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ABSTRACT

There is an increasing trend in using inertial measurement units (IMUs) to estimate movement
quality and quantity, and infer the nature of motor behavior. The current literature contains several
attempts to estimate movement smoothness using data from IMUs, most of which assume that
the translational and rotational kinematics measured by IMUs can be directly used with existing
smoothness measures - spectral arc length (SPARC) and log dimensionless jerk (LDLJ-V). However,
there has been no investigation of the validity of these approaches. In this paper, we systematically
evaluate the appropriateness of the using these measures on the kinematics measured by an IMU. We
show that: (a) current measures (SPARC and LDLJ-V) are inappropriate for translational movements;
and (b) SPARC and LDLJ-V can be used rotational kinematics measured by an IMU. For discrete
translational movements, we propose a modified version of the LDLJ-V measure, which can be
applied to acceleration data (LDLJ-A), while roughly maintaining the properties of the original
measure. However, accuracy of LDLJ-A depends on the IMU orientation estimation error. We
evaluate the performance of these measures using simulated and experimental data. We then provide
recommendations for how to appropriately apply these measures in practice, and the various factors
to be aware of when performing smoothness analysis using IMU data.

Keywords movement smoothness · inertial measurement units · movement kinematics · assessment · jerk · SPARC
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1 Introduction

Inertial Measurement Units (IMUs) are becoming ubiquitous in everyday objects we carry, e.g. smartphones, smart
watches, smart clothing, etc. This, along with the fact that IMUs are now relatively inexpensive, has sparked their
use for movement analysis in different disciplines, such as movement neuroscience (Shull et al., 2014; Picerno, 2017;
O’Reilly et al., 2018), movement biomechanics and sports science (Salmond et al., 2017; Li et al., 2016; Johnston et al.,
2019), and neurorehabilitation (Brognara et al., 2019; Dobkin, 2013; Hubble et al., 2015; Parker et al., 2020; Vienne
et al., 2017; Wang et al., 2017).

Quantitative measures of movement smoothness are of great interest as they allow us to evaluate the evolution of motor
skill learning or recovery (Trehan et al., 2015; Moghaddas et al., 2019; Toosizadeh et al., 2015). While there have
been attempts to formally define movement smoothness (Hogan and Sternad, 2007, 2009; Balasubramanian et al., 2012,
2015), there is still no consensus on the most appropriate measure to use in different tasks or with different measurement
technologies. This has led to the adoption of a diverse set of smoothness measures, which can often lead to contradicting
results on the same data, leading to inconsistent and potentially incorrect interpretations (Fig. 1).

To ensure appropriate quantification and interpretation, valid, consistent, and reliable measures of movement smoothness
should be used. Examples of such measures are the SPARC (spectral arc length) and LDLJ (log dimensionless jerk)
applied to the movement’s velocity (Balasubramanian et al., 2012, 2015). Since their proposal, these measures have
been used in multiple studies using data from different motion sensing technologies (e.g., (Gulde and Hermsdörfer,
2018; Colombo et al., 2017; Rihar et al., 2014; Abdi et al., 2016)). In many cases, especially when movement velocity
is not directly available, the SPARC or LDLJ have been loosely adapted to other kinematic variables, e.g., acceleration
from IMUs. Possible adaptations of these measures for different signals were tentatively proposed in Balasubramanian
et al. (2015); however, they were not supported by any mathematical arguments or empirical data. Thus, the properties
of these smoothness measure adaptations for different signals are unknown. Further, it is likely that the smoothness
values derived from different variables (e.g., velocity or acceleration) are not directly comparable and may even lead to
different interpretations (e.g., Fig. 1).

In this paper, we present a systematic investigation of the use of SPARC and LDLJ to evaluate movement smoothness
using IMU data – linear acceleration from the accelerometer and angular velocity from the gyroscope. We show that
the SPARC cannot be used with IMU (accelerometer) data to estimate smoothness of translational movements, and
propose a modification to the LDLJ measure for this purpose, while maintaining the measure’s properties. For rotational
movements, we show that the SPARC can be used without any changes with gyroscope data, while LDLJ is prone to
errors. Using simulated and experimental data, we show conditions under which movement smoothness analysis can
be carried out on both translational and rotational movements using an IMU. We strongly believe that the methods
proposed in this paper are critical to (a) standardize analysis methods used in similar contexts (e.g. movement type,
measurement technology, etc.); (b) avoid biased or inappropriate selection of smoothness measures; and (c) facilitate
interpretation and direct comparison of results between studies.

2 Movement smoothness from IMUs: preliminaries

In this section, we present two main problems associated with the use of IMUs to analyse movement smoothness:

1. the construct of movement smoothness: why velocity cannot simply be replaced by acceleration in the existing
smoothness “formulae”;

2. the kinematics measured by IMUs: transforming IMU measurements from local to world reference frames are
prone to errors.
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Figure 1: Different measures of smoothness can lead to vastly different conclusions. In this example, three jerk-based
smoothness measures (middle) were applied to arm movements performed by a post-stroke subject in multiple directions
(left), over 30 training sessions (right). The trends suggest three conflicting outcomes: Jerk (RMS) shows reduction in
movement smoothness, indicating that the training was detrimental; Jerk (Mean abs.) indicates that the training had
no effect; and Jerk (LDLJ) indicates that the training was beneficial. Data from (Balasubramanian et al., 2012) with
permission.

2.1 The construct of movement smoothness

Intuitively, smoothness is an intrinsic property of a movement, and should not depend on the variables used to represent
that movement. That is, the smoothness value obtained from two different representations of a movement M (e.g., its
velocity v (t) or acceleration a (t)) should quantify the same underlying construct of movement smoothness. Thus,
given that existing smoothness measures are defined from velocity (see equations below), if a movement’s velocity
were not directly accessible–such as in the case of an IMU–a makeshift solution could be to simply replace the velocity
terms with acceleration to compute movement smoothness.

Although this approach is simple and appealing–and used in several research papers (e.g., (Dixon et al., 2018; Beck et al.,
2018)), it is semantically incorrect as a measure of the smoothness of the movement represented by the acceleration
signal. Almost all smoothness measures have been defined using velocity as the starting point; this is probably
because velocity provides a good representation of movement intermittency, and thus acts as a reasonable reference for
developing smoothness measures. The SPARC was developed using submovements as a putative model of movement
generation, resulting in the definition in Eq. 1 that quantifies the dispersion of submovements in time. On the other
hand, the LDJL uses the minimum jerk model of movement planning, which results in the definition in Eq. 2.

SPARC:

λvS (v) , −
∫ ωc

0

( 1

ωc

)2

+

(
dV̂ (ω)

dω

)2
 1

2

dω;

V̂ (ω) =
V (ω)

V (0)
; V (ω) = |F (‖v (t)‖2) |

(1)
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LDLJ (based on velocity; LDLJ-V):

λvL (v) , − ln

(
(t2 − t1)3

v2peak

∫ t2

t1

∥∥∥∥ d2dt2v (t)

∥∥∥∥2
2

dt

)
;

vpeak , max
t∈[t1,t2]

‖v (t)‖2

(2)

where v (t) represents the velocity (linear or angular) of a movement in the time domain, V (ω) is the magnitude of the
Fourier transform F (·) of the movement speed, ωc is an adaptive cut-off frequency (see (Balasubramanian et al., 2015)
for details), and t1 and t2 the start and stop times of the movement. It should be noted that we will refer to the LDLJ
measure in Eq. 2 as LDLJ-V in the rest of the manuscript, to distinguish it from the LDLJ-A measure introduced later
(Eq. 15).

From a movement analysis perspective, SPARC and LDLJ-V intrinsically perform a shape analysis operation, assigning
values to the shape of a movement’s velocity profile. Properties that are characteristic of these two measures, such as
monotonic responses to the number of submovements and inter-submovement intervals, may not remain when replacing
velocity of a movement with its acceleration in the definitions above. Indeed, we show in Appendix B that directly
replacing velocity by acceleration in Eq. 1 and Eq. 2 results in undesirable properties that fog the interpretation of the
smoothness values.

Thus, it is crucial to be aware of the type of signal (position, velocity, acceleration, etc.) available for smoothness
analysis and ensure that it is consistent with the definition of movement smoothness adopted in each application. To
ensure a consistent approach, SPARC and LDJL-V should be computed only from movement velocity. When velocity
is not directly available, as in the case of IMU data from translational movements, the following sections provide
recommendations.

2.2 The kinematics measured by a single IMU

To better understand the problems associated with the use of a single IMU data for the analysis of movement smoothness,
consider an IMU undergoing translational and rotational movements (Fig. 2). An IMU typically includes a 3-axis
accelerometer, which measures its linear acceleration Sa (t), and a 3-axis gyroscope, which measures its angular
velocity Sw (t). Both measurements are with respect to O (an inertial reference frame) expressed in the IMU’s local
(sensor) reference frame S:

Sa (t) = S
OR (t) ·

(OẍOS (t) +
Og
)
= S ẍOS (t) +

Sg (3)

Sw (t) = S
OR (t) · OωOS (t) = SωOS (t) , (4)

where Og is the gravity vector, and SOR (t) is the rotation matrix representing O in S. For simplicity, we will drop the
notation indicating the dependence on time t for the different variables (e.g. Sa (t) will be written as Sa). In the analysis
presented here, we do not consider the contributions of measurement noise, as our primary goal is to understand the
effect of the physics of IMUs on smoothness analysis. Some work on the effect of noise on smoothness analysis has
been presented in our earlier work (Balasubramanian et al., 2012, 2015).

In human movement analysis, we are typically interested in translational and rotational motions of a single or a chain of
body segments relative to a body coordinate frame B, while measurements are often made with respect to an earth-fixed
coordinate system O (assumed to be an inertial reference frame). Consider the scenario depicted in Fig. 2, where
we are interested in the translational and rotational movements of the wrist S, with respect to the shoulder reference
frame B: BẋBS and BωBS , respectively. It should be noted that B is physically attached to S through a set of rigid
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IMUs

MoCap markers

(a) (b)

Figure 2: (a) Different coordinate frames of interest in movement analysis: inertial or earth-fixed O, body B, and sensor
S reference frames. (b) Different technologies used to capture the kinematics of S: motion capture using reflective
markers (MoCap) or Inertial Motion Units (IMUs). This setup was used to collect the data presented in section 4.2.

bodies interconnected through joints, and thus any translational or rotational movement of B will be transmitted to S , as
detailed below.

Translational motion. In the example in Fig. 2, the accelerometer signal Sa is composed of (derivation in Appendix
A):

1. linear acceleration due to gravity (Sg);

2. linear acceleration of S w.r.t. B (S ẍBS);

3. linear acceleration of B w.r.t O (S ẍOB);

4. Coriolis acceleration of S due to rotation of frame B
(
2 SOR · OB Ṙ · BẋBS

)
; and

5. linear acceleration of S due to angular acceleration of frame B
(
S
OR · OB R̈ · BxBS

)
.

Thus, in general, Sa cannot be directly used to analyze movements of S with respect to B without knowledge of the
translational and rotational kinematics of B with respect to O.

Rotational motion. The angular velocity of S with respect to B is given by:

BωBS =
B
OR ·

(OωOS − OωOB) . (5)

Combining Eqs. (5) and (4), we can obtain BωBS from the IMU’s gyroscope signal Sw

BωBS =
B
OR · OSR · Sw − BωOB. (6)

Thus, similar to the translational case, when B is not fixed, and one needs to isolate the kinematics of a specific body
part, the kinematics of the reference frame B must be accounted for.

The special case where the body reference frame is fixed. In many experimental setups in movement neuroscience
and neurorehabilitation, B is fixed with respect to O (e.g., trunk movements are restricted). This ensures that the
position and differential movement kinematics of the body parts of interest S with respect to B are related to the
kinematics with respect to O through fixed affine and linear transformations, respectively. If B is fixed with respect to
O (i.e. SxOB and OBR are constant), Sa reduces to

Sa = S
BR · BẍBS + Sg (7)

=⇒ BẋBS =

∫ t

t1

B
SR ·

(Sa− Sg) dt+ C = B
OR · OẋOS. (8)

We will only discuss discrete movements in our analysis, i.e. movements that are bookended by postures where all
derivatives of position are zero, which implies that C = 0.
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Then, the movement smoothness of the translational motion of S, when B is fixed, is

λv
(BẋBS

)
= λv

(B
OR · OẋOS

)
= λv

(OẋOS

)
(9)

for both SPARC and LDLJ-V, since BOR is fixed with respect to time.

For rotations, similar to the translational motion case, if B is fixed, i.e., BωOB = 0, then,

BωBS =
B
SR · Sw = B

OR · OωOS . (10)

Assuming that the smoothness of rotational movements can be analyzed in the same way as translational movements,
Eq. (10) allows us to estimate movement smoothness, when B is fixed, as

λv
(BωBS) = λv

(B
OR · OωOS

)
= λv

(OωOS) . (11)

3 Movement smoothness from IMUs: challenges

The most straightforward approach to estimate movement smoothness from IMU data would be to reconstruct transla-
tional and angular velocities with respect to O, i.e. O ˆ̇xOS and Oω̂OS , from the IMU measurements (Fig. 3; Eqs. (3) and
(4)). Then, the smoothness could be computed using SPARC or LDLJ-V from these reconstructed kinematic variables
as expressed in Eqs. (9) and (11). However, in practice, errors in attitude reconstruction of S with respect to O

(
O
S R̂
)

can result in severe errors in movement smoothness computed by SPARC and LDLJ-V. In the following, we analyze
these issues for translational and rotational movements, their effects on the SPARC and LDLJ-V measures, and propose
alternative ways to compute movement smoothness from IMU data. We will only consider discrete movements in our
analysis, i.e. movements that start and end with a static posture (Hogan and Sternad, 2007). For such movements, the
velocity is zero at the start and end of the movement

OẋOS (t1) =
OẋOS (t2) = 0 =⇒

∫ t2

t1

OẍOS (t) dt = 0. (12)

3.1 Translational motion

To analyze the effects of kinematic reconstruction errors, the estimated linear acceleration from IMU data can be
expressed as:

O ˆ̈xOS = O
S R̂ · Sa− Og

= O
S R̂ · SOR ·

(OẍOS + Og
)
− Og

= δR · OẍOS + (δR− I) · Og
= OẍOS + (δR− I) ·

(OẍOS + Og
)

= OẍOS + δa,

(13)

Attitude
Estimation

Linear Accl.
Estimation

Angular Vel.
Estimation ∫Sw

Sa O
SR̂

O ˆ̈xOS

O ˆ̇xOS

Oω̂OS

Figure 3: Reconstruction of kinematic variables of interest for estimating smoothness from IMU data.
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O ˆ̇xOS =

∫ t

t1

O ˆ̈xOS dt =
OẋOS +

∫ t

t1

δa dt

= OẋOS + δv,

(14)

where δR = O
S R̂ · SOR is the error in orientation reconstruction, and δa, δv are the linear acceleration and velocity

reconstruction errors, respectively.

Thus, in the case of translational motion, using the SPARC (λvS) or LDLJ-V (λvL) is problematic because of drift in
O ˆ̇xOS caused by integration of δa and noise in the sensor data (which is not considered in these equations). In movement
analysis, the magnitude of gravity Og is much larger than linear accelerations of typical human arm movements, which
can result in significant drift in O ˆ̇xOS due to reconstruction errors; this problem is exacerbated in the case of slow,
long-duration movements.

Proposed solution: LDLJ-A for acceleration data

As previously mentioned, applying SPARC or LDLJ-V to acceleration signals is semantically incorrect to obtain the
smoothness of the movement represented by these acceleration signals. It is not clear how one would modify SPARC
to work with acceleration data, given that there is no simple relationship between the magnitudes of velocity and
acceleration. However, we can obtain jerk from acceleration, and choose an appropriate scaling factor to allow this
measure to work directly with acceleration data, which results in the following new measure (LDLJ-A) applied to
acceleration (see Appendix B for details about its properties).

LDLJ (based on acceleration; LDLJ-A):

λaL
(OẍOS

)
, − ln

(
t2 − t1
a2peak

∫ t2

t1

∥∥O...
xOS (t)

∥∥2
2
dt

)
;

apeak , max
t∈[t1,t2]

∥∥OẍOS (t)− OẍOS

∥∥
2
;

OẍOS =
1

t2 − t1

∫ t2

t1

O...
xOS (t) dt;

(15)

where OẍOS is the mean acceleration, which is zero for discrete movements. However, the mean of accelerometer data
will not be zero, in general, even for discrete movements due to gravity and data segmentation practices to determine
movement onset and termination. Removing the mean in this case will ensure apeak is not overestimated. It should be
noted that the mean value will not affect the jerk integral and thus it need not be removed.

3.2 Rotational motion

Dealing with rotational motion from IMU data is easier, since: (a) the sensor directly measures angular velocity via the
gyroscope, albeit in the local sensor reference frame, and (b) the signal is not affected by gravity.

For SPARC, the sensor orientation is irrelevant, since the operator ‖·‖2 is rotation invariant. The movement speed
can then be computed directly from the gyroscope data, i.e., ‖OωOS‖2 = ‖SOR · OωOS‖2 = ‖Sw‖2. Therefore,
λvS (OωOS) = λvS (Sw).

In the case of LDLJ-V, λvL requires Oω̂OS , which is affected by the attitude reconstruction error as:

Oω̂OS =
O
S R̂ · Sw = δR · OωOS

= OωOS + (δR− I) · OωOS
= OωOS + δω,

(16)
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Table 1: Summary of parameters used to analyze the effect of reconstruction error on movement smoothness. A total of
6000 simulated movements were generated.

Parameter Values

No. of via points {1, 2, 5, 10} (25 reps)

Duration (s) {2.5, 5, 10, 20}
Reconstruction error {5◦, 25◦, 50◦} (5 reps)

where δω is the rotational velocity reconstruction error.

Since the rotational jerk is estimated by double differentiation
(

d2

dt2
Oω̂OS

)
, it is important to understand how errors in

the orientation estimation affect the computation of LDLJ-V from the gyroscope data.

We note that there is an alternative formulation to compute the magnitude of jerk (and thus LDLJ-V) that is unaffected
by the sensor rotation (see Appendix D for details). Thus, in principle, LDLJ-V can also be applied to gyroscope data to
precisely compute smoothness. However, this formulation was found to be sensitive to practical implementations (e.g.
choice of numerical differentiation methods, sampling frequency) and thus, needs further investigation before general
recommendations can be made for its use in smoothness analysis.

4 Validation

As detailed in the previous section, when working with reconstructed acceleration data O ˆ̈xOS , there will be errors in
the jerk and apeak computation in λaL due to the acceleration reconstruction error δa (Eq. 13). Similarly, applying the
LDLJ-V on rotational velocity measured from a gyroscope will result in errors in jerk computation (due to δω), which
will affect the smoothness estimate. Thus, from a practical point of view, it is important to understand the effect of
these reconstruction errors on the smoothness estimates of translational and rotational movements, to allow proper
interpretation of the results from smoothness analysis using reconstructed data. In this work, we will only focus on
applying LDLJ-A on translational movements, and the SPARC and LDLJ-V on rotational movements. This section first
presents the results from the validation through simulated data, followed by the experimental validation.

4.1 Validation using simulated data

To test the proposed methods, we simulated discrete point-to-point movements, which were generated as 1s minimum
jerk trajectories with varying number of via-points. We varied the following parameters:

(i) Number of via-points: change in the number of via-points (spatio-temporal constraints) can lead to changes in
movement smoothness. We used a subset of simulated discrete point-to-point movements from the analysis presented in
Appendix B; twenty-five different trials with different via-points (Nvia = {1, 2, 5, 10}) were selected for this analysis.
The distance between the start and end positions was set to 15cm.

(ii) Movement duration: for a fixed movement amplitude, movement duration controls the magnitude of the accel-
erations and velocities. The accelerometer data from shorter duration movements will be dominated by the linear
acceleration component S ẍOS (t), while longer duration movements will be dominated by the gravity component Sg.
Four different movement durations T = {2.5, 5, 10, 20} s were simulated for each movement trial by time-scaling the
simulated movements of 1s duration. The velocity and acceleration of a movement of duration Ts were derived as

v
T
=

v1

T
a

T
=

a1
T 2

where v
1

and a
1

are the velocity and acceleration of the 1s duration movement.
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Figure 4: Evaluation of λaL to estimate smoothness of translational movements: simulated original λaL (OẍOS) and

reconstructed λaL
(
O ˆ̈xOS

)
movement smoothness. (a) Smoothness of original versus reconstructed kinematics. The

blue dots correspond to each of 6000 simulated movements, while the orange ‘+’ are movements with SGR > 1.05.
The ρ values are their respective Pearson correlation coefficients. (b) Density histogram of the relative error between
smoothness of the original and the reconstructed movements for SGR < 1.05 (blue curve) and SGR > 1.05 (orange
curve). (c) Correlation between smoothness of original and reconstructed movements as a function of movement
duration for different attitude reconstruction errors. (d) Correlation and relative error between smoothness from original
and reconstructed movement for all movement above a particular SGR value along the x-axis.

(iii) Attitude reconstruction error: simulating different attitude reconstruction errors can be done by generating a
stochastic time-series of rotation matrices. This was done through the following parametrization

δR (t) = Rz (α (t)) ·Ry (β (t)) ·Rx (γ (t)) , (17)

where Rx (·) ,Ry (·) , and Rz (·) are the elementary rotation matrices about the x, y, and z axes, respectively;
α (t) , β (t) , and γ (t) are Euler angles that determine the amount of rotation about each axis. The time-series of
these Euler angles were realizations of Gaussian Brownian noise (integration of white noise), which were low-pass
filtered through a moving average filter (window size of 0.5s). These angles were scaled such that maxt |α (t)| =
maxt |β (t)| = maxt |γ (t)| = θmax; θmax determines the maximum amount of rotation error represented by δR.
Three different values were used for θmax ∈ {5◦, 25◦, 50◦}. For each movement trial with a fixed number of via points
and duration, we simulated five different realizations of the Euler angles for each level of θmax.

The simulated movements were used to generate reconstructed accelerometer and gyroscope data as

O ˆ̈xOS = δR · OẍOS + (δR− I) · Og
Oω̂OS = δR · OωOS = δR · OẋOS

where OẋOS and OẍOS are from the simulated movements, and δR is from the simulated sensor orientation reconstruc-
tion error (Eq. 17). For the gyroscope data, we simply treated the simulated movements as rotational movements, and
used the velocity associated with these movements OẋOS (t) as the angular velocity OωOS (t).

The summary of the values for the different factors used in the simulation analysis are presented in Table 1, which
resulted in a total of 6000 movements. Movement smoothness of the simulated reconstructed movements of the
accelerometer and the gyroscope were estimated by:

• Applying λaL to the original movement acceleration OẍOS and the reconstructed acceleration O ˆ̈xOS .

• Applying λvS and λvL to the original angular velocity OωOS (= OẋOS) and reconstructed angular velocity
Oω̂OS .

The relative error ε between the smoothness of the original movement λ (y) and the reconstructed movement λ (ŷ) was
calculated as:

ε =
λ (ŷ)− λ (y)
|λ (y) |

, (18)
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where λ (·) is the smoothness measure, y and ŷ are the original and reconstructed movement kinematic variables of
interest, respectively.

In the case of translational movements, the relative magnitude of the true linear acceleration with respect to gravity is
useful to gauge the relevance of the sensor measurement to quantify the movement in question. A rough estimate that
can be obtained from the accelerometer data is the sensor-to-gravity ratio (SGR):

SGR =
1

‖Og‖2

√
1

t2 − t1

∫ t2

t1

‖Sa‖22 dt (19)

∣∣∣∣‖OẍOS‖2
‖Og‖2

− 1

∣∣∣∣ ≤ SGR ≤
‖OẍOS‖2
‖Og‖2

+ 1

SGR can only assume non-negative real values, and provides an approximate idea about the relative contributions of
the linear acceleration and gravity components. An accelerometer that is free-falling with respect to an earth-fixed
reference frame will register 0 acceleration on the accelerometer, and thus have SGR = 0. Values of SGR farther from
1 indicate an increasing contribution from the movement’s linear acceleration.

The summary of the smoothness analysis of the simulated accelerometer data is shown in Fig. 4. The smoothness
values of the simulated original and reconstructed movements were roughly related (Fig. 4(a)). The Pearson correlation
coefficient was 0.713 for all 6000 movements, and 0.945 for the subset of movements with SGR ≥ 1.05. Thus,
as expected, movements with larger linear acceleration have better smoothness estimates. Further, smoothness of
reconstructed movements with SGR ≥ 1.05 were closer to the actual smoothness value (Fig. 4(b)). The highest error
in this case was ≈ 40% off the actual value, whereas for movements with SGR below 1.05 it can be ≈ ±60% off the
actual value.

Improved reconstruction resulted in better estimates (Fig. 4(c)). For all movement durations, the correlation coefficient
increased with decreasing reconstruction errors. For a given level of reconstruction error, the correlation decreases with
duration because of the decreasing contribution of the movement’s linear acceleration relative to gravity. This means
that smoothness estimates are significantly off from the original smoothness values for slow movements that are poorly
reconstructed.

Finally, we analyzed how the correlation and relative error between the smoothness of the original simulation and recon-
structed movements varied as a function of SGR. This was done by first selecting all movements with SGR greater than or
equal to a particular value, and then estimating the correlation coefficient and the relative error between λaL (OẍOS) and

λaL

(
O ˆ̈xOS

)
for this set of movements; these plots were generated for SGR ∈ [1.0, 1.05, 1.1, 1.2, 1.5, 1.75, 2.0, 2.5].

The relative error shows a monotonic decrease with increasing SGR. However, the correlation coefficient shows a
non-monotonic increasing trend with increasing SGR. This is because of the limited number of movements with high
SGR in the simulated data set, and the smaller range of smoothness values these movements assume. For example,
movements with SGR ≥ 1.05 had original smoothness values mainly between -6.5 and -4, and this range decreased
with increasing SGR.

For rotational movements (Fig. 5), as expected, there was perfect correlation between smoothness of the original and
reconstructed movements for the SPARC (ρ = 1); however, the LDLJ-V has a much lower correlation of ρ = 0.51

(Fig. 5(a)). The error in smoothness is larger for smoother movements, reaching up to 100% relative error (Fig. 5(b)),
primarily due to the error in jerk calculation from Oω̂OS .

4.2 Validation using human movement data

To evaluate the consistency of estimating movement smoothness in practice, we applied the SPARC, LDLJ-V and
LDLJ-A to human arm movement data collected simultaneously with an optical passive marker-based motion capture
system (MoCap) and IMUs. We used a set of 250 upper-limb movements, collected from 4 post-stroke individuals with
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Figure 6: Comparison between smoothness estimates from Motion Capture (MoCap) and IMU data during upper-limb
movements of stroke survivors.

different levels of arm impairment. Data were not collected for the specific purpose of this paper; they were collected
during the patients’ stay at the cereneo center for Neurology and Rehabilitation (Vitznau, Switzerland) as part of a
different research study. We only used data from patients who authorized ‘further use of data’.

The kinematic dataset consisted of patients performing all tasks of the ARAT (Arm Research Action Test) with both
their right and left arms. An optical motion capture system (Qualysis, Göteborg, Sweden) and one IMU worn on each
wrist (ZurichMOVE, ETH Zurich, Switzerland) were used to track the kinematics of both arms. Tso track the movement
simultaneously with the two systems, a cluster of passive-reflective markers was attached to each of the IMUs as shown
in Fig. 2(b).

Marker data for each ARAT task were tracked and exported to Visual3D (C-Motion, Germantown MD, USA), then
low-pass filtered with a zero-lag 2nd order Butterworth filter with cut-off frequency at 20Hz. A rigid-body model was
used to calculate the position (OxOS), angular velocity (OωOS) and orientation (OS R̂MoCap) of each cluster of markers
representing the IMUs.

Data from the IMUs were a collected as continuous data streams, and the MoCap data were used to align the data in
time and segment it into each ARAT task. Data from each IMU consisted of acceleration (Sa), angular velocity (Sw),
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and quaternions representing the orientation of the IMU, which were used to compute the orientation of the sensor
O
S R̂IMU.

Linear velocity was obtained by numerical differentiation of position data OxOS (MoCap data) or integration of the
rotated accelerometer signal minus gravity

(
O
S R̂IMU · Sa− Og

)
(IMU data)

Smoothness measures were computed for both IMU and MoCap data. For SPARC, the adaptive cut-off frequency
was chosen to be less than or equal to 6Hz (i.e. ωc = 12π in Eq. (1)), and the signals were low-pass filtered with a
zero-lag 2nd order Butterworth filter with a cut-off frequency at 6Hz. To further understand the effect of errors in the
rotational matrix on smoothness estimates, we generated simulated errors similarly to section 4.1 For each of the 250
upper-limb movements, 100 stochastic time-series rotation matrices (Rnoise) with varying Euler angles ranging from
5 deg to 50 deg were generated, resulting in 250,000 movements.

The agreement between IMU and MoCap smoothness values was quantified as a percentage relative to the smoothness
quantified from MoCap (relative error), as MoCap is the ‘gold standard’ for movement analysis. Limits of agreement
are reported as 1.96 times the standard deviation of the computed values and are shown in the figures with a 95%
confidence interval region (Giavarina, 2015).

The summary of the results from this analysis is presented in Figs. 6 and 6. For linear velocity, both SPARC (Fig. 6(a))
and LDLJ-V (Fig. 6(b)) resulted in highly uncorrelated values between MoCap- and IMU-based estimates (SPARC,
ρ = −0.11; LDLJ-V, ρ = −0.10). As expected (see section 3.1), the drift caused by integration significantly affected
the smoothness estimated from the IMU data. For SPARC, the drift causes a relative increase in the DC frequency
component of the speed signal. This, in turn, decreases the adaptive cut-off frequency ωc (eq. 1), resulting in a shorter
spectral arc length, and thus a smoother estimate. For LDLJ-V, the drift results in the over-estimation of vpeak, resulting
in a smaller normalization factor, and thus a smoother estimate.

MoCap- and IMU-derived smoothness computed using LDLJ-A (Fig.6(c)) were highly correlated (ρ = 0.98).The limits
of agreement indicate that IMU-derived estimates were smoother than those derived from MoCap, with a mean bias
of 2.6% (range from -4.5% to 9.6%). One explanation for the bias could be the amplification of noise in the MoCap
position data due to triple numerical differentiation needed for computing LDLJ-A, resulting in smaller smoothness
values. The overestimation of smoothness computed from IMU data was also seen with simulated movements in
Fig. 4(a), where movements with smoothness values less than -4 are mostly on or above the identity line; the smoothness
values of all movements in Fig. 6(c) are also lower than -4. Another possible explanation could be the over-estimation
of apeak because of imperfect removal of gravity.

The reduced spread of points in Fig.6(c) compared to Fig. 4(a) and the high correlation observed were obtained even
though a large number of experimental movements had an SGR < 1.05. We believe this was likely due to small
reconstruction errors in OS R̂IMU that could be obtained from the this particular IMU brand. Indeed, when simulated
reconstruction error was added to OS R̂IMU (see Fig. 7(a)), the relative error between MoCap and IMU increased
significantly overall.

Fig. 6(d) and Fig. 6(e) show SPARC and LDLJ-V computed on the angular velocity from MoCap (OωOS) and the
reconstructed angular velocity from the IMU’s gyroscope

(
O
S R̂IMU · Sw

)
. The MoCap- and IMU-derived smoothness

values were highly correlated for both SPARC (ρ = 0.96) and LDLJ-V (ρ = 0.99). While SPARC resulted in no
significant bias in relative error (0.2%), LDLJ-V had a relative error bias of 2.5%. On the other hand, the limits
of agreement were smaller for LDLJ-V (-2.5% to 7.5%) compared to SPARC (-15.8% to 16.2%). The fact that
SPARC resulted in poorer levels of agreement than LDLJ-V was surprising, given that: (a) with angular velocity,
SPARC is unaffected by rotation OS R̂IMU; and (b) SPARC has been shown to be more robust to noise than LDLJ-V
(Balasubramanian et al., 2012, 2015).
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Figure 7: Effect of orientation reconstruction error on LDLJ-A. (a) Agreement between MoCap and IMU from
experimental data, when simulated noise is added to the rotation matrix OS R̂IMU obtained from patient data. (b) Relative
error ε (defined in Eq. 18) when simulated reconstruction error δR is added to synthetic movement data. Here, the
metric RMS (‖δR− I‖2) is used as measure of orientation reconstruction error.

5 Discussion

Quantification of movement smoothness is considered to be of great importance in movement sciences and biomechanics,
with smoother movements implying unimpaired, skilled behavior, and its change is associated with changes in motor
control. Thus, the goal of smoothness analysis is to gain insights about the underlying mechanisms that generated the
observed motor behavior. Several groups have proposed that the construct of movement smoothness can be understood
through the concept of submovements: “...smooth movements are movements composed of a few submovements
that are closely spaced in time, while unsmooth movements would result from the superposition of a larger number
of submovements with loose temporal packing” (Balasubramanian et al., 2012). Therefore, a consistent movement
smoothness measure should have a “...monotonic response to the motion characteristics so that the smoothness measure
decreases with the number of submovements and the inter-submovement interval.” (Balasubramanian et al., 2012).
Using this as an operational definition, the current recommended smoothness measures - SPARC and LDLJ-V - have
been developed and validated using velocity kinematics as the representation of the movements of interest. This paper
shows that the SPARC and LDLJ-V cannot be arbitrarily used directly with other movement variables (e.g. position,
acceleration, etc.). The numbers resulting from simply replacing the velocity term by any other movement variable (or
any signal) cannot be interpreted as movement smoothness. For example, applying the SPARC on an arbitrary signal
s (t) will produce a number that measures the level of ‘undulations’ in that signal. This number can be interpreted
as smoothness of a movement M only if s (t) represents the speed profile of the movement M . This issue is highly
relevant for movement data for which velocity cannot be easily estimated. The data from an IMU is a typical example.

IMUs provide an alternative mode of sensing movement kinematics that is cheaper and more convenient than ‘traditional’
methods, such as motion capture systems. However, in contrast to these systems, IMUs do not directly measure position
kinematics, have a time-varying frame of reference, and are noisy – which make deriving high-quality velocity and
position kinematics non-trivial. These issues put into question the appropriateness of IMU data to quantify movement
smoothness in practice.

In this paper, the difficulties of using IMUs for movement smoothness analysis on translational and rotational motions
was presented through a systematic analysis. The ultimate goal of this work was to develop recommendations
that can help standardize methods for estimating movement smoothness using not only IMUs, but across different
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movement measurement technologies. A summary of recommendations for the measures to use for analysing movement
smoothness using IMU data is in Fig. 8.

5.1 Translational movement smoothness

Estimation of linear velocity is required to compute SPARC and LDLJ-V. This computation is complicated because
it requires integration of the accelerometer signals, which are affected by rotational movements of the sensor and
are noisy. Even if one has a good estimate of the IMU’s rotation, reconstruction errors and accelerometer noise can
translate into drift in the estimated linear velocity. This, in turn, affects the reliability of the smoothness measures
(see Fig. 6(a-b)). Thus, SPARC and LDLJ-V should not be used on translational velocity kinematics obtained
from an IMU. There are several techniques that can be used to obtain improved estimates of translational kinematics
from fused information from multiple IMUs (Kok et al., 2017), which could enable the use of SPARC and LDLJ-V
on IMU-based data. However, such pose estimation methods rely on application-specific models, constraints, and
assumptions, which can introduce systematic bias in the velocity estimate of the underlying motion. Thus, depending on
the selected approach, the same motion, processed by different algorithms, can result in significantly different movement
smoothness estimates. To our knowledge, there have been no studies evaluating the sensitivity of smoothness measures
on such translational velocity reconstruction algorithms from IMUs. Thus, at this point, estimating smoothness with
SPARC and LDLJ-V using such algorithms are best avoided until their reliability is established.

Movement smoothness is related to the concept of intermittency of the executed motion, which is also associated with the
idea of temporal dispersion of submovements. One interpretation of movement intermittency is the presence of movement
arrest period (MAP), which is a continuous interval of time where there is no movement, i.e., where all derivatives
of position are uniformly zero. Movement velocity is the most direct indicator of movement intermittency caused
by MAPs. This is because all time intervals with uniformly zero velocity are MAPs, while non-zero velocities indicate
movement. This unique relationship, however, is lost with higher derivatives (acceleration, jerk, etc.), e.g., intervals with
zero acceleration can either indicate an MAP or an interval with constant velocity. The strong reliance of SPARC on
MAPs is the main reason why SPARC applied to acceleration data looses its interpretability as a movement smoothness
measure (see Appendix C).

On the other hand, the jerk-based measure does not directly rely on MAPs to quantify intermittency, but rather does this
through the jerk term, i.e., changes to the movement acceleration. Since jerk can be derived from acceleration data,
jerk-based measures can potentially be calculated from acceleration with the appropriate modifications in the scaling
factor. This resulted in the LDLJ-A proposed in Eq. 15, which can be used with acceleration data.

The analyses presented in this study show that the LDLJ-A can be a good alternative to estimate translational
movement smoothness from IMU acceleration data. However, its use requires a reasonably well reconstructed
movement acceleration signal, which is determined by the magnitude of error in the IMU’s attitude reconstruction, and
the relative magnitude of the movement’s translational acceleration with respect to gravity. This was illustrated with
simulated (Fig. 4(c) and Fig. 4(d)), and experimental data (Fig. 7). Unfortunately, the extent of the reconstruction error
and the relative magnitude of linear acceleration with respect to gravity are often unknown. In such a scenario, the SGR
metric (Eq. 19) can be used to provide some confidence in the smoothness estimates. Movements with an SGR of at
least 1.05 were found to be less sensitive to different amounts of reconstruction errors (Fig.4(a) and Fig.7).

Estimating movement smoothness from an accelerometer without an estimate of its orientation should ideally be avoided
except under the special circumstance where there is a good reason to believe that the sensor did not undergo much
rotation, and the SGR is greater than 1.05 (the larger the SGR, the better the estimates). In this very specific case, one
could potentially apply the LDLJ-A λaL measure directly on the accelerometer data Sa (t).
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5.2 Rotational movement smoothness

Analyzing rotational movements from IMU data is simpler than the translational case because gyroscopes directly
measure rotational velocity and are unaffected by gravity. SPARC can be applied to gyroscope data without any
modifications. LDLJ-V needs the gyroscope data to be corrected for sensor rotation (Eq. 16), and thus, can be affected
by reconstruction error. We note that there is another approach that can theoretically circumvent the need for orientation
correction (described in Appendix D), but this approach suffers from some practical implementation issues which need
further investigation.

In experimental data, we found that LDLJ-V computed from IMU and MoCap had better agreement than SPARC.
This is in contrast to our previous studies (Balasubramanian et al., 2012, 2015), in which we consistently found
that SPARC has better reliability than LDLJ-V, especially when it comes to noisy data. When looking closer at the
SPARC results, we observed that the performance was poorer for less smooth (and also longer duration) movements.
Movements that exhibited poorer levels of agreement had slight differences between the IMU and MoCap magnitude
spectrum curves (at frequencies lower than 6Hz), which, when integrated, resulted in significant differences in spectral
arc length. However, LDLJ-V was insensitive to those differences because of the logarithmic transformation which
compressed large differences in the dimensionless jerk (the argument of the log function in Eq. 15) between the IMU-
and MoCap-based estimates. This problem is observed primarily for movements with a large number of submovements
or undulations; such complex movements were not considered in our previous studies, and thus, this characteristic of
SPARC was unnoticed. Future work could investigate possible transformations on SPARC (similar to the logarithm)
that can alleviate this behavior.

One must not forget, that the good and bad results for LDLJ-V and SPARC reported from experimental data only reflect
the characteristics of the specific dataset presented here. It remains to be seen how these measures behave on a different
set of movements. Since the correlation between the IMU- and MoCap-derived smoothness using both SPARC and
LDLJ-V were very high, we cannot recommend the use of one measure over the other - both approaches seem good
candidates for analysing movement smoothness of rotational movements measured by IMUs.

5.3 Limitations

It is crucial to bring to light some of the shortcomings of the current study to ensure the results are interpreted
appropriately.

1. The work presented is only an initial step towards standardizing methods for estimating movement smoothness
using IMUs that is consistent with other movement measurement technologies. The preliminary validation
of the different proposed approaches in this work are based on a small set of simulated and experimental
data. Thus, it is possible that part of the study outcomes are specific to these datasets. The simulated and
experimental movements had a wide range of smoothness values indicating that a broad range of behaviors
were included. Nevertheless, the recommendations made in this study must be validated using a larger dataset
with more subjects and a wider range of movement tasks.

2. The tracking of rotational movements with MoCap was found to be quite noisy, which could have been the
reason for the bias and the wider limits of agreement for the different measures. A future validation study
must quantify the noise characteristics of the IMU and the MoCap systems to better evaluate the performance
of the different smoothness measures.

3. While evaluating the effect of reconstruction error δR (t) on smoothness estimates, we only considered the
maximum reconstruction error, measured in terms of Euler angles of δR or the RMS value of induced 2-norm
of the matrix δR−I (Fig. 7(b)). However, it must be noted that the smoothness of the reconstructed movement
is not only affected by the magnitude of reconstruction error, but also the exact time profile of reconstruction
error (i.e., ‖δR (t)− I‖2) and its relationship to the actual movement. Thus, it is possible that results shown
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Figure 8: Summary diagram of recommendations for analysing movement smoothness of discrete movements (i.e.,
with a clear start and end with zero velocity) using IMU data.

in Fig. 4 would be different if we had used a different approach for generating the Euler angles. However, it
can be shown that the effect of the time profile of ‖δR (t)− I‖2 will reduce as the amount of reconstruction
error diminishes.

6 Conclusion

In this paper, we carried out a systematic analysis of applying different smoothness measures to discrete movement data
measured by an IMU, with the aim of identifying the most appropriate methods for analysing smoothness with this
type of data. Our results suggest that there appears to be no single optimal approach for analysing both translational
and rotational movements measured by an IMU. The most appropriate method for estimating movement smoothness
depends on two factors: (a) type of movement (rotational or translational), and (b) quality of the estimate of the IMU’s
rotation. Based on our analysis, the recommendations for analyzing translational and rotational motions for smoothness
analysis are summarized in Fig. 8. Future studies must evaluate these recommendations on larger dataset consisting of
different types of movements.
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7 Nomenclature

r scalar (lowercase italic letter)

r vector (lowercase bold letter)

R matrix (uppercase bold letter)

A coordinate frame (calligraphy uppercase letter)

A origin of coordinate frame A
CxAB position vector of point B w.r.t point A expressed in frame C
CωAB angular velocity vector of frame B w.r.t frame A expressed in frame C
A
BR matrix representing a passive rotation that maps vectors expressed in frame B to frame A

t time

t1 start time of a discrete movement (onset)

t2 stop time of a discrete movement (termination)

g gravitational acceleration constant (9.81m/s2)

λ†∗ smoothness measure using method ∗ ∈ {S,L}, where S and L correspond to SPARC and LDLJ respectively,
and evaluated from data type † ∈ {p, v, a, j}, where p, v, a, and j correspond to position, velocity, acceleration
and jerk respectively
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Data Availability Statement

The code used for the generation and analysis of the simulated data in this paper is available at
https://github.com/siva82kb/smoothness from imu.
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Appendix A

Translational kinematics of a moving segment relative to another

The linear velocity of S relative to B (Fig. 2) is given by:

OxOS = OxOB + OxBS

= OxOB + O
BR · BxBS (20)

=⇒ OẋOS = OẋOB + O
B Ṙ · BxBS + O

BR · BẋBS (21)

∴ BẋBS = B
OR ·

(
OẋOS − OẋOB − OB Ṙ · BxBS

)
. (22)
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BẋBS can be used to estimate the smoothness of the translational movements of S with respect to B. This is not the same
as using OẋOS , as it additionally contains the translational OBR · BẋBS and rotational OB Ṙ · BxBS movement components
of B. Thus, in general, λv (BẋBS) 6= λv (OẋOS), and they are equal only when B does not undergo any translational or
rotational movements with respect to O, i.e. OẋOB = 0 and BOR = O

B Ṙ = 0, ∀t.

We can easily derive BẋBS from position kinematics measured using an optical motion capture system. This, however,
is not straightforward with IMU data. The linear acceleration of S with respect to O is given by deriving eq. (23):

OẍOS = O
BR · BẍBS + OẍOB + 2 · OB Ṙ · BẋBS + O

B R̈ · BxBS (23)

Combining eqs. 3 and 23, we get the accelerometer signal Sa,

Sa = S
OR ·

(
O
BR · BẍBS + OẍOB + 2 · OB Ṙ · BẋBS+

O
B R̈ · BxBS + Og

)
= S
BR · BẍBS + Sg + S ẍOB + 2 · SOR · OB Ṙ · BẋBS+

S
OR · OB R̈ · BxBS (24)

Appendix B

Analysis of the properties of LDLJ-A

The formulation of LDLJ derived directly from an acceleration signal is given by:

λaL (a) = − ln

(
t2 − t1
a2peak

∫ t2

t1

∥∥∥∥dadt
∥∥∥∥2
2

dt

)
;

apeak , max
t∈[t1,t2]

‖a‖2

(25)

Comparing this formulation with λvL (Eq. 2), one can see that λaL and λvL are different only in terms of the scaling factor
(t2−t1)
a2
peak

and (t2−t1)3
v2
peak

, respectively, since

∫ t2

t1

∥∥∥∥dadt
∥∥∥∥2
2

dt =

∫ t2

t1

∥∥∥∥d2vdt2
∥∥∥∥2
2

dt.

Thus,

λvL (v) = λaL (a)− 2 ln (t2 − t1)− 2 ln

(
apeak
vpeak

)
.

This relationship is non-linear due to the 2 ln
(

apeak

vpeak

)
factor.

Consistency of LDLJ-A. The consistency of the LDLJ-V and LDLJ-A measures were evaluated using simulated
1D movements, which were generated as a sum of submovements with varying inter-submovement intervals. The
movement velocity and acceleration profiles were of the following form

v (t;Ns, δTi) =

Ns−1∑
n=0

ψ (t− nδTi)

a (t;Ns, δTi) =
d

dt
v (t;Ns, δTi)
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Figure 9: Consistency of λaL. Subplots (a) and (b) depict the responses of λvL and λaL, respectively, as a function of
inter-submovement interval (δTi). The response of the three individual terms (c) Duration (T ), (d) Amplitude (A), and
(e) Jerk (J) as a function of (δTi) for λvL and λaL.

where v (·) and a (·) are the velocity and acceleration of the movement, respectively, ψ (t) = e−25(t−0.5)
2

, δTi ∈{
0.001i

∣∣ i ∈ N and 0 ≤ i ≤ 2000
}

andNs ∈ {2, 4, 8}. The smoothness values of this set of movements was evaluated
using the LDLJ-V (λvL) and LDLJ-A (λaL) applied to the velocity and acceleration data respectively.

Comparison of smoothness values λvL and λaL. λvL and λaL have roughly similar responses to changes in δTi, and
show approximately monotonic responses to the change in submovement characteristics (Fig. 9). In general, for the
same movement, the exact smoothness value computed from λvL and λaL will not be the same. However, if there is an
isomorphism between λvL and λaL, then both these measures would report the same relative smoothness between any
two movements. For example, consider two movements M1 and M2 with velocity profiles v1 and v2, respectively. If
there is a isomorphism between λvL and λaL, then

λvL (v1) > λvL (v2) ⇐⇒ λaL (v̇1) > λaL (v̇2) ,∀v1,v2

To check if such an isomorphism exists between λvL and λaL, we simulated a set of discrete, minimum jerk, 3D
movements through via-points. The problem was posed as a constrained optimization problem and was solved using
the CVXPY solver in Python, similar to the approach used in Yazdani et al. (2012):

minimize
x

‖Dx‖22

subject to Ax = b

where x is a stacked vector of positions corresponding to the movement trajectory, D is the matrix performing the
triple derivative to obtain movement jerk from x, and A and b represent the spatio-temporal constraints corresponding
to initial, final, and via-points, and the zero initial, and final velocity and acceleration constraints. The solution xm

obtained using this procedure would possess the minimum squared jerk ‖Dx‖22 for the given spatial and temporal
constraints.

The initial xi and final xf of all the movements were fixed to
[
0 0 0

]>
and

[
0 1 0

]>
, respectively, and the

movement duration was fixed to T = 1s. A set of N via-point spatio-temporal constraints {xv
n, tn}

N
n=1 were randomly

generated; xv
n represents the position of the nth via-point and tn represents the time at which this via-point is traversed.
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Figure 10: Scatter plot of λvL and λaL for a set of movements with varying number of submovements. The scatter
plot shows that there is a fair correlation between the smoothness values reported by the two movements on the same
movement data, but there is no one-to-one relationship.

A setXm consisting of 251 minimum jerk trajectories were generated, corresponding to: (a) 25 different spatio-temporal
constraints for each of 10 different values of N ; and (b) one movement without any via-points. The sampling period of
this problem was set to δts = 0.001s, resulting in 1000 sample points per movement.

The smoothness of the movements in Xm were analyzed using λvL and λaL. The scatter plot of λvL versus λaL is shown
in Fig. 10, which shows that the two measures are fairly well correlated, but are not isomorphic. This implies that the
two measures have slightly different structures, and one cannot be exactly obtained from the other.

Appendix C

SPARC on tranlsational velocity and acceleration data

The SPARC measure was also applied to the simulated data (from Section 7) to evaluate the measure’s consistency
when estimated from movement velocity or acceleration (Fig. 11). Similar to Balasubramanian et al. (2015), there
was a reasonably consistent response when using velocity data (Fig. 11(a)). On the other hand, when movement
acceleration is used (Fig. 11(b)), it does not result in a consistent response (i.e., a monotonic response to change in
inter-submovement interval).

(a) (b)
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Figure 11: Consistency of λvS applied to (a) movement velocity and (b) movement acceleration.

This difference in behavior is due to the origins of SPARC: it was inspired by the idea of movement planning and
execution by combining submovements. SPARC measures the level of dispersion of a signal in time (e.g., relative
periods of movement and movement arrest). This measure of temporal dispersion acts as a reasonable measure of
smoothness only when it is applied on the velocity, because velocity dispersion is strongly related to movement
intermittency. Temporal dispersion in all other kinematic variables do not provide a unique measure of intermittency.
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Appendix D

Calculating magnitude of linear jerk from IMU signals without rotation estimation

The derivative of the accelerometer signal Sa is given by (from Eqs. (3) and (4)):

S ȧ =
d

dt

(S
OR ·

(OẍOS + Og
))

= S
OṘ ·

(OẍOS + Og
)
+ S
OR · O

...
xOS

∴ S
OR · O

...
xOS = S ȧ− SOṘ ·

(OẍOS + Og
)

= S ȧ− SOṘ · OSR · Sa
= S ȧ−

[SωSO]× · SOR · OSR · Sa
= S ȧ− SωSO × Sa
= S ȧ− Sa× SωOS
= S ȧ− Sa× Sw (26)

where the matrix [SωSO]× is skew-symmetric.

Because the operator ‖·‖2 is rotation invariant, the magnitude of the linear jerk is given by:∥∥O...
xOS

∥∥
2
=
∥∥S
OR · O

...
xOS

∥∥
2
=
∥∥S ȧ− Sa× Sw∥∥

2
(27)

It is important to note that, in practice, the term S ȧ needs to be computed from numerical differentiation. Subtracting
the correction term Sa × Sw, which is derived from the raw IMU signals, is affected by misalignment in time and
different sampling of peaks. In simulated data, we found that, in some cases, this can lead to very erroneous estimation
of the translational jerk. Further investigation is needed as to general recommendations that can be provided.

Calculating magnitude of angular jerk from IMU signals without rotation estimation

Similar to translational jerk, one can compute the absolute angular jerk directly from IMU data. The second derivative
of the gyroscope signal Sw is given by:

Sẅ =
d2

dt2
(S
OR · OωOS

)
=

d

dt

(
S
OṘ · OωOS + S

OR · Oω̇OS
)

= S
OR̈ · OωOS + 2 SOṘ · Oω̇OS + S

OR · Oω̈OS
∴ S

OR · Oω̈OS = Sẅ − SOR̈ · OωOS − 2 SOṘ · Oω̇OS
= Sẅ − Sω̇SO × SωOS − 2

(SωSO × Sω̇OS)
= Sẅ − Sω̇OS × SωOS
= Sẅ − Sẇ × Sw (28)

Thus, the magnitude of the absolute angular jerk is given by:∥∥Oω̈OS∥∥2 =
∥∥S
OR · Oω̈OS

∥∥
2
=
∥∥Sẅ − Sẇ × Sw∥∥

2
. (29)

In practice, the terms Sẅ and Sẇ would need to be computed from numerical differentiation and may lead to erroneous
estimations of the magnitude of angular jerk. Further investigation is needed as to general recommendations that can be
provided.
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