosed the RNA biotype). Then, for a particular smRC capture percentage, we asked 

how frequent a particular RNA biotype was among all biotypes. Supplementary Fig. S3A shows the 

relative breakdown of RNA biotypes at several extremal points of the smRC capture percentage (1%, 

70%, 100%), where plainly miRNA, snoRNA, snRNA, and other small RNA are preferentially 

completely captured (i.e., they are the dominant RNA biotypes with capture overlap ~ 1) by smRCs 

compared to mRNA, which are dominantly grazed (i.e., protein coding biotype is dominant for capture 

overlap << 1). In other words,  as expected, when a smRC completely or mostly encloses a known RNA 

biotype, it is mostly likely a small RNA and very unlikely a protein-coding RNA. Indeed, plotting the 

RNA biotype frequency across all exRNA and cellular smRC capture overlap percentages separately 

for mRNA, lincRNA, miRNA, and snoRNA, yields Supplementary Fig. S3B. We find that exRNA 

smRCs dominantly partially capture (graze) mRNA at most to about 25% of the mRNA transcript, and 

never capture more, while cellular smRCs tend to overlap more protein-coding mRNA and can actually 

completely enclose mRNA. Similarly, using Supplementary Fig. S3B, one can conclude miRNA are 

preferentially completely enclosed by both exRNAEV and cellular smRCs at the same rate, at most 

50% of a lncRNA is captured by an exRNA smRC, and snoRNAs are preferentially completely enclosed 
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by cellular smRCs compared to exRNA smRCs. Taken together, when smRCs do enclose known RNA 

biotypes they can either do so predominantly partially (as with mRNA and lncRNA) or predominantly 

completely (as with miRNA, snoRNA, and other small RNA), with key differences in the statistics 

observed between exRNA and cellular smRCs. Finally, one can ask if these overlap properties are 

principally driven by the number and relative size distributions of exRNA and cellular smRCs (as 

opposed to a genuine property of small RNA accumulation in exRNA and cells). Randomly generating 

genomic regions with the same number of regions, and exRNA and cellular smRC size distributions 

(masking for repeat regions and centromeres), we repeat the above overlap computations and use a 

Kolmogorov-Smirnov test to assess if the underlying distributions of overlaps and capture percentages 

are the same within sampling noise. It turns out that all pairwise (x = smRC, y = random) Kolmogorov-

Smirnov tests with two sided alternative hypotheses are highly significant, especially for lncRNAs, 

indicating that the exRNA and RNA biotype specific overlap patterns are not solely attributable to the 

size distributions (or number) of smRCs. As Supplementary Table S1 illustrate for the two separate 

one-sided KS tests, interesting trends emerge: for mRNA, both exRNA and cellular smRCs tend to 

overlap more exons than expected by random simulation; for lncRNA, exRNA smRCs overlap than 

expected more while cellular smRCs overlap much less; for miRNA, both exRNA and cellular smRCs 

overlap far more than expected by chance; for snoRNA, cellular smRCs overlap far more than expected 

while exRNA smRCs have slightly more evidence for relative depletion.  

In summary, exRNA smRCs overlap known RNA biotypes in a non-random fashion, and when 

they completely or almost completely enclose a biotype it is overwhelmingly likely to be a known small 

RNA biotype, as opposed to similar but distinct trends for cellular smRCs. To aid in interpretation and 

comparison, Supplementary Fig. S3C also includes the simulated fractional overlap curves. However, 

as Supplementary Fig. S3A demonstrates a significant fraction of exRNA smRCs are well-expressed 

from unannotated genomic regions. 

 

Prostate smRC consensus sequence motifs 

 In the absence of functional data, we speculate that like other small RNA, exRNA small RNA 

payloads are in complex with RNA binding proteins (RBPs), or may bear vestigial evidence of exRNA 

related packing by RBPs. Using MEME44, we investigated if the exRNA smRC peak consensus 

sequences had any evidence of being enriched in ungapped motif sequences that in turn had homology 

to known RBP motifs. Parsimoniously, we assumed that each peak sequence contains at most one 

occurrence of a motif, but likely none. We also assumed that if nucleotide frequency biases exist there 

would be only single-nucleotide biases (as opposed to dimer biases such as GC content, or even higher 

order biases), and only searched for motifs between 3 and 6 nucleotides long, rejecting all those that 

had a sufficiently high E-value (probability of being found randomly). This amounts to running an 

instance of a zeroth order Hidden Markov Model in the zoops (zero or one per sequence) setting of 
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MEME on a fasta file of exRNA-specific smRCs, which we took to be those with positive logFC in the 

null H0 and FDR < 0.001: 

meme exRNA_smRC_peaks.fasta -brief 100000 -rna -oc exRNA_smRC_output -nostatus -evt .001 -mod 
zoops -nmotifs 10 -minw 3 maxw 6 -objfun classic -markov_order 0 1> stdout 2> stderr    

The final results of the MEME computation are summarized here. Briefly, two 6 nucleotide 

motifs were found significantly over-enriched in two distinct groups of exRNA smRC peak consensus 

sequences, each representing approximately 11% of the total number of exRNA smRC peak consensus 

sequences interrogated. The motifs YCCACC (617 smRC peaks, RBP binding prediction: PCBP1, 

G3BP1, HNPRL, YBX1, ELAV1, E-value ~ 1e-46) and  KKGAAR (626 smRC peaks, RBP binding 

prediction: ESRP2, HNRPRF, HNRPH1-3, SRSF1, E-value ~ 1e-8) were submitted for RBP motif 

homology assessment using ATtRACT45 (https://attract.cnic.es/searchmotif) and RBPDB46 

(http://rbpdb.ccbr.utoronto.ca/).  

Examining the expression profile of exRNA smRCs enriched in either of these motifs across 

the prostate cancer ‘smRC characterization’ cohort reveals over-expression in exRNA compared to 

cellular smRCs (true by definition), for example in Supplementary Fig. S6, but interesting sub-patterns 

emerge. These include a bimodal downregulated expression of motif-enriched cellular smRCs, 

suggesting an enriched subset that might imply a role in exRNA packing within cells, and an overall 

upregulation in nanoDLD isolation compared to UC within serum (and also overall compared to urine 

UC). 
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Supplementary Table S1. 

RNA biotype  Biofluid statistic P-value Alternative hypothesis 

mRNA cell 0.527 0 CDF x above CDF y 

mRNA exRNA 0.106 1.32e-05 CDF x above CDF y 

lincRNA cell 0.00 1 CDF x above CDF y 

lincRNA exRNA 0.250 0 CDF x above CDF y 

miRNA cell 0.913 0 CDF x above CDF y 

miRNA exRNA 0.393 0 CDF x above CDF y 

snoRNA cell 1.000 0 CDF x above CDF y 

snoRNA exRNA 0.158 0 CDF x above CDF y 

mRNA cell 0.008 1 CDF x below CDF y 

mRNA exRNA 0.068 .0098135 CDF x below CDF y 

lincRNA cell 0.689 0 CDF x below CDF y 

lincRNA exRNA 0.058 0.03455966 CDF x below CDF y 

miRNA cell 0 1 CDF x below CDF y 

miRNA exRNA 0.068 0.0098135 CDF x below CDF y 

snoRNA cell 0 1 CDF x below CDF y 

snoRNA exRNA 0.245 0 CDF x below CDF y 
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Supplementary Table S2. Clinical characteristics of discovery cohort for HCC patients and 
controls. 

 Early Stage HCC 
(n=10) 

CLD, risk for HCC 
(n=5) 

P-Value 

Age (Years) 67 63 0.94 
Sex (Male) 7 (70%) 3 (60%) 1 
Cirrhosis (Yes) 8 (80%) 4 (80%) 1 
Etiology    
  HCV 4 (40%) 2 (40%) 1 
  HBV 3 (30%) 1 (20%) 1 
  NASH 3 (30%) 2 (20%) 1 
Tumor stage (BCLC)    
  Early Stage (Stage A) 6 (60%) n.a. n.a. 
  Intermediate Stage (BCLC B) 2 (20%) n.a. n.a. 
  Advanced Stage (BCLC C) 2 (20%) n.a. n.a. 
Largest nodule (cm) 3.5 n.a. n.a. 
AFP (ng/mL*) 20.6 4.6 0.46 
Continuous variables are displayed as median. *Upper limit of normal 9ng/mL. AFP, alpha 
fetoprotein, BCLC, Barcelona Clinic for Liver Cancer, HBV/HCV, chronic hepatitis B/C, 
NASH, non-alcoholic steatohepatitis  
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Supplementary Table S3 

Read mapping status PrCA smRC 

characterization cohort 

(reads) 

HCC smRC biomarker 

discovery cohort (reads) 

Total (post cutadapt) 494 828 430 409 592 240 

Unmapped 213 988 996 (43.2%) 138 477 962 (33.8%) 

Unmapped because m > 50 10 370 278 (2.1%) 11 205 827 (2.7%) 

Unmapped because guidance failed 38 714 298 (7.8%) 7 066 592 (1.7%) 

Uniquely mapped (U) 86 369 038 (17.5%) 203 895 810 (49.8%) 

Multiply mapped (m < 3, R) 2 136 572 (0.4%) 2 072 756 (0.4%) 

Multiply mapped with u-rescue (P) 143 249 248 (28.9%) 46 873 293 (11.4%) 

Primary alignments (U + R + P) 229 618 286 (46.4%) 250 769 103 (61.2%) 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.04.29.066183doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.066183
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
Supplementary Table S5. RT-qPCR assay sequences for orthogonal smRC validation in prostate cancer dataset 
smRC Genomic location 

(hg38) 

Target sequence for RT-qPCR assay 

prostate_1 chr8:21329709-

21329879 

CUAGGCCAGUGGUCUUUAUGU 

prostate_2 chr2:148881489-

148881928 

AUAGGUUUGGUCCUAGCCUUUCUAUUAGCUCUUAGUAAGAUUACACAUGCAAGCAUC

CCCAUUCCAGUGAGUUCACCCUCUAAAUCACC 

prostate_3 chr2:222918489-

222918711 

GGGGGAAGGAGGAGAAAAUUCACAUGUAAACUUGUUC 
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Supplementary Table S6         
 Bootstrap Validation of Penalized AFP + smRC model Bootstrap Validation of Penalized AFP + smRC model 
Index Origina

l 
Sample 

Trainin
g 
Sample 

Test 
Sampl
e 

Optimis
m 

Correcte
d Index 

n Origina
l 
Sample 

Trainin
g 
Sample 

Test Optimism 
Index 

Correcte
d 

n 

Dxy 0.810 0.850 0.780 0.060 0.750 1000 0.910 0.930 0.880 0.050 0.860 1000 
R2 0.590 0.630 0.570 0.060 0.530 1000 0.740 0.770 0.720 0.050 0.680 1000 
Intercep
t 

0.000 0.000 0.010 −0.01 0.010 1000 0.000 0.000 −0.02 0.020 −0.02 1000 

Slope 1.000 1.000 0.910 0.090 0.910 1000 1.000 1.000 0.920 0.080 0.920 1000 
Emax 0.000 0.000 0.020 0.020 0.020 1000 0.000 0.000 0.020 0.020 0.020 1000 
D 0.600 0.630 0.550 0.080 0.520 1000 0.830 0.850 0.760 0.090 0.740 1000 
U −0.01 −0.01 0.000 −0.01 0.000 1000 −0.01 −0.01 0.000 −0.02 0.000 1000 
Q 0.610 0.640 0.540 0.100 0.510 1000 0.840 0.860 0.760 0.110 0.730 1000 
B 0.130 0.110 0.140 −0.02 0.150 1000 0.080 0.070 0.100 −0.03 0.110 1000 
g 2.760 3.100 2.780 0.320 2.440 1000 4.910 5.480 4.990 0.500 4.420 1000 
gp 0.390 0.400 0.390 0.010 0.380 1000 0.440 0.440 0.440 0.000 0.430 1000 
AUC 0.910 0.920 0.891 0.030 0.874 1000 0.955 0.967 0.942 0.024 0.930 1000 
Dxy: Somers’ rank correlation between the observed HCC status and predicted HCC probabilities; Emax: maximum absolute calibration 
error on probability scale; B: Brier score; U: unreliability index; D: discrimination; Q: quality (Q = D – U); g: Gini’s mean difference of 
log-odds between HCC and CLD; gp: Gini's mean difference in probability scale; AUC; Area Under the Receiver Operating Curve 
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