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ABSTRACT 

A large body of work has revealed fundamental principles of HIV-1 integration into the human genome. 

However, the effect of the integration site to proviral transcription activity has so far remained elusive. 

Here we combine open-source, large-scale datasets including epigenetics, transcriptome, and 3D 

genome architecture to interrogate the chromatin states, transcription activity landscape, and nuclear 

sub-compartments around HIV-1 integration sites in CD4+ T cells to decipher human genome codes 

shaping the transcription of proviral classes defined based on their position and orientation in the 

genome. Using a Hidden Markov Model, we describe the importance of specific chromatin states and 

genome architecture in the control of HIV-1 transcription activity. Additionally, implementation of a 

machine-learning logistic regression model reveals upstream chromatin accessibility, transcription 

activity, and categorical nuclear sub-compartments as optimal features predicting HIV-1 transcriptional 

outcomes. We finally demonstrate clinical relevance by interrogating the positions of intact proviruses 

persisting in patients under suppressive therapy and provide a compass compatible with clinical 

decision-making. 

 

INTRODUCTION 

One of the most exciting breakthroughs in biomedical research was the discovery of highly 

suppressive anti-retroviral therapy (ART), which curbs replication of human immunodeficiency virus 

type 1 (here referred to as HIV) to nearly undetectable levels (Perelson et al. 1997). However, ART 

does not eliminate the transcriptionally silent, yet replication-competent latent provirus, which persist 

indefinitely despite highly suppressive therapy (Chun et al. 1995; Chun et al. 1997; Chun et al. 1998) 

and can be reactivated upon therapy cessation leading to rebound of plasma viremia (Chun et al. 2010; 

Wen et al. 2018). 

Over the past two decades, great efforts have been made for elucidating how HIV integrates into 

the human genome and how HIV proviral transcription normally operates (Ott et al. 2011; Mbonye and 

Karn 2014; Hughes and Coffin 2016; Mbonye and Karn 2017; Michieletto et al. 2019; Morton et al. 

2019). Interestingly, in CD4+ T cells of patient samples and in ex vivo studies, HIV preferentially 
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integrates into chromatin-accessible sites located near the nuclear pore and within or near 

transcriptionally active regions (Schroder et al. 2002; Cohn et al. 2015; Marini et al. 2015; Lucic et al. 

2019). However, integrated proviruses are detected on every human chromosome, in various chromatin 

landscapes (euchromatic and heterochromatic), and at different locations (intergenic or intragenic) and 

orientations (sense, divergent or convergent) respective to human genes and regulatory elements. 

Since the integration landscape is highly diverse in sequence and chromatin structure (Bukrinsky et al. 

1991; Jordan et al. 2001; Sherrill-Mix et al. 2013; Battivelli et al. 2018), it seems logical to speculate 

that the integration site neighborhood could contain information influencing the magnitude of 

transcription thereby shaping proviral fate (future viral replication: active vs latent). Previous work on 

several Jurkat CD4+ T cell clones containing individual HIV integrants revealed that the integration site 

controls basal and immune stimulation-dependent transcription (Jordan et al. 2001), indicating that HIV 

possibly operates in an integration site-dependent manner and not cell-autonomously. Despite these 

past discoveries, it remains unknown what genomic features or combination of them control proviral 

transcription and fate. 

It has been known for years that the human genome provides the underlying code for the correct 

transcriptional regulation of biological processes through precise spatial-temporal interactions between 

cis-elements present at promoters and enhancers, and sequence-specific factors that recognize them, 

as well as by the position of genes and regulatory elements in the three-dimensional (3D) space and in 

relation to nuclear territories (Heintzman et al. 2007; Dixon et al. 2012; Rao et al. 2014; Dekker and 

Mirny 2016; Andersson and Sandelin 2020). These regulatory elements could provide local or distal 

functions thereby influencing HIV proviral transcription and expression. Given these ideas, we 

hypothesized that the integration site contains “instructions” – here referred to as integration code (one 

or more genomic features located proximally and/or distally from the integration site) – that shape the 

organization and activity of proviruses in the context of the human genome. 

Here we use an integrated genomics approach, interrogate patient samples, and implement a 

machine learning logistic regression model to both define and predict molecular features contributing to 

proviral expression and persistence (Fig. 1). First, by combining open source, large-scale datasets 
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including epigenetics, transcriptome, and 3D genome architecture (Supplemental Table S1), we defined 

the chromatin states, transcription activity landscape, and nuclear sub-compartments around HIV 

integration sites in CD4+ T cells and provide evidence of the importance of HIV placement on the 

human genome to its transcriptional activity. Second, by implementing a machine learning logistic 

regression model of a 2-kb region around HIV integration sites, we predict upstream chromatin 

accessibility, transcription activity, and categorical nuclear sub-compartments as optimal features 

shaping HIV transcriptional outcomes. Third, by interrogating patient samples bearing intact proviruses 

persisting under suppressive therapy we demonstrate clinical relevance and propose guidelines for 

future interventions. 

 

 

Figure 1. Flow chart of the integrated genomics approach to elucidate human genome codes contributing 
to HIV proviral transcription and fate. B-HIVE expression data is compared to each individual dataset 
one-by-one (“1x1”). Then, B-HIVE expression data is compared to datasets that combine multiple 
datasets (“2 plus Omics”) (e.g., typical enhancers (TE) and super enhancers (SE) combine TT-seq and 
ChIP-seq). B-HIVE is then compared to “all” datasets with a Machine Learning model. From there, we 
then integrated HIV patients’ datasets with the long-term objective to predict human genome codes that 
can lead to clinical decision-making. 
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RESULTS 

Expression of HIV Integration Groups Defined Based on Their Position and Orientation 

Respective to Genes in the Human Genome 

To start interrogating the relationship between HIV integration position and transcription activity, we 

first reanalyzed the B-HIVE dataset in Jurkat CD4+ T cells (Chen et al. 2017), which used the 

thousands of reporters integrated in parallel (TRIP) assay (Akhtar et al. 2013), to obtain HIV position 

information (integration site) respective to human genome coordinates. Because HIV integrates within 

(intragenic) or between (intergenic) genes, and in the same or opposite orientation respective to the 

nearest human gene transcription start site (TSS) (Fig. 2A), we first defined 6 integration groups based 

on their positions and orientations to explore any potential relationships of each group with human 

genomic features. Of note, Group 6 is a composite of 3 subgroups depending on the three possible 

combinations of HIV directions respective to the two overlapping genes [Group 6a: both genes in same 

direction with HIV in same direction (n=26); Group 6b: gene 1 and gene 2 in opposite directions (n=24); 

and Group 6c: both genes in same direction with HIV in opposite direction (n=10)] (Fig. 2A). However, 

given the limited number of genes in each of the subgroups of Group 6, we treated them as a single 

group to increase statistical power. Remarkably, the large number of proviruses detected in Groups 4-6 

(Intragenic) compared to Groups 1-3 (Intergenic) is consistent with previous studies examining 

integration sites ex vivo and in patient samples, highlighting HIV integrations in intronic regions of highly 

transcribed genes (Schroder et al. 2002; Ikeda et al. 2007; Maldarelli et al. 2014; Lucic et al. 2019). 

 

Figure 2. Defining the expression of HIV proviral integration groups based on their position and 
orientation respective to human genes. (A) Diagram of 6 HIV integration groups relative to nearest 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 2, 2020. ; https://doi.org/10.1101/2020.05.01.072231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072231
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6 

gene(s). Group 6 (overlapping genes at the same position) is comprised of three subgroups (6a, 6b, 6c). 
(B) Pie chart of the percentage of B-HIVE insertions (n = 1558) into each of the 6 HIV integration groups. 
 

Having established the HIV integration groups, we then examined the relationship between HIV 

positions and their expression (see Methods). After visualizing the expression of each HIV integration 

site on a per integration group basis using Circos plots, we found that HIV proviruses from each group 

are detected in every single chromosome with various expression levels irrespective of their group 

(Supplemental Fig. S1A-F). Together, this indicates that the arrangement of insertions in the 

position/orientation-defined groups above is not the only determinant of HIV expression levels. 

Therefore, we reasoned that HIV proviral transcription activity might be regulated by local and/or distal 

codes that are unique to the integration site and not shared within each integration group. 

 

Relationship Between HIV Expression and Distance to Nearest Human Gene TSS 

Given that proviruses can be located at various distances respective to nearby gene TSS, we 

interrogated if there is any relationship between the expression level of proviruses in each HIV 

integration group and their distance to nearby TSS to test the hypothesis that proviruses located closer 

to TSS are more active than those located at farther distances (Fig. 3A). 

Interestingly, we found that the expression of proviruses in intergenic regions is poorly correlated 

with the distance to the nearest TSS irrespective of their orientation [Group 1: Intergenic - Same (R = -

0.13, P = 0.14), Group 2: Intergenic - Convergent (R = -0.19, P = 0.11), and Group 3: Intergenic - 

Divergent (R = -0.16, P = 0.15)] (Fig. 3A), potentially indicating that the orientation of intergenic 

proviruses is not a major feature controlling HIV expression. For this analysis we did not include Group 

6 because these HIV insertions are within two overlapping genes, which either of the genes or both 

genes could influence HIV expression, leading to uncertainty of the analysis. 
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Figure 3. Scatter plots of the Pearson correlation coefficient (R) and p-value (P) between proviral 
expression of each HIV integration group to nearest gene TSS, gene expression, and enhancers. (A) 
Hypothesis that HIV expression is stronger the closer it is to the nearest gene TSS. Correlation of HIV 
expression (log10) as a function of distance to TSS (log10) for each of the 5 HIV integration groups. (B) 
Hypothesis that HIV expression is correlated to the expression of its nearest gene, where if the nearest 
gene has higher expression, HIV would also have higher expression. The opposite is hypothesized for 
lower expressed genes. Correlation of HIV expression (log10) as a function of host gene expression 
(log10) for each of the 5 HIV integration groups. (C) Hypothesis that HIV expression is higher the closer 
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it is to an enhancer. Correlation of HIV expression (log10) to the log10 distance of the nearest typical 
enhancer (TE) or super enhancer (SE). 
 

However, we observed a potential pattern for intragenic proviruses in Groups 4-5 (Group 4: 

Intragenic – Same (R = -0.13, P = 0.0012); Group 5: Intragenic – Convergent (R = -0.23, P = 6.4x10-9)), 

which seem to be, in general, more significantly correlated than the intergenic proviruses in Groups 1-3 

(Fig. 3A). Surprisingly, the expression of proviruses in Group 5 was more correlated with the distance to 

TSS of its nearby gene than the expression of proviruses in Group 4, suggesting that the orientation of 

intragenic HIV proviruses respective to the nearest TSS impacts proviral expression, in agreement with 

theories of transcription interference of proviruses positioned in the same orientation as its associated 

genes (Lenasi et al. 2008). 

 
Relationship Between HIV Activity and the Expression of its Associated Human Gene 

Another regulatory feature shaping HIV proviral transcription can be the level of expression of the 

HIV-associated gene. Thus, it is possible that the activity of provirus 1 is greater than provirus 2 if the 

gene associated with provirus 1 (Gene A) is expressed at higher levels than the gene linked to provirus 

2 (Gene B) (Fig. 3B). To test this hypothesis, we calculated the expression of proviral Groups 1-5 (Fig. 

2A) and the expression of the HIV-associated human gene. Once again, we excluded Group 6 

(Overlapping) because of the complexity of HIV association with two overlapping genes. Surprisingly, 

we found no apparent correlations for Group 1: Intergenic - Same (R = 0.09, P = 0.29) and Group 3: 

Intergenic - Divergent (R = 0.11, P = 0.32). However, Group 2: Intergenic - Convergent, showed a 

slight, but statistically significant correlation (R = 0.26, P = 0.03), potentially indicating that this HIV 

arrangement somehow benefits from host transcription activity. 

Given HIV preferably integrates inside genes with no apparent difference in orientation respective to 

host gene transcription activity, we were particularly interested in testing whether there is any 

correlation between the expression of HIV in Group 4: Intragenic - Same, and Group 5: Intragenic - 

Convergent. Strikingly, we found that the correlation level of Group 4: Intragenic - Same (R = -0.002, P 

= 0.94) is much lower than the correlation of Group 5: Intragenic - Convergent (R = 0.07, P = 0.06), 

which is trending towards statistical significance (Fig. 3B). These results suggest that the convergent 
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orientation offers HIV a molecular benefit potentially linked to the lack of transcription interference by 

RNA polymerase II molecules transcribing host genes positioned in the same orientation as HIV 

(Lenasi et al. 2008), consistent with the better correlation of expression of this group and the distance 

to nearest TSS (Fig. 3A). 

Taken together, our large-scale data analysis indicates that transcription interference accounts for 

at least part of the observed proviral expression effects. However, since the correlations are low, it is 

likely that a combination between orientation respective to nearest gene promoters and other regulatory 

features account for HIV expression levels. Thus, below we also interrogate HIV expression as a 

function of its position in relation to enhancers, nuclear sub-compartments, and chromatin states to 

provide an integrated analysis (as described in Fig. 1). 

 

Contribution of Human Genome Enhancers to HIV Proviral Transcription 

HIV displays specific preference to integrate into genes proximal to high density of enhancers 

(Lucic et al. 2019), which can potentially regulate proviral transcription. Enhancers are short DNA 

sequences that act as transcription factor binding hubs controlling key transcriptional programs by fine-

tuning target gene promoter activity across vast linear distances (Whyte et al. 2013; Kim and 

Shiekhattar 2015; Li et al. 2016). Given their importance, we explored whether the position of HIV 

respective to enhancers is a key regulatory element for determining proviral activity level. To this end, 

we generated a rigorous and comprehensive database of active enhancers based on a combination of 

conventional epigenetic and transcription signatures including: 1) a unique chromatin state demarcated 

by high H3K27ac, high H3K4me1, and low H3K4me3 derived from ChIP-seq, and 2) symmetrical bi-

directional enhancer RNA transcription (eRNA) derived from TT-seq (Supplemental Fig. S2A). At least 

two types of active enhancer classes have been described: typical enhancers (TE) and super 

enhancers (SE). TE contain the classic composition of features indicated above, whereas SE are 

locally grouped clusters of enhancers (defined as a higher signal of H3K27ac, H3K4me3, H3K4me1, 

and active transcription (TT-seq)) domains within 12.5-kb of each other (Supplemental Fig. S2A) driving 

high levels of transcription of nearby cell-identity genes (Whyte et al. 2013). 
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A Hidden Markov Model (HMM) of eRNA Watson and Crick strands was used to classify 

transcribed regions that when overlapped with known enhancer histone marks identified 2,180 active 

intergenic TE (Supplemental Fig. S2B-C). We defrayed from identifying intragenic enhancers given the 

high content of genic transcription and histone marks potentially obscuring accurate identification of this 

class of enhancers. Using this approach, we also identified 767 SE containing the conventional high 

density of clustered H3K27ac, H3K4me3, H3K4me1, and TT-seq activity (Supplemental Fig. S2A-C). 

To test the hypothesis that HIV proviral expression is correlated to its proximity to enhancers (Fig. 

3C) we used the rigorously assembled enhancer database to measure both the expression and 

distance of each provirus of the 6 different HIV integration groups to the nearest TE and observed poor 

correlation and no statistical significance (P < 0.05) for all groups, suggesting that proximity to a TE 

alone is not a good predictor of HIV proviral activity (Fig. 3C). 

Given previous reports that genes located near SE are transcribed to much higher levels compared 

to genes located near TE (Whyte et al. 2013), we hypothesized that if the proximity to enhancers is a 

true regulator of proviral transcription we would then expect that, compared to less active or latent 

proviruses, the most active proviruses should be positioned nearer to SE. Therefore, we also evaluated 

the distance of each provirus of the 6 HIV integration groups to the nearest SE and found low 

correlations and no statistical significance for all three intergenic groups (Groups 1-3: same, 

convergent, divergent, respectively) (Fig. 3C). However, interestingly, the intragenic groups (Groups 4-

5) showed a statistical significant correlation (Group 4: Intragenic - Same (R = -0.09, P = 0.02) and 

Group 5: Intragenic - Convergent (R = -0.12, P = 0.002)) (Fig. 3C), consistent with the better 

correlations between the expression of both intragenic groups and the distance to the nearest gene 

TSS (Fig. 3A) and transcription activity (Fig. 3B), thus proposing that intragenically positioned 

proviruses may benefit from both its positions nearby to regulatory elements such as gene promoters 

and SE. Together, the preference for HIV to integrate into genes proximal to SE (Lucic et al. 2019) may 

have the dual benefit of increasing proviral transcriptional levels. 

 

Contribution of Chromatin States to HIV Proviral Transcription 
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Since chromatin marks do not denote a singular function, and because we wanted to classify 

regions of the genome to precisely define chromatin states to explore their contribution to HIV proviral 

transcription (Fig. 1), we implemented a 15-state HMM derived from ChromHMM (Ernst and Kellis 

2017) using 7 histone marks to annotate chromatin states similar to the annotations from the Roadmap 

Epigenomics Project (Roadmap Epigenomics et al. 2015). To de novo generate the core 15-state 

model in Jurkat T cells we compared the relative abundance of the state emissions in Jurkat T cells 

with known chromatin states for the 3 ENCODE cell lines most genetically and phenotypically linked 

with Jurkat (E115: Dnd41 T cell leukemia, E116: GM1282878 lymphoblastoid, and E123: K562 T cell 

leukemia). After overlapping the Jurkat T cell states with these 3 related epigenomes and comparing 

each histone mark function, we rearranged and relabeled the state numbers to correspond to identical 

labels from Roadmap Epigenomics Project (Fig. 4A; Supplemental Fig. S3A-C). 

Given that HIV integrates within and/or near open chromatin based on accessibility and epigenetic 

data (Lucic et al. 2019), we would expect HIV to be inserted into open chromatin states. As expected, 

HIV was more likely to insert into “accessible” chromatin (states 2-8, 11-12, and 14 (P < 0.05, two-

proportions z-test)) and less likely to insert into “inaccessible” chromatin (states 13 and 15 (P < 0.001, 

two-proportions z-test)) (Supplemental Fig. S4). 
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Figure 4. Expression of HIV proviruses in relation to chromatin states defined using ChromHMM. (A) 
From left to right: ChromHMM plot containing the 15 states. Histone marks used to create the states 
(state emissions). Overlap enrichment plots (ChromHMM) of RefSeq genomic annotations, TE (Jurkat), 
and SE (Jurkat) by 15 states. Heatmap of percentage of insertions in each state. (B) Box plot of B-HIVE 
expression by 15-state model. (C) Heatmap of P values comparing the median expression of B-HIVE in 
2 different states by Kruskal-Wallis rank sum test. 
 

Since HIV is more likely to insert into accessible regions of the genome, we also wanted to compare 

proviral expression in each chromatin state to determine if the median expression between states is 

different. HIV expression was not found to be normally distributed or have similar variances between 

states, so a Kruskal-Wallis rank sum test computed significant differences of the median between 
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different states. Surprisingly, HIV expression was higher in state 7 (Active enhancer) than states 4 or 5 

(Strong and Weak transcription, respectively, P < 0.05) (Fig. 4B,C). Not surprisingly, state 15 

(Quiescent/Low) has lower expression than states 4, 5, 7, and 12 (Strong transcription, Weak 

transcription, Active enhancer, and Bivalent enhancer, respectively, P < 0.05) (Fig. 4B,C). 

Together these results reveal that HIV is more likely to integrate into accessible regions of the 

genome (Supplemental Fig. S4), and that open regions associated with promoter and enhancer activity 

have higher HIV mean expressions than those in inaccessible regions. 

 

Contribution of Nuclear Spatial Sub-compartments to HIV Proviral Transcription 

The 3D organization of chromosomes enables long-range interactions between enhancers and 

promoters that are critical for building complex gene regulatory networks (Dekker and Mirny 2016; Yu 

and Ren 2017). Interphase chromosomes occupy separate spaces known as nuclear territories 

(Meaburn and Misteli 2007), and each chromosome is organized into dynamic, non-random structures 

containing stretches of transcriptionally active compartments interspersed with sections of 

transcriptionally inactive compartments (Lieberman-Aiden et al. 2009). As such, the genome is 

partitioned into contact domains (A and B) segregating into 6 sub-compartments (A1, A2, B1, B2, B3, 

and B4) that: 1) appear located in different nuclear territories, 2) are associated with distinct patterns of 

histone marks, and 3) show different expression levels (Rao et al. 2014). To examine both the 

distribution and expression of HIV proviruses in the various sub-compartments we utilized two 

complementary approaches. First, we re-analyzed a Hi-C dataset in Jurkat T cells (Lucic et al. 2019), 

and second, we predicted sub-compartments in Jurkat T cells using the lamin sub-compartments 

derived from GM12878 cells (Rao et al. 2014). 

Using the Jurkat Hi-C dataset, we identified the A and B sub-compartments using the first 

eigenvector. We then further divided the A compartment into A1 and A2 using a k-means clustering of k 

= 2. However, k-means clustering of the B compartment, with k = 2 through k = 5, did not yield a clearly 

defined separation of three regions based on expected chromatin marks (Supplemental Fig. S5), 

leaving us to keep all B sub-compartments together. The distribution of proviruses revealed there is a 
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preferential insertion into the A sub-compartments (P < 0.001, two-proportions z-test), and reduced 

insertions within B sub-compartment (P < 0.001, two-proportions z-test), than by random occurrence 

(Supplemental Fig. S6A,C) given the Jurkat T cell sub-compartments coverage (Supplemental Fig. 

S6B), consistent with recent observations (Lucic et al. 2019). The mean HIV expressions in the A1 and 

A2 sub-compartments was significantly higher from the B compartment (P < 0.001, Kruskal-Wallis rank 

sum test) without any obvious, statistical significant difference between the A1 and A2 sub-

compartments (P = 0.43) (Supplemental Fig. S6D), suggesting that HIV integration into more 

accessible regions of the genome is, in general, beneficial for proviral expression. 

Since we noticed the Jurkat Hi-C dataset might be too sparse to divide into 6 sub-compartments, 

we then used the higher resolution sub-compartments defined in GM12878 cells. GM12878 is a T cell 

line genotypically and phenotypically closely related to Jurkat (Rao et al. 2014), thus arguing that these 

results could be applicable to Jurkat, since domains are typically conserved between cell types. Using 

this data, we found a significant increase of HIV proviruses in sub-compartments A1, A2, and B4, and 

significantly lower insertions in sub-compartments B1, B2, B3 (P < 0.001, two-proportions z-test) 

(Supplemental Fig. S6E-G). Also, there is an enrichment of mean HIV expression in sub-compartments 

A1 vs A2, B1, B2 or B3 (P < 0.001, Kruskal-Wallis rank sum test) (Supplemental Fig. S6G,H), 

suggesting the location of HIV into categorical nuclear sub-compartments overall contributes to 

increased expression. Notably, these results are similar to the Hi-C data analysis in Jurkat cells, 

suggesting there is a conservation of sub-compartments between the two cell types, consistent with 

previous results (Rao et al. 2014). 

 

Machine Learning Approach to Train a Model Predicting HIV Proviral Transcription and Fate 

To foresee features and guide experimental approaches to clinical analysis, a machine learning 

approach was used to train a logistic regression model for HIV expression prediction. We examined 2-

kb regions, in 200-bp increments, around HIV integration sites (Fig. 5A). When a threshold of 

Information Value (IV) ≥ 2 was applied, 26 features were determined as optimal features for the 

prediction task, which include all 20 lamin sub-compartment bins, 5 bins in H3K27ac, and 1 bin in 
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MNase-seq (Supplemental Table S2; Supplemental Fig. S7). For the test dataset, HIV expression 

levels were predicted through the logistic regression model of the optimal features, their estimated 

weights and corresponding odds ratios, and the standard errors of the estimated weights were obtained 

(Supplemental Table S3). Notably, the evaluation metrics were calculated as 68.42% of sensitivity, 

59.10% of specificity and 64.71% of AUROC, confirming that the model has fair prediction power (Fig. 

5B). The predicted HIV expression values for the ‘High’ expression category were found significantly 

higher than those for the ‘Low’ category (P = 0.00025, Wilcoxon test) (Fig. 5C). Meanwhile, the 

predicted values for the ‘Intermediate’ and ‘Low’ categories showed no significant difference (P = 0.27, 

Wilcoxon test) (Fig. 5C). Furthermore, the actual and predicted HIV expression values were found to 

have a positive, moderate correlation (R = 0.19, P = 0.00018) (Fig. 5D). 

 

Figure 5. HIV expression level prediction based on genetic and 3D landscape surrounding integration 
sites. (A) Schematic of data integration and training of the machine learning (ML) model. Genetic marks 
2-kb surrounding HIV insertions were binned every 200-bp and measured. B-HIVE data was split into 3 
groups (Low, Intermediate, and High), training the ML model for Low versus High. (B) The trained 
model’s AUROC (Area Under the Receiver Operating Characteristics) curve is shown. (C) Predicted 
HIV expression comparison among three categories of Low, Intermediate, and High. P-value (P) 
calculated from Wilcoxon test. (D) Linear regression and Pearson correlation test between the actual 
and predicted HIV expression values. 
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Combination of In Vitro HIV Integration/Expression Data with Primary and Patient Datasets 

To extend our studies to more physiologically relevant models and provide clinical relevance, we 

first assembled open source, publicly available HIV integration datasets from 11 patients studies (Mack 

et al. 2003; Han et al. 2004; Ikeda et al. 2007; Maldarelli et al. 2014; Wagner et al. 2014; Kok et al. 

2016; Sharaf et al. 2018; Coffin et al. 2019; Einkauf et al. 2019; Garcia-Broncano et al. 2019; McManus 

et al. 2019) and 4 studies with primary CD4+ T cells infected ex vivo (Sherrill-Mix et al. 2013; Sunshine 

et al. 2016; Ferris et al. 2019; Lucic et al. 2019) (Supplemental Table S4). We used these datasets to 

interrogate the epigenomic landscape of intact vs defective proviruses to provide fundamental 

principles of differential positioning and regulation of these two proviral classes and to compare their 

epigenomic landscapes to proviruses in the immortalized (Jurkat T cell) models of latency (Fig. 6A). 

To accomplish this, we downloaded the chromatin states in 4 primary CD4+ T cell states relevant to 

HIV infection from the Roadmap Epigenomics project: E039 (naïve CD4+ T cells), E040 (memory CD4+ 

T cells), E041 (naïve CD4+ T cells stimulated with phorbol ester), and E045 (memory and effector CD4+ 

T cells) (Supplementary Fig. S8-S10). From these 4 CD4+ T cell states, we choose E040 because it is 

more relevant to HIV persistence as the virus typically infects activated cells that, over time, persist in 

resting memory CD4+ T cells in patients under suppressive therapy (Shan et al. 2017). 
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Figure 6. Enrichment of HIV integrants in patient data and their relatedness to B-HIVE in each of the 15 
chromatin states. (A) Overlap enrichment plot (ChromHMM) of patient and ex vivo data by the 15-state 
ChromHMM of primary CD4+ T helper memory cells (E040). (B) Same as A, but splitting Einkauf and 
Kok datasets by individual patients. (C) Same as A, but splitting Einkauf patients and Garcia-Broncano 
(GB) by intact vs defective proviruses. 
 

From the combined analysis of patient and ex vivo studies, we clearly observed large differences in 

the integration landscape among datasets and heterogeneous distribution within datasets, with HIV 

being integrated in the chromatin accessible states (states 1-to-8) but preferentially within states 3, 6, 

and 8 (Transcription TSS/TTS, Genic enhancer, and ZNF genes & repeats, respectively) (Fig. 6A). 

Since the percentage of the genome for each chromatin state is not equal, we refer to “preferential” as 

chromatin states having more HIV integration sites than expected based on the percentage of the 

genome in each chromatin state. Interestingly, all ex vivo datasets and patient datasets except Kok and 

Mack revealed a preferential integration in state 3 (Transcription TSS/TTS), which, importantly, is also 

found in the immortalized (B-HIVE) system, demonstrating conserved principles of retroviral integration 

between immortalized, ex vivo and patient studies. 

While a few patient datasets showed enrichment of integration positions in state 3 (Transcription 

TSS/TTS), and much lower levels in state 6 (Genic enhancer) and state 8 (ZNF genes & repeats) such 

as Einkauf, Wagner, and Han, the majority showed remarkable enrichment in state 4 (Strong 

transcription), state 5 (Weak transcription) and state 7 (Active enhancer) (Fig. 6A). This result again 

highlights the heterogeneity in enrichment of the integration landscape, which is most likely a property 

of retroviral integration that relies on the activation status of the infected cell (Shan et al. 2017). 

Additionally, a surprising deviation from the commonly seen integration landscape in chromatin 

accessible states (states 1-8) in all three type of integration datasets (B-HIVE, ex vivo, and patient) was 

seen in the Lucic dataset, which also showed enrichment of integrations in chromatin inaccessible 

states 12-15 (Bivalent enhancer, Repressed Polycomb, Weak repressed Polycomb, and Quiescent/low, 

respectively). 

Together, not only does this analysis reveal the heterogeneous nature of the HIV proviral 

integration landscape in various chromatin states and variability among patient datasets, but also 

exposes commonalities in the integration enrichment patterns between immortalized, primary, and 
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patient datasets. Given this integration pattern conservation and the importance of accessible 

chromatin states (promoters and SE) in HIV proviral expression in the immortalized (B-HIVE) system, it 

is likely that the rules defined in the B-HIVE model are conserved in patient samples. 

 

Analysis of Individual Patient HIV Integrants within Chromatin States 

Because the previous analysis was done on the combined integration positions of the various 

datasets, we then focused on studies bearing information on individual patients. Strikingly, this analysis 

first exposed the heterogeneous integration landscapes between patients and the “preferred” chromatin 

state positions of integrants within patients (Fig. 6B). For example, Einkauf Patient 1 has a total of 42 

integrants with the following positions: 2 (state 4, Strong transcription), 22 (state 5, Weak transcription), 

1 (state 6, Genic enhancer), 8 (state 7, Active enhancer), 2 (state 8, ZNF genes & repeats), and 7 

(state 15, Quiescent/low). Although most integrants are in state 5 (52.38%), state 7 (19.04%), and state 

15 (16.66%), these encompass an extremely large portion of the genome (9.86%, 2.99%, and 73.84%, 

respectively) (Supplemental Table S5), thus these states are not significantly enriched for HIV 

proviruses. 

For the three patients analyzed in the Einkauf dataset, two of them (Patients 1 and 3) showed 

nearly identical integration patterns, where HIV was preferentially enriched (35-fold and 51-fold 

enrichment for Patients 1 and 2, respectively) in state 8 (ZNF genes & repeats), which only represents 

a 0.14% fraction of the entire genome (Fig. 6B), and a minority of integrants in states 4-7 (for Patient 1) 

and states 2, 4, and 7 (for Patient 2). Despite this remarkable similar integration pattern in two patients, 

Patient 2 showed an enrichment of integrations in state 3 (Transcription TSS/TTS; 152-fold enrichment) 

and in state 6 (Genic enhancer; 19.8-fold enrichment), which only encompass 0.02% and 0.24% of the 

human genome, respectively (Supplemental Table S5). 

A more highly diverse integration pattern was observed among the seven patients from the Kok 

dataset with Patient 4 almost exclusively containing positions in state 5 (Weak transcription), Patient 3 

showing an enrichment of positions in state 7 (Active enhancer) and state 5 (Weak transcription), 

Patient 2 bearing an enrichment in state 6 (Genic enhancer), Patient 7 bearing an enrichment in state 4 
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(Strong transcription) and state 6 (Genic enhancer), and Patients 1, 5, and 6 containing HIV spread out 

in about 5-6 different states (Fig. 6B). Together, these studies illuminate the heterogeneous nature of 

HIV integration patterns in diverse chromatin states among patients, which has striking similarity to the 

immortalized (B-HIVE) system, possibly highlighting the plasticity in HIV transcriptional regulation 

leading to disparate proviral fates (silent-to-active). 

 

Persistence of Intact Versus Defective HIV Proviruses within Chromatin States 

An important point is to be able to distinguish intact vs defective proviruses to start investigating 

where intact proviruses hide in the human genome and how they are regulated. To assess this, we 

interrogated the Einkauf dataset (Einkauf et al. 2019), which is the only study currently having this 

information for individual patients. Surprisingly, we observed a remarkable, almost completely distinct 

pattern of integration landscape enrichment between patients with intact proviruses in Patients 1 and 3 

being enriched in state 8 (ZNF genes & repeats; 73-fold enrichment for Patient 1 and 76-fold 

enrichment for Patient 3), and intact proviruses in Patient 2 being enriched in state 3 (Transcription 

TSS/TTS; 208-fold enrichment) and a smaller enrichment in state 6 (Genic enhancer; 36-fold 

enrichment) (Fig. 6C and Supplemental Table S5), resembling the enriched HIV integration patterns in 

the immortalized system (B-HIVE) and other patient/ex vivo studies (Fig. 6A). Notably, a subset of 

integrants in the B-HIVE dataset (0.32%) contains examples that match the integration pattern of intact 

proviruses enriched in state 8 (ZNF genes & repeats) in the Einkauf dataset, again revealing conserved 

integration patterns in immortalized models of latency and primary/patient datasets. 

In contrast to the enrichment of intact proviruses in Patients 1 and 3 in state 8 (ZNF genes & 

repeats), defective proviruses in these two patients were mainly enriched in state 4 (Strong 

transcription), state 5 (Weak transcription), and state 7 (Active enhancers), potentially indicating that 

intragenic and intra-enhancer positions, which typically correlate with high expression in the 

immortalized (B-HIVE) system, might be deleterious for replication competence. Given the rather small 

patient population and because the three patients have similar if not identical clinical and 

demographical characteristics (e.g., age, gender, CD4+ T cell counts, undetectable viral load, and time 
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under suppressive therapy) (Einkauf et al. 2019), at this point it is impossible to predict what may be the 

cause of the variability in integration landscapes in these three patients.  

Interestingly, an analysis of integration positions of intact vs defective proviruses in infants (GB) 

(Garcia-Broncano et al. 2019) revealed that intact proviruses were enriched in state 3 (Transcription 

TSS/TTS; 200-fold enrichment) while defective proviruses were enriched in state 7 (Active enhancer; 

6.7-fold enrichment) and state 5 (Weak transcription; 2-fold enrichment) (Fig. 6C and Supplemental 

Table S5). Remarkably, the pattern of enrichment of intact proviruses in infants in the Garcia-Broncano 

dataset matches the enrichment of intact proviruses in adult Patient 2 of the Einkauf dataset potentially 

providing somewhat generalizable concepts of locations in the human genome in which intact 

proviruses persist. Similarly, the pattern of enrichment of defective proviruses in infants in the Garcia-

Broncano dataset matches the enrichment of defective proviruses in adult Patients 1 and 3 of the 

Einkauf dataset potentially providing generalizable concepts of locations in the human genome in which 

defective proviruses persist. 

 

DISCUSSION 

In this work, we have applied a previously unprecedented integrated approach: 1) to interrogate 

how the position of HIV proviruses in the human genome shape their expression, 2) to implement a 

machine learning approach to delineate features in the human genome predicting HIV proviral 

expression, and 3) to explore where defective and intact proviruses hide in the human genome and 

how their positions may dictate persistence in patients despite highly suppressive therapies, thereby 

regulating their future inducibility. Together, it is the combination of these three approaches that have 

enabled us to start defining relationships between HIV proviral positions in the human genome and their 

expression, to start understanding where intact HIV proviruses may be hiding to persist in patients, as 

well as to fuel questions for future studies. 

Our studies on the exploration of HIV integration patterns and proviral expression revealed a 

number of salient points. First, B-HIVE insertions appear evenly on all chromosomes, with the majority 

of insertions occurring in genic regions (Fig. 2B), and that proviral expression is unrelated to the 
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chromosome (Supplemental Fig. S1). Second, proviral expression has a slight correlation to distance to 

the most proximal human gene TSS when the insertion occurs inside a gene (Fig. 3A). Third, that both 

Intra- and Intergenic - Convergent orientation in relation to nearest gene has a slight correlation to 

proviral expression (Fig. 3B). Fourth, HIV expression has no sharp correlation with the distance to the 

most proximal TE; however, we observed a minor correlation between the position of HIV proviruses in 

Group 5, Intragenic - Convergent, and its distance to the most proximal SE (Fig. 3C). Fifth, mean HIV 

expression is higher in sub-compartment A1 compared to the other sub-compartments (A2, B1, B2, and 

B3; Supplemental Fig. S6G-H), which agrees with the higher enrichment of chromatin marks correlating 

with transcriptional activity and accessibility (Rao et al. 2014). Together, these studies suggest that HIV 

benefits from integration into more active compartments and with unique position and orientations 

respective to human genes and regulatory elements. 

The ChromHMM analysis revealed that enhancers appear to dictate HIV proviral expression, 

potentially controlling its fate. For example, Active enhancers (state 7) and Bivalent enhancers (state 

12) may provide a better environment for HIV expression compared to Quiescent/low genomic domains 

(state 15) (Fig. 4). Thus, while enhancers appear to be important regulators of HIV expression, their 

chromatin context, expression level at a given time and position in the 3D space may be more critical 

than the distance between the integration site and most proximal enhancer in the 1D space (Fig. 3C). 

Our studies on the dissection of molecular features regulating HIV proviral expression prompted us 

to devise a machine learning model to predict features in the human genome contributing to proviral 

expression, which might be vital for intact proviruses persisting despite highly suppressive therapy. As 

such, the implementation of a logistic regression model trained with the B-HIVE integration/expression 

datasets showed good predictive power to be the first model employed to address this problem, with a 

sensitivity of 68.42% and a specificity of 59.10% (Fig. 5). This model revealed optimal features for the 

prediction, including upstream histone acetylation (H3K27ac) and chromatin accessibility (MNase-seq) 

and categorical nuclear sub-compartments. Strikingly, Cohn and colleagues described preferred 

integration in “hotspot” locations at or near repeat elements in patient samples (Cohn et al. 2015). This 

observation is interesting because our machine learning model only found H3K27ac and MNase-seq to 
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be important, upstream relative to genome location of insert, which may be linked to the presence of 

active mobile elements in the human genome. Together, we envision that with the addition of larger 

datasets of proviruses, whose integration landscape and expression profiles are quantified with more 

robust technologies, could help to achieve newer models with better predictive powers. As the datasets 

grow, we expect that genetic landscape related to HIV proviral fate will be more prominent and, 

accordingly, future machine learning approaches can be used to provide a compass compatible with 

clinical decision-making. 

Our studies on both the dissection and prediction of molecular features regulating HIV proviral 

expression and fate stimulated further data analyses to assess where HIV proviruses (both intact and 

defective) hide in the human genome and how their locations potentially regulate their expression. 

Since no single dataset yet exists to simultaneously interrogate HIV positions and expression in patient 

samples, we used a landmark dataset containing joint information on HIV positions and genome 

intactness (Einkauf et al. 2019). Given that intact proviruses can be expressed and thus reactivated to 

reseed the active viral reservoir upon cessation of therapy, we were mainly interested in comparing 

their positions in the human genome compared to defective proviruses. Interestingly, using this 

information and ChromHMM we showed that both intact and defective proviruses “hide” in different 

chromatin regions of the human genome (Fig. 6C), potentially suggesting that some areas are more 

permissive for “preserving” proviral intactness than others, which might be related to transcriptional 

and/or DNA replication effects. Strikingly, 2 out of 3 patients contained a significant fraction of 

enrichment of intact proviruses persisting in state 8 (ZNF genes & repeats; ~4-fold) but also enriched 

about equally between states 1, 9,10 (Active TSS, Heterochromatin, and Quiescent/low, respectively; 

~3-5 fold). Furthermore, defective proviruses were preferably enriched, more than random chance, in 

states 4, 5, and 7 (Strong transcription, Weak transcription, and Active enhancer, respectively). 

Although intact proviruses were also detected in these chromatin states, as expected given their large 

coverage of the human genome, these positions do not differentiate proviral classes. Furthermore, an 

analysis of integration sites on infants also revealed that intact and defective proviruses were 

preferentially located in different chromatin states with intact proviruses primarily located in state 3 
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(Transcription TSS/TTS), and defective proviruses preferably located in states 7 (Active enhancers) 

and 5 (Weak transcription) (Fig. 6C). Remarkably, enrichment of defective proviruses in infants 

matches the enrichment of defective proviruses in adult Patients 1 and 3, but not Patient 2 (Fig. 6C). 

While the patient data analysis revealed some interesting trends for the enrichment of intact vs 

defective proviruses in preferred locations (chromatin states), the lack of expression data does not 

allow us to interrogate relationships between their positions, expression, and inducibility. However, the 

combination of patient data analysis with the definition of features and chromatin states regulating HIV 

expression in the immortalized model of latency yielded a number of interesting observations that may 

be applicable to intact proviruses persisting in patient samples. For example, most of the intragenic 

proviruses, Groups 4-5 (convergent or same), are defective in patients, and intact HIV sequences in 

intergenic positions (divergent and convergent) are more prevalent than in genic positions, and/or close 

to TSS and/or to chromatin accessible areas (Einkauf et al. 2019). Also, while the transcription activity 

of both intragenic groups (Groups 4-5) is more correlated with the distance to the nearest TSS (Fig. 

3A), these proviruses are typically defective in patients (Maldarelli et al. 2014; Einkauf et al. 2019), 

potentially due to their location inside genes and the high level of co-transcriptional processing. 

Our studies spur some interesting ideas and questions for future research. Does the expression of 

HIV proviruses correlate with the activity of its neighborhood including any regulatory elements that can 

be transcribed such as promoters, enhancers, and repetitive elements? Does the directionality of HIV 

proviruses respective to most proximal genome regulatory elements (e.g., promoters, enhancers, 

repeats, etc.) matter? As such, we envision that future work will be needed: 1) to study differences in 

epigenomic landscapes before and after HIV insertion, 2) to collect larger integration libraries to study 

and develop better, more complete machine learning models, 3) to obtain more patient datasets with 

intactness for personalized medicine depending on where HIV inserts itself, and 4) to study HIV 

integrants at the single cell level to define their locations and intactness (MIP-seq), expression (scRNA-

seq), and chromatin landscapes (scATAC-seq). Although these single-cell studies are the only ones 

that will allow to study the relationship between HIV position, intactness, and expression as well as 
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viral-host chromatin landscapes, the scarcity of the latent reservoir in patients under suppressive 

therapy and the current inability to multiplexing these three technologies pose extreme limitations. 

Given the above facts, exactly deciphering human genome codes shaping HIV proviral fate will 

certainly require painstaking investigations of multiple genetic and epigenetic features. To avoid 

incorrect assumptions that one or more regulatory features could contribute to position effects, deep 

and precise interrogations will have to be conducted in the same system, which will require the 

generation of thousands of clones containing single proviruses integrated into a unique position in the 

human genome and/or, even better, the use of single-cell level approaches to simultaneously 

characterize regulatory features of both HIV and human genomes, something that it is currently 

prohibited by the number of multi-omics approaches that can be implemented at the single cell level. 

Finally, our analysis demonstrates the importance of carefully and correctly characterizing enhancer 

elements when studying their potential role in genome regulation. Future studies should be cautious to 

employ the same rigorous standards when defining genomic domains to interrogate functional insights 

in human health and disease. 

 

METHODS 

NGS dataset analysis 

Information on the library preparation and sequencing of MNase-seq as well as a description of data 

analysis for ChIP-seq, RNA-seq, TT-seq, MNase-seq, DNase-seq, and Hi-C can be found in the 

Supplemental Methods. 

Barcodes and HIV Integration Site Mapping on the Human Genome and HIV barcode clustering 

and quantification 

B-HIVE data was processed with the B-HIVE for single provirus transcriptomics docker container 

(https://github.com/gui11aume/BHIVE_for_single_provirus_transcriptomics) with a change to the 

expr.nf file (see GitHub scripts for the updated script). The B-HIVE expression data set was subdivided 

into 6 different groups, 1) Intergenic – Same, 2) Intergenic – Convergent, 3) Intergenic – Divergent, 4) 

Intragenic – Same, 5) Intragenic – Convergent, and 6) Intragenic – Overlapping (which consists of 3 
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subgroups; Fig. 2A) depending on the relationship to the nearest gene from Gencode version 25. For 

each group, a Circos plot version 0.696 (Krzywinski et al. 2009) was created to show the relationship of 

HIV expression to genome location (Supplemental Fig. S1A-F). HIV expression versus distance to 

nearest TSS was plotted in R version R/3.3.2-gccmkl (Team 2014) using ggplot2 (Wickham 2016). 

Typical and Super enhancer Databases 

Strand specific, TT-seq was used to identify possible typical and super enhancers. For this purpose, 

enhancers are defined as regions of the genome that are bi-directionally transcribed, and not in a gene 

nor its promoter, or an annotated linc-RNA. A 4 state HMM on TT-seq both strands, TT-seq forward 

strand, and TT-seq reverse strand identified regions of the genome that are actively transcribed. Four 

states were chosen over a 2-state model because there were various amounts of transcription found in 

the genome; genic regions were easily identified, but low expression intergenic regions could not be 

identified with 2 states. Thus, 3 of the 4 states were coded for transcribed, and 1 state was labeled as 

non-transcribed. A database of possible enhancers was created by identifying regions of the genome 

that were identified as transcribed for all data, and also overlapped with regions that were both forward 

and reverse transcribed. Also added to the possible enhancer list were regions where there were 

overlapping forward and reverse transcription, but not identified as transcribed in all data. From this list, 

protein-coding genes with 2 kb upstream and downstream were removed. Next, annotated regions from 

RNA-seq with an FPKM greater than 1 for all replicates and not protein-coding genes were removed. 

This final list of 20,943 regions is purported enhancers. 

Super enhancers were identified using Rose v0.1 (Loven et al. 2013; Whyte et al. 2013), stitching 

together a 12.5 kb distance, excluding 2.5 kb from TSS. Purported enhancer regions from TT-seq were 

used as previously identified enhancer regions. Merged, filtered, and read mapped duplicates removed 

bam files of histone marks (H3K27ac, H3K4me3, and H3K4me1) were used to rank the possible 

enhancers. Since not all enhancers are identifiable with the 3-histone marks, TT-seq bam files were 

also used to identify super enhancers, and the output was filtered again for transcribed, annotated 

regions of the genome (e.g., genes and linc-RNAs). The final super enhancer database contained 767 

merged regions, of which 360 were identified with H3K27ac alone, 436 identified with H3K4me3 alone, 
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301 identified with H3K4me1 alone, and 115 identified with TT-seq alone. The 767 super enhancer 

regions were removed from the 20,943 purported enhancer regions leaving 18,357 possible enhancer 

regions. Of these regions, 701 overlap with H3K27ac peaks, 262 overlap with H3K4me3 peaks, 702 

overlap with H3K4me1 peaks, and 1301 overlap with forward and reverse TT-seq transcribed regions 

with bidirectional transcription. The final merged regions contain 2180 enhancers. The closest typical 

and super enhancers to each provirus within the 6 HIV insertion groups (Fig. 2A) were identified with 

bedtools closest (version 2.26.0) (Quinlan and Hall 2010). HIV expression versus distance to nearest 

typical enhancer or super enhancer was plotted in R version R/3.3.2-gccmkl (Team 2014) using ggplot2 

(Wickham 2016). 

Identification of chromatin states – ChromHMM  

We implemented ChromHMM (Ernst and Kellis 2017), which uses a multivariate (HMM) to calculate the 

probabilistic nature of a multi-state model and the biological nature of the state of chromatin at that 

location, in order to discover chromatin states in Jurkat T cells using epigenomics information derived 

from 7 individual ChIP-seq marks (H3K27me3, H3K4me3, H3K27ac, H3K4me1, H3K36me3, 

H3K79me3, and H3K9me3) known as state emissions. Filtered bam files, with mapping read duplicates 

removed, for each of the 7 histones, were individually converted to binary bin files with ChromHMM 

BinarizeBam v1.19 (Ernst and Kellis 2017). We first obtained the state emissions of 15 different 

chromatin states defined as described on the Roadmap epigenomics project 

(https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html) on the basis of the observed data 

for the above 7 histone modifications. We used a core 15-state model for our analyses since it captured 

all the key interactions between the chromatin marks, and because larger numbers of states (e.g., 

“expanded 18-state model”) did not apparently capture sufficiently distinct interactions. To de novo 

generate the core 15-state model in Jurkat T cells we compared the relative abundance of the state 

emissions in Jurkat with known chromatin states for the 3 ENCODE cell lines most genetically and 

phenotypically linked with Jurkat (E115: Dnd41 T cell leukemia, E116: GM1282878 lymphoblastoid, and 

E123: K562 T cell leukemia) (Supplemental Fig. S3A-C). In order to assign biologically meaningful 

mnemonics to the 15 chromatin states, we used the ChromHMM package to compute the overlap and 
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neighborhood enrichments of each chromatin state relative to various types of functional annotations 

including the ChromHMM built in RefSeq annotations of: 1) CpG islands, 2) genes, 3) exons, 4) introns, 

5) TSS, 2-kb windows around TSS (TSS flanking), transcription termination sites (TTS), and 2-kb 

windows around TTS (TTS flanking) based on the GENCODE v27 annotation, 6) Zinc finger (ZNF) 

genes obtained from ChromHMM, and 7) typical enhancers and super enhancers obtained as 

described above (Fig. 4A). 

Identification of sub-compartments 

The two Jurkat Hi-C libraries (see Supplemental Methods) were combined with HOMER v4.10.4 

makeTagDirectory using a standard protocol (Heinz et al. 2010). The eigen values of the first principle 

component of each chromosome was calculated with HOMER v4.10.4 runHiCpca using a standard 

protocol (Heinz et al. 2010). The sign of the eigen values divide each chromosome; however, it does 

not state if either positive or negative values are representative of the A or B sub-compartments. So, for 

each chromosome, the positive and negative eigen values were overlaid with Jurkat’s 15-state 

chromatin marks (ChromHMM v1.19 OverlapEnrichment) (Ernst and Kellis 2017). The A and B sub-

compartments were clearly defined with the B sub-compartments preferentially segregating in states 9, 

13, and 15 (heterochromatin, repressed Polycomb, and quiescent/Low, respectively). The sign of the 

eigen values were then corrected so that positive values represented the A sub-compartment and 

negative values, B sub-compartment. K-means of k = 2 was calculated on the A sub-compartment, and 

k-means k = 2 through k = 5 on the B sub-compartment using R v3.5.1 k-means. The A sub-

compartment was labeled A1 or A2 based on the results of overlaying the k-means on the chromatin 

states; with A1 having much higher values than A2. The B sub-compartment was overlaid with the 

chromatin states for all k-mean k = 2 through k = 5, however, the results did not split the B sub-

compartment on expected chromatin marks (Supplemental Fig. S5). Thus, the B sub-compartment was 

not sub-divided. The GM12878 sub-compartments were retrieved from the GEO database 

(GSE63525). The coordinates were lifted over to GRCh38 with UCSC liftOver (Hinrichs et al. 2006). 

Machine learning 
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In order to study the immediate landscape surrounding HIV insertions (1559 insertions in total) and its 

possible effects on expression, we looked at 2-kb regions, in 200-bp increments around the HIV 

integration sites (Fig. 5A). RPKM values of each 200-bp bin (20 bins in total) were calculated for the 7 

histone marks (H3K27ac, H3K4me3, H3K4me1, H3K36me3, H3K79me3, H3K9me3, and H3K27me3), 

RNA-seq, MNase-seq, DNase-seq, and TT-seq using RPKM.py 

(https://git.biohpc.swmed.edu/venkat.malladi/miscellaneous_scripts/blob/master/scripts/rpkm.py). 

Discrete values for ChromHMM states and lamin sub-compartment states were also noted for each 200 

bp region. The ChromHMM states were then converted from a categorical into a numerical value based 

on our understanding on its openness: U1 (most open), U4, U3, U6, U2, U7, U5, U10, U8, U11, U12, 

U14, U13, U9, and U15 (most close) in order. The HIV expression level was normalized by z-transform 

and was annotated as ‘Low’ if the normalized expression is lower than -0.5 (n=351), as ‘High’ if higher 

than 0.5 (n=455), and otherwise as ‘Intermediate’ (n=753) (Fig. 5A). To determine optimal features, 

which have predictive power in HIV fate prediction, and train a prediction model with them, a Machine 

Learning (ML) approach was taken. As a first step, the genetic landscape dataset was randomly split 

into a training dataset (75% of HIV insertions) and a test dataset (25% of HIV insertions). To select 

optimal features for HIV expression level prediction, an R package, smbinning 

(https://rdrr.io/cran/smbinning/), was applied to the training dataset consisting of ‘High’ and ‘Low’ 

expression instances only. It returned each feature’s Information Value (IV), which is relevant to its 

importance in the prediction task, and features of IV ≥ 2 were determined as optimal ones 

(Supplemental Table S2). After training a logistic regression model with the training dataset of the 

optimal features, the trained model was evaluated with the unseen test dataset. Note that ‘Intermediate’ 

expression instances were excluded for the model training to get a better model, but included for the 

model evaluation. A metagene profile plot of 2 kb region surrounding HIV insertion in H3K27ac and 

MNase-seq (Supplemental Fig. S7A,B) as well as heatmaps of HIV insertions and mean expression in 

each sub-compartment (Supplemental Fig. S7C,D) were created. 

Patient Data 
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Patient data was downloaded (Supplemental Table S4) and, if necessary, lifted over from older 

assemblies to GRCh38 using UCSC liftOver (Hinrichs et al. 2006). Heatmaps were created with 

ChromHMM OverlapEnrichment (Ernst and Kellis 2017). 

 

DATA ACCESS 

URLs 

The computer code used for this analysis is available on GitHub: https://github.com/utsw-

bicf/HIVproviral_fate 

Data availability 

NGS datasets used in this study (Supplemental Table S1) were downloaded from NCBI Gene 

Expression Omnibus (www.ncbi.nlm.nih.gov/geo/; (Barrett et al. 2013) or ENCODE project 

(www.encodeproject.org). 

Data deposition 

MNase-seq, raw and processed sequencing results, have been submitted to NCBI Gene Expression 

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE144753. 
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